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Abstract: Recognition of malware is critical in cybersecurity as it allows for avoiding execution
and the downloading of malware. One of the possible approaches is to analyze the executable’s
Application Programming Interface (API) calls, which can be done using tools that work in sandboxes,
such as Cuckoo or CAPEv2. This chain of calls can then be used to classify if the considered file
is benign or malware. This work aims to compare six modern shallow learning and deep learning
techniques based on tabular data, using two datasets of API calls containing malware and goodware,
where the corresponding chain of API calls is expressed for each instance. The results show the
quality of shallow learning approaches based on tree ensembles, such as CatBoost, both in terms of
F1-macro score and Area Under the ROC curve (AUC ROC), and training time, making them optimal
for making inferences on Edge AI solutions. The results are then analyzed with the explainable
AI SHAP technique, identifying the API calls that most influence the process, i.e., those that are
particularly afferent to malware and goodware.

Keywords: CAPEv2; cuckoo; machine learning; classification; malware prediction; API calls;
explainable AI; SHAP

1. Introduction

The protection of a computer system, especially in a smart enterprise, represents a
key factor for the company’s survival: the damage caused by computer attacks can have
significant economic impacts. Among the possible attacks, malware attacks are particularly
relevant, as they cause direct damage to the system or intercept relevant information for
the company. Protecting the smart enterprise from malware is crucial, so it is necessary to
implement techniques that can detect and recognize malware within enterprise networks.
Most malware detection systems are based on signature verification techniques, which are
effective for all known malicious software, but inadequate for new malware as there are no
signatures available. This limitation represents a problem, as it can intercept attacks built
with prefabricated elements, but it cannot protect against a specifically constructed attack.
A way to overcome the limitations of such approaches is to exploit the sandbox software
CAPEv2 [1], the evolution of Cuckoo [2], to perform an analysis of hypothetical threats.
The use of machine learning and classification techniques, operating on the information
related to the behavior of executables, allows the detection of malware, especially the 0-day
ones, i.e., those not yet known.

Edge AI (Edge computing + Artificial intelligence) solutions allow inference to be
made at the direct generation of the data, even before it is downloaded to the receiver’s
machine. Such approaches have the advantage of generally working in a near real-time
mode, but, on the other hand, they are constrained by limits of memory availability and
computational power, thus making execution time a key factor. For these reasons, it is
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essential to understand which solutions are best suited to run on edge computing devices
and then create Edge AI solutions that capture malicious events with high accuracy while
maintaining low complexity and execution time constraints. A possible compromise in the
view of such solutions is to extract the calls to Application Programming Interfaces (APIs)
made by individual executables, thus obtaining an abstraction concerning the behavior of
the programs. This approximation allows a summary evaluation of the behavior, which
can be analyzed in terms of machine learning, to estimate if the software is malicious
or goodware.

This paper presents a benchmark whose primary purpose is to test various machine
learning algorithms, using deep learning and shallow learning techniques, applied on
datasets of goodware/malware labeled software API calls.

The following tree-based shallow learning algorithms were considered:

• Random Forest;
• CatBoost;
• XGBoost;
• ExtraTrees;

and also two other deep learning algorithms based on neural networks:

• TabNet;
• NODE (Neural Oblivious Decision Ensembles).

These algorithms were tested on two different datasets: malware-analysis-datasets-api-
call-sequences [3,4] and APIMDS [5] in balanced K-Fold cross-validation mode. Results’
reports were then generated and analyzed in detail. The explainable artificial intelligence
technique SHAP [6] also allowed for determining the extent to which each API call con-
tributes both in discriminating goodware from malware, and vice versa.

The main contributions of this work are:

• Provide a benchmark showing the trade-off between the proposed algorithms based
on accuracy and execution time;

• Use the Explainable AI SHAP technique to determine which API calls are heavily
influential in the classification process;

• Show how the use of such approaches can support the results of dynamic analyses,
focusing on the importance of individual API calls.

The paper is organized as follows: Section 2 contains the state-of-the-art review; Section 3
contains a description of the datasets used in the experiment; Section 4 describes the algorithms
used, the settings of each of them for the experiment, and the techniques applied for prepro-
cessing the dataset; Section 5 provides the results and their discussion. Section 6 presents the
reasoning about explainable artificial intelligence using SHAP. Conclusions are presented in
Section 7.

2. Related Work

Some of the scientific literature refers to Cuckoo [2], a precursor to CAPEv2; therefore,
the principles described in these works are directly applicable.

The Honeynet Project published an open-source project called CuckooML [7] in 2016.
According to the state of the art at the time, the researchers built an innovative feature based
on anomaly detection techniques so that the modified software could cluster and identify
new types of malware. All are available both in the command line and from a simplified
web interface. The approach chosen by the authors was an unsupervised, descriptive type,
specifically Clustering. One of the advantages, given the nature of the problem, is the lack
of need for labeled data.

Darshan et al. [8] propose a new solution towards signature-based malware detection
systems, where new malware, also obtained by applying obfuscation techniques on previ-
ously known malware, manage to easily evade controls, thus overcoming the defenses of a
system. Thus, to detect malware based on their behavior, it starts by using the framework
provided by Cuckoo, which offers an isolated environment where malicious software can
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be freely executed and its actions analyzed. Most sandboxes focus on system calls, i.e., those
mechanisms used by a process at the application layer to request services at the operating
system layer to perform desired user activities such as reading data, placing packets on the
network, writing records to the registry, and so on.

The proposed approach for malware recognition is innovative: starting from executing
the hypothetical threat inside Cuckoo, once a report in JSON format containing the system
calls is obtained, this report is first converted into a new format, i.e., MIST (Malware
instruction set). After that, the system calls contained in MIST, once isolated, are used to
create N-grams that is a sub-sequence of N characters where N represents the length of
each sequence. Through the metric of information gain, which represents the expected
reduction of entropy in the data, the starting dataset (composed of N-grams) is partitioned,
selecting the top N sub-sequences of characters as a Final Feature Vector, i.e., a vector of
features to be processed in the training phase of the classifier. Unlike the paper presented by
The Honeynet Project, in [8], a supervised approach and a classification task are proposed,
and hence predictive, with the need to have a labeled dataset. The n-grams thus extracted
belong to both malicious and genuine software; moreover, in case of duplicates, these are
removed. Once the final features are obtained, an element called a instruction converter
takes care of their transformation into the ARFF (Attribute Relation File Format), used by the
WEKA framework to operate with different machine learning algorithms for classification.
The authors selected, within WEKA, six different classification algorithms, respectively:

• Bayesian-Logistic-Regression;
• SPegasos;
• IB1;
• Bagging;
• Part;
• J48.

At the end of the runs, the best classifier was SPegasos, in terms of accuracy, lowest
false positive rate, and highest true positive rate.

Ali et al. [9] used n-grams and TF-IDF for performing dynamic analysis for detecting
malware using API calls, and the work reached an accuracy of 98.4% using this kind of
preprocessing with Logistic Regression classifier. Kumar et al. [10], based on the anomaly
detection technique, propose an innovative malware detection methodology based on
clustering and Trend Micro Locality Sensitive Hashing (TLSH) metrics in order to cluster
the dataset entries. In summary, starting from the report generated through the Cuckoo
sandbox, a hash value is calculated according to the Trend Micro Locality Hashing metric.
After that, the specific difference for each generated hash is calculated, and different clusters
are generated based on a certain threshold. Next, the feature extraction and feature selection
steps are applied, according to which the starting dataset is partitioned and prepared for
the training phase. Finally, several classifiers for malware detection were trained through
the scikit-learn library of Python. In addition, in this work, one of the crucial points lies
in the dataset, since it is difficult to find suitable ones in public form and available on the net
for this purpose: the authors had to build one specifically in order to evaluate the proposed
methodology, which includes both malware and benign software. Although the task is
supervised (prediction), in some preliminary training phases, i.e., feature extraction first
and feature selection later, an unsupervised approach, clustering, was used to describe and
group data according to TLSH metrics. This innovation is intended to overcome traditional
feature extraction techniques, which were particularly unsuitable for large volumes of data.
In fact, by applying this metric to clustering, a decrease in the training time of machine
learning algorithms was observed without affecting the quality of predictions. Therefore,
once Cuckoo obtains the report in JSON format, this report is used to calculate the footprint
according to the TLSH metric. Based on these imprints, clusters are generated to group
malware having similar traits. Several binary classification algorithms, i.e., genuine -
malicious form, have been used for malware detection, such as:

• Decision Tree;
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• Random Forest;
• Logistic Regression.

At the end of the execution, during the evaluation phase of the proposed model, it
was found that the Random Forest algorithm obtained the best performance in terms of
accuracy, lower false-positive rate, and higher true-positive rate.

Udayakumar et al. [11] propose a methodology similar to the one discussed in [8],
exploiting the same feature extraction and feature selection techniques, but differing mainly
on the classification algorithms used and finally on the results obtained. Starting from the
reports generated at the end of the analysis performed by the Cuckoo Sandbox in JSON
format, the first step consists of converting and extracting the system calls in MIST format.
After that, the model follows the heuristic methodology of the decomposition in n-grams,
where n represents the length of the sub-sequences of characters to extract, which represent
system calls. Exploiting the metric of the Information Gain and ordering the features in a
decreasing way, extract the final vector of the characteristics that will be fundamental for
all the activities of automatic learning. After the feature selection phase, the final feature
vector will be composed respectively selecting the top 200, 400, and 600 features in the form
of n-grams, with n equal to 3 and 4. Some of the classifiers chosen by the authors are:

• Adaboost;
• Random Forest;
• Naive Bayes;
• Logistic Regression;
• Random Tree.

The dataset used for the testing phase is composed of 3000 files belonging to the
non-malware category and 3100 malware, which belong to different categories. The test
shows that the Random Forest classifier obtains the best results both in accuracy and in
a lower rate of false positives and a higher rate of true positives. Ndibanje et al. [12]
created a framework for malware de-obfuscation and analysis using machine learning
algorithms which showed good performances on detecting possible threats. In [13], there
is a survey that provides a global overview of how machine learning algorithms can be
used in the context of offense-defense and, more in general, cybersecurity. Authors in [14]
developed Sisyfos, a modular and extendible platform for malware analysis comprehensive
of a web interface. The accuracy is tested using Random Forest Classifier reaching 98%.
Kim in [15] presents a combination of static and dynamic analysis of various types of
malware using several machine learning algorithms for classification aim. Moreover, the
author estimates a malware risk index for using an analytic hierarchy process to detect
malware and their probabilities. Choi et al. [16] used KNN combined with vantage-point
tree for classification of malware; they reduced the detection time by 67% and increased
detection rate by 25%. In [17], several machine learning techniques are used, demonstrating
that the decision tree based family outperforms all others. In particular, the decision
tree reduced the false alarm rate by 2% and reached an error rate of 99% of F1-score. El-
Shafai et al. [18] used a visual encoding of malware in order to use a deep convolutional
neural network and perform classification. Malware are converted from binary files into
images, then VGG16, AlexNet, DarkNet-53, DenseNet, and ResNet CNNs were trained in
transfer learning mode on the proposed dataset reaching as high as 99.97% of accuracy,
but without promoting insights about what are the learned patterns and how they correlate
to malware. A survey on shallow and deep learning techniques to detect ransomware
malware in IoT networks is provided in [19] by Fernando et al. Instead, Ref. [20] provides a
survey concerning malware detection in mobile devices (especially Android), categorizing
the literature to three dimensions: type of analysis, features, and techniques. A recently
adopted approach for Explainable AI is the SHAP library, which determines the most
involved features in the classification process. Rao et al. [21] propose using such a library
to analyze the result of using an Isolation Forest technique on the NSL-KDD dataset.
In detail, the technique is employed to label the data based on the combinations of features
judged to be of major significance. A different approach is the following one proposed
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by Wang et al. [22], who, even though they apply to the same NSL-KDD dataset, propose
a method to explain locally and globally the predictions made by an Intrusion Detection
System. The innovation brought by this approach is a certain coherence between what is
produced by the model realized by the authors and the peculiarities of the specific attacks,
allowing the operator using the system to have more punctual information to make more
informed decisions. The two works considered provide some initial approaches to using
the library in the cybersecurity domain, using the explanations to add information to
the prediction made by a classifier. The work proposed offers a similar approach but is
oriented towards identifying the APIs that most influence the classification process, thus
allowing the individuation of some elements that can be warning signs. This approach is
also oriented in the perspective of an optimization of the time for inference. As it is possible
to see from this literature review, several techniques are used on different datasets and in
different conditions. Thus, it is difficult to draw any conclusion about the best techniques
for this kind of problem. Exotic, nonstandard techniques should be re-implemented to be
tested on exactly the same conditions, but some work lacks details to re-implement their
technique. One of the final goals of this work is to test state-of-the-art tree-based techniques
and their counterpart, which make use of deep neural networks on the same datasets in
exactly the same conditions. This would allow the creation of a basic testing framework
that could be used by other authors and allow comparable results.

3. Dataset Description

In order to build an effective model, as well as for subsequent evaluation, it is necessary
to have a large amount of data. This section describes the datasets used for the experiments.

The dataset malware-analysis-datasets-api-call-sequences [3,4] contains 42,797 malware API
call sequences and 1079 goodware API call sequences. Each API call sequence consists of the
first 100 consecutive non-repeating calls associated with the parent process, extracted from
the “calls” elements of the reports obtained from Cuckoo Sandbox. The APIMDS dataset [5]
instead consists of 23,080 malware samples randomly chosen from two other datasets: the
Malicia project [23] and Virus Total [24]. A detailed description of the organization of the
dataset can be found in Table 1, which shows the multitude of malware types recognizable
using the analyzed approaches. However, this study focuses on binary classification.

Table 1. APIMDS dataset structure [5].

Category Subcategory Ratio (%)

Backdoor - 3.37

Worm

Worm 3.32
Email-Worm 0.55
Net-Worm 0.79
P2P-Worm 0.30

Packed - 5.57

PUP
Adware 13.63

Downloader 2.94
WebToolbar 1.22

Trojan

Trojan (Generic) 29.3
Trojan-Banker 0.14
Trojan-Clicker 0.12

Trojan-Downloader 2.29
Trojan-Dropper 1.91
Trojan-FakeAV 18.8

Trojan-GameThief 0.63
Trojan-PSW 3.79

Trojan-Ransomware 2.58
Trojan-Spy 3.12

Misc. - 5.52
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4. Algorithms Used

The aim is to compare deep learning and shallow learning techniques on the two dif-
ferent datasets previously mentioned for the benchmark under consideration. The models
in question are respectively subdivided in Shallow learning techniques:

• Random Forest;
• CatBoost;
• XGBoost;
• ExtraTrees;

Deep learning techniques:

• TabNet;
• NODE (Neural Oblivious Decision Ensembles).

4.1. Random Forest

Random Forest [25] is a classifier obtained from the aggregation, through bagging,
of decision trees. A decision tree is an acyclic graph of decisions and their possible conse-
quences, mainly used to create an “action plan” aimed at a purpose. The particularity of
this model is the clarity in the expression of the information, which is represented as a tree.
Therefore, the decision tree is a predictive model in which each internal node represents a
variable. The arcs between a parent node and the child nodes are obtained by distinguishing
the paths based on the value of one of the data features to be classified; each branching step
is the result of a splitting based on equality, majority, or minority condition applied on a
variable. The leaf nodes instead represent the predicted class. The classification is obtained
by following the expressed conditions, from the root node to a leaf node. Thus, a decision
tree is, in fact, a set of decision rules based on the values of the variables. A decision tree is
generated starting from a dataset; in the training phase, defining some stopping criteria
(halting) is necessary since a much-ramified tree significantly increases the computational
complexity against little benefits in classification accuracy. The bagging operation allows
merging multiple models of the same type, all derived from the same original dataset,
using data obtained from sampling without replacement. Random Forest is then composed
of a set of decision trees, all trained from the same dataset, where each decision tree is
trained on a random subset of the variables. The resulting classification is the mode (in
the case of a classification task) or the mean (in the case of a regression task) of the results
obtained by the individual decision tree classifiers.

4.2. XGBoost

Gradient Boosting is a Machine Learning technique developed to solve classification
and regression problems. It creates prediction models from an ensemble of smaller pre-
diction models, typically represented by decision trees. Model building is done stepwise,
in the same way as other boosting algorithms, but the advantage of this technique lies in
the fact that it can generalize by allowing the optimization of an arbitrary differentiable loss
function. This approach differs from others in that it is suitable for a wide range of tasks
and has excellent portability as it supports a cross-platform between different programming
languages and different operating systems.

XGBoost [26] improves the Gradient Boosting Machines (GBM) framework on which
it is based through optimizations in the system and improvements in the algorithms.
XGBoost takes advantage of cache-aware algorithms by allocating internal buffers in
each of the threads to store computed statistics. XGBoost uses parallelization, as the
process of tree construction is done in a parallel way, due to the exchange of nested loops
used in tree construction. The max_depth parameter allows for adjusting the division of
each tree, instead of using the basic stop criterion. The features that enable algorithmic
improvements are:

• Allows for avoiding the phenomenon of overfitting in the training phase, ensuring reg-
ularization;
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• Capability of adaptation in the presence of features with missing values, since it
automatically selects a value to replace the missing ones, based on the training data;

• Cross-validation at each iteration.

XGBoost models currently represent an excellent solution in classification and regres-
sion tasks, both for their performance in terms of the results obtained and computation
time compared to other algorithms.

4.3. CatBoost

CatBoost [27] is an open-source software library that defines itself as state of the art
for the gradient boosting [28] technique on decision trees. During training, a set of trees
are built consecutively, where each new tree is built with a different and reduced loss to
the previous. This influences the tree structure greedily. Another important aspect is the
capability of making feature values’ quantization automatically: it automatically defines
the thresholds to use to create disjoint ranges (bins) for the feature values and labels. In
addition to providing accuracy, robustness, practicality, and extensibility, all backed by
the ease of use, it also offers direct support for categorical format data and has a GPU-
computable version. CatBoost can easily be integrated with deep learning frameworks
like Google’s TensorFlow and Apple’s Core ML. It can work with different data types,
and it supports explainable artificial intelligence through feature ranking to sort the most
important features. In this work, the model for plain supervised classification on a set of
features is used.

4.4. Extra Trees

Extremely Randomized Trees [29], also based on decision trees, combines the results
from the base models organized in the forest to determine the prediction output. The Extra
Trees model creates a large number of decision trees that are unpruned and generated
automatically starting from the data. For classification purposes, the predictions are made
using majority voting and regression purposes by averaging the result of each tree. It is
based on the intuition that, by building trees by randomly picking the feature to split at
each step for each tree, the model will not overfit. This makes the ensemble of trees less
correlated and increases variance. This increased variance can be faced by increasing the
number of trees. The main difference with Random Forest is in the construction of the
decision trees within the forest: ExtraTrees does not exploit the bootstrap methodology
on learning samples and randomly selects a branching point on each feature instead of
targeting the optimal split of Random Forest.

4.5. TabNet

The idea behind TabNet [30] is to build a neural network for processing tabular
data. As demonstrated in other application domains, e.g., images, the application of deep
learning techniques has brought a significant performance boost as the dataset grows
vis-à-vis machine learning techniques. It is designed to learn similar decision tree-based
models and have their benefits: interpretability and feature selection. It sequentially
uses the multi-headed attention technique to choose from which features to use at each
decision step. Feature selection is made on an instance-by-instance basis to differentiate
for each input. The model is built in multiple sequential steps by passing the input
instances from one step to the other: it is composed of a transformer with several in
parallel multi-headed attention using a sparse-matrix to give Sparse feature selection. This
aspect increases interpretability by extracting, for each instance, weights (also known as
importances) of features. Initially, the dataset is processed without any feature engineering.
Then, instances are Batch normalized and passed to the feature transformer, where it
passes through different decision steps made up of fully connected layers and different
gated linear unit (GLU) activation functions. The output of each activation is embedded
(e.g., with a sum operator) with others, and depending on the problem, if regression or
classification, a different loss function is used for performing end-to-end training. It is
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important to state that normalization with 0.5 helps stabilize learning by ensuring that
the variance throughout the network does not change dramatically. The model used for
this problem is the classification version with automatic feature engineering and feature
selection. A significant drawback of this technique is the massive amount of data required
for learning, which is, among other things, one of the major limitations of the multi-headed
attention model.

4.6. NODE (Neural Oblivious Decision Ensembles)

The NODE [31] algorithm consists of a deep learning architecture designed to work in
the presence of tabular data. The basic unit of this architecture is the oblivious decision
tree, with the peculiarity of being constrained to use the same feature for the split and
the same split threshold for all nodes having the same depth. The network is trained
in an end-to-end way through backpropagation. In the deep version, where multiple
NODE layers are stacked on top of the other, the connection among these layers is made
using the residual connection from the ResNet work. The input features and all other
layers’ outputs are concatenated before being fed to the next NODE layer. In the end, each
layer’s output is averaged in the case of regression, and majority voting is used in case of
classification, similarly to Extra Trees. The model used for NODE is the deep version for
classification purposes.

4.7. Experimental Setup and Preprocessing

Both datasets are unbalanced towards the “malware” class, and this has to be taken into
account for all the following steps of the process. The solution is to leverage some sampling
methods, which modify the starting data making their distribution more balanced. Tests
were carried out in 10-fold stratified cross-validation, where, for each fold, the number
of goodware and malware instances are randomly balanced (random undersampling).
The values reported are the average values for the 10 folds.

For the dataset malware-analysis-datasets-api-call-sequences, all features were already
numerical. For the APIMDS dataset, instead, all categorical variables were one-hot encoded,
numerical variables were used as-is. In addition, only the first 114 features were kept
into consideration for the APIMDS dataset. This is because the following features were
composed of almost all null values (>90% of null values), and thus it has been decided
to remove them in order to decrease the complexity of the problem and better face the
famous Bellman’s “curse of dimensionality” problem. For using standard algorithms such
as NODE, TabNet, and so on, datasets were standardized with z-score normalization prior
to the training process.

The stratified version ensures that the same proportion of the data is maintained in all
training and test sets in the same way as the original data. This is so that no value is over
(or under)—represented in the various sets to have a more accurate estimate of the results.

The configuration of the algorithms is as follows: Random Forest and Extra Tree are
configured to use 100 trees and the “gini” index. XGBoost is configured as suggested by
the algorithm’s authors with the max depth pre-pruning parameter equal to 6, and the
learning rate equal to 0.3. CatBoost is configured without any adjustment or selection of
hyperparameters and default parameters. TabNet attention embedding amplitude and
decision accuracy amplitude are equal to 8 as per the official publication. The default
settings were used for NODE.

5. Results

Tables 2 and 3 present the results calculated for each algorithm, indicated in the first
column, derived from the stratified cross-validation experiment with k equal to 10 and
averaged between them. In particular, with regard to the metrics of Precision, Recall,
F1-Score, they are to be considered calculated with macro average. The reference dataset
for Table 2 is malware-analysis-datasets-api-call-sequences, while Table 3 presents the results
for dataset APIMDS.
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Table 2 highlights the differences between the algorithms. In this specific case, the deep
learning techniques NODE and TabNet, although showing an average F1-macro score in
line with the state of the art, have F1-macro score and Area Under the ROC curves lower
when compared to algorithms using trees such as Random Forest, XGBoost, and CatBoost.
Finally, CatBoost presents the best performance, which seems to obtain the best trade-off
between precision and recall.

Table 2. Metrics averaged over 10 folds—malware-analysis-datasets-api-call-sequences dataset.

Algorithm Precision Recall F1 Score AUC ROC

Random Forest 0.965 0.809 0.869 0.8094
CatBoost 0.962 0.82 0.877 0.8201
XGBoost 0.9575 0.7816 0.8473 0.7816

ExtraTrees 0.97 0.7411 0.8162 0.7411
NODE 0.9532 0.7238 0.7971 0.7238
TabNet 0.8985 0.7674 0.8166 0.7674

Table 3. Metrics averaged over 10 folds—APIMDS dataset.

Algorithm Precision Recall F1 Score AUC ROC

Random Forest 0.9914 0.9215 0.9532 0.9215
CatBoost 0.9955 0.9399 0.9655 0.9399
XGBoost 0.9944 0.9619 0.9779 0.9632

ExtraTrees 0.9949 0.9132 0.9498 0.9132
NODE 0.9948 0.9166 0.9519 0.0022
TabNet 0.9843 0.9264 0.9529 0.9264

The dataset APIMDS consists of 300 goodware class examples (labeled with 0) and
23,146 malware class examples (labeled with 1). Again, shallow learning techniques using
trees such as Random Forest, Cat Boost and XGBoost perform slightly better than their
deep learning counterparts such as TabNet and NODE. Specifically, it can be seen that, as in
the case of the previous dataset, XGBoost and CatBoost are the best techniques both from
an AUC ROC and F1-macro score point of view. XGBoost is slightly better than CatBoost in
this experiment because it has better recall; however, it is also relevant to note how robust
CatBoost is to the dataset change, i.e., its ability to perform with accuracies in line with
the state of the art regardless of dataset. It is now of interest to understand what features
the best performing algorithms, such as CatBoost, deem most important for classifying
instances as malware and as goodware using the explainable artificial intelligence SHAP
technique. Table 4 illustrates the training and prediction times of the treated algorithms as
applied to dataset malware-analysis-datasets-api-call-sequences. The time intervals represented
in the table are expressed in seconds. To achieve a more accurate estimate, the times
reported in the table were averaged on the number of iterations completed for each step by
each algorithm, i.e., 100.

Table 4. Training and prediction times measured in seconds—malware-analysis-datasets-api-call-sequences
dataset. * This value is relative to a single training task. Because it is enormous, it is impossible to average
over 100 iterations. Instead, the prediction time was averaged.

Algorithm Training Time Prediction Time

Random Forest 12.84419 0.07022
CatBoost 6.70016 0.00566
XGBoost 7.50087 0.01600
TabNet 38.97393 0.16049

ExtraTrees 4.22829 0.07658
NODE 49,774.68524 * 31.14673
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Table 5 exposes the training and prediction times of the algorithms on the APIMDS
dataset. The same considerations made for the malware-analysis-datasets-api-call-sequences
dataset, expressed in the previous paragraph, apply.

Table 5. Training and prediction times measured in seconds—APIMDS dataset. * This value is relative
to a single training task. Because it is enormous, it is impossible to average over 100 iterations. Instead,
the prediction time was averaged.

Algorithm Training Time Prediction Time

Random Forest 4.69358 0.02279
CatBoost 6.93550 0.00476
XGBoost 4.87004 0.00682
TabNet 26.50733 0.09314

ExtraTrees 2.48567 0.03346
NODE 26,426.73316 * 18.67745

As it is possible to observe from Tables 4 and 5 concerning the implementation of
these algorithms in an edge AI use case, the clear winners are Extra Tree, CatBoost, and XG-
Boost algorithms. All algorithms do not use end-to-end backpropagation training and
neural networks in practice. This is because backpropagation training requires several
epochs to allow the model to converge to a stable solution and provide reliable results.
In addition, the nonlinearity brought from activation functions makes the learning phase
of the neural network computationally intensive. In addition, from a memory constraint
perspective, tree-based algorithms avoid the use and concatenation of big tensors found in
deep neural networks (especially when the number of features is very high) and thus less
memory greedy.

6. Reasoning

Once the experimental models have been built, and the metrics have been estimated,
an explanation of the output values is now provided. The SHAP [6] technique is based on
Shapely’s value theory, which has its origin in game theory. Each instance of the dataset
corresponds to a “player” in a game, in which the forecast represents the payoff. In contrast
to game theory, in which the payoff is assigned to the players on the basis of the choices
they make, in this case, the payoff obtained is the result of the combination of variables
that characterize the dataset. To each variable, then, a weight, or marginal contribution, is
assigned, and it represents the value of SHAPley. The marginal contribution of each feature
is calculated considering all the possible interactions with the other features present in the
model. It is estimated, therefore, how much information is contained in every combination,
estimating the added value that every feature brings in the prediction. To every variable, a
marginal contribution is associated based on the increase in the accuracy of the forecast.
Specifically, many combinations are tested, depending on the number of features to be
included in the model. For every feature, all the combinations with the others are calculated
attributing in a first phase the previewed weight; subsequently, the same prediction is
calculated without considering the variable in question and, on the base of the difference of
prediction obtained, the marginal contribution is attributed to that feature. This process is
carried out for every feature of the model on all the instances of the database in order to
have the average value of the marginal contribution of each feature. Analyzing Shapely
values on CatBoost trained model on malware-analysis-datasets-api-call-sequences dataset,
as depicted in Table 6, it is possible to extract the importance of each feature for classifying
the instance as malignant or non-malignant and their relative magnitude of importance.

Therefore, by reducing the feature space, an experiment was carried out in order
to study the API calls most present in malware, measuring the frequency of the values
and comparing it to the number of examples belonging to the same class. The same was
done for the goodware class. Once the results for both categories were obtained, the “dis-
tances” were calculated, i.e., the differences between the presence of the API call in malware
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and the presence of the same API call in goodware were highlighted (values expressed
in percentage). Finally, the following analysis shows that APIs LdrGetProcedureAddress,
LdrGetDllHandle, LoadResource, FindResourceExW, LdrLoadDll, GetSystemInfo, LoadStringA,
NtProtectVirtualMemory, GetSystemMetrics and CryptAcquireContextW are used most by
malware and least by goodware; Instead, API NtClose, NtCreateFile, RegOpenKeyExW,
NtOpenKey, RegCloseKey, GetSystemDirectoryW, RegQueryValueExW, GetSystemWindowsDi-
rectoryW, NtOpenSection and SetErrorMode are more frequently used by goodware and less
by malware.

Table 6. Top 10 API calls for malware class and goodware class according to the distance measure.
CatBoost on dataset malware-analysis-datasets-api-call-sequences.

API Call Distance Value

Malware class
LdrGetProcedureAddress 1.16378

LdrGetDllHandle 0.76617
LoadResource 0.59114

FindResourceExW 0.37002
LdrLoadDll 0.32114

GetSystemInfo 0.24794
LoadStringA 0.21848

NtProtectVirtualMemory 0.20139
GetSystemMetrics 0.18984

CryptAcquireContextW 0.18984

Goodware class
NtClose 0.80112

NtCreateFile 0.74446
RegOpenKeyExW 0.56946

NtOpenKey 0.53424
RegCloseKey 0.48842

GetSystemDirectoryW 0.37624
RegQueryValueExW 0.31458

GetSystemWindowsDirectoryW 0.31099
NtOpenSection 0.27815
SetErrorMode 0.27693

As far as APIMDS dataset is concerned, the same experiment was conducted, consid-
ering the 114 features of which it is composed. Here, too, the frequency of API call values
present in malware was first measured and then related to the number of examples belong-
ing to the same class. It was similarly done for the goodware class. Finally, the distances
between the API call in malware and the API call in goodware were calculated (values
expressed in percentage) as shown in Table 7. Thus, the 10 API calls most involved in
malware and least involved in goodware are: LoadLibraryExW, LocalAlloc, GetProcAddress,
GetSystemMetrics, GetVersionExW, GetModuleHandleW, CreateFileW, RegisterClipboardFor-
matW, LoadLibraryW, MapViewOfFileEx;

However, the 10 API calls most involved in goodware and least in malware are respec-
tively: CoUninitialize, TerminateProcess, MessageBoxW, FormatMessageW, CoCreateInstance,
PostQuitMessage, TranslateMessage, GetWindowRect, PostMessageW, FreeEnvironmentStringsA.

Let us now seek confirmation of what emerges from these data by analyzing examples
of correctly classified malware and goodware and evaluating the related API calls. The fol-
lowing entries are selected from the dataset malware-analysis-datasets-api-call-sequences:
entries n° 42,679, 17,006, and 6173 for the goodware class; and entries n° 41,444, 43,641,
8921 for the malware class. Table 8 shows a chart that highlights the calls made by each
entry, focusing on the calls that fall in the top 10 API calls made by malware and goodware
(previously reported in Table 6).
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Table 7. Top 10 API calls for malware class and goodware class according to the distance measure.
CatBoost on dataset APIMDS.

API Call Distance Value

Malware class
LoadLibraryExW 1.43355

LocalAlloc 1.07286
GetProcAddress 1.04397

GetSystemMetrics 0.94762
GetVersionExW 0.82373

GetModuleHandleW 0.74527
CreateFileW 0.73244

RegisterClipboardFormatW 0.72595
LoadLibraryW 0.69086

MapViewOfFileEx 0.68175

Goodware class
CoUninitialize 0.07650

TerminateProcess 0.06663
MessageBoxW 0.06323

FormatMessageW 0.06280
CoCreateInstance 0.06216
PostQuitMessage 0.05991
TranslateMessage 0.04931
GetWindowRect 0.03996
PostMessageW 0.03974

FreeEnvironmentStringsA 0.03927

Looking at the first record, 8 out of 10 of the most invoked APIs turn out to belong
to the table that summarizes the TOP 10 APIs of the Goodware category, 1 API belongs
to those typically invoked by malware, 1 API does not belong to the Top 10 ranking. In
addition, the same happens in the second and third records, i.e., they show a prevalence
of calls belonging to the TOP 10 of goodware. Next, by evaluating the results for the
malware class records, the results for the first malware show 6 out of 10 APIs from the
Top 10 ranking in malware, and 2 out of 10 belong to the Top 10 ranking in goodware.
The remaining two APIs do not belong to the ranking of the experiment. In addition, in the
last two records, a similar situation is presented, where the results show a prevalence
of calls belonging to the TOP 10 in malware. Thus, the data show a confirmation of the
influence of API calls.

Now, let analogous evaluations be performed on the APIMDS dataset. Table 9 shows
the relevant API calls for three examples chosen for the goodware class (23,235, 23,386,
23,313) and the malware class (22,042, 15,316, 11,972), with similar classification compared
to what was already done for the malware-analysis-datasets-api-call-sequences dataset. From
Table 7, it can first be seen that, unlike the other dataset, the most frequently used API calls
by goodware show rather small distance values. This evaluation follows that they have
little power to discriminate in favor of goodware. Focusing on the goodware examples, it
appears that, although most of the API calls do not belong to any of the top 10 expressed in
the table by category, the presence of at least one of those indicated for the correct category
is still relevant. Observing Table 9, it is arguable that these examples have been classified
as goodware since the calls identified in the top 10 of malware are missing, and there are
few calls recognized pertaining mainly to goodware. The classification, in this case, was
not, as in the case of the previous dataset, based on the presence of benign calls but rather
on the absence of malicious calls. Conversely, in the malware examples, it is possible to see
the power of discrimination carried out by the top 10 malware API calls since the examples
reported contain, in many cases, such calls.
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Table 8. API calls performed by some examples of the dataset malware-analysis-datasets-api-call-sequences.

Index API Calls that are in Top 10 Malware Calls API Calls that are in Top 10 Goodware Calls Other API Calls

G 42,679 LdrGetProcedureAddress NtCreateFile NtMapViewOfSection
NtOpenKey

NtOpenSection
RegOpenKeyExW

RegCloseKey
RegQueryValueExW

NtClose
SetErrorMode

G 17,006 LdrGetProcedureAddress NtCreateFile NtMapViewOfSection
LdrLoadDll NtOpenKey

NtOpenSection
RegCloseKey

RegOpenKeyExW
RegQueryValueExW

NtClose

G 6173 LdrGetProcedureAddress NtCreateFile NtMapViewOfSection
LdrLoadDll NtOpenKey

NtOpenSection
RegCloseKey

RegOpenKeyExW
RegQueryValueExW

NtClose

M 41,444 LdrGetProcedureAddress NtClose NtQueryValueKey
LdrLoadDll NtOpenKey NtAllocateVirtualMemory

LdrGetDllHandle
GetSystemMetrics
FindResourceExW

NtProtectVirtualMemory

M 43,641 LdrGetProcedureAddress NtClose NtQuerySystemInformation
LdrGetDllHandle NtCreateFile NtAllocateVirtualMemory

LdrLoadDll NtFreeVirtualMemory
CryptAcquireContextW NtCreateSection

M 8921 LdrGetProcedureAddress NtClose NtAllocateVirtualMemory
LdrLoadDll DrawTextExW
GetFileType GetSystemTimeAsFileTime

GetSystemMetrics NtDuplicateObject
SetUnhandledExceptionFilter

As discussed above, the results shown in the table for each of the two datasets,
including those obtained from these additional experiments, are different. The cause is
that the datasets examined are different, with different features, numerosity, and balance.
In particular, the cardinality of the examples belonging to the malware-analysis-datasets-
api-call sequences dataset is higher than the cardinality of the examples from the APIMDS
dataset. On the other hand, the former collects a sequence of the first 100 features, while
the latter has 114. The other difference there is within the features. In particular, the first
dataset expresses 307 distinct API values within it, and the second dataset contains 2264.
However, it is essential to note that the results are consistent with each other; all algorithms
applied to the same dataset have accuracies that vary ±7% on malware-analysis-datasets-api-
call-sequences and ±3% on APIMDS.
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Table 9. API calls performed by some examples of the dataset APIMDS.

Index API Calls that are in Top 10 Malware Calls API Calls that are in Top 10 Goodware Calls Other API Calls

G 23,235 FormatMessageW −1
LocalFree

SetThreadUILanguage
GetStdHandle

GetConsoleOutputCP
GetConsoleMode

GetModuleHandleA
WideCharToMultiByte

WriteFile

G 23,386 MessageBoxW −1
RegCreateKeyExW

RegCloseKey
RegSetValueExW

FreeSid
RegEnumKeyExW

AllocateAndInitializeSid
CheckTokenMembership

RegOpenKeyExW

G 23,313 FormatMessageW −1
TerminateProcess GetLengthSid

LookupAccountSidW
GetLastError
GetStdHandle

GetFileAttributesW
VerifyVersionInfoW
GetCurrentProcess

M 22,042 GetModuleHandleW DisableThreadLibraryCalls
GetVersionExW GetModuleFileNameW
GetProcAddress

LoadLibraryExW
GetSystemMetrics

LocalAlloc
LoadLibraryW

RegisterClipboardFormatW

M 15,316 GetProcAddress GetVersionExA
GetModuleHandleW GetStartupInfoA

LoadLibraryExW GetACP
GetVersionExW GetModuleFileNameW

RegisterClipboardFormatW
LoadLibraryW

M 11,972 GetModuleHandleW GetModuleHandleA
GetProcAddress GetCurrentThreadId

LoadLibraryExW GetVersionExA
GetVersionExW CreateEventW

GetTickCount
VirtualQueryEx

7. Conclusions

This work presents a benchmark of most modern shallow learning and deep learning
techniques for tabular data in the context of malware detection within API. Two datasets
have been tested against six different machine learning algorithms. The accuracy of algo-
rithms trained in stratified 10-fold cross-validation mode proved the quality of the results
and the efficacy of those techniques on this specific problem. In particular, it is important
to state that shallow learning techniques tend to perform better and to converge faster
(less training time) to a suitable solution. Nonetheless, once the model is built, its intrinsic
complexity is lighter than the deep learning solutions. This suggests the possibility of using
such techniques (e.g., CatBoost) on edge devices to perform inference in a near real-time
scenario. This solution opens new research directions, such as the continuous learning for
edge artificial intelligence API calls, where new and unknown API calls are then stored,
and the model is re-trained with or without human intervention to provide direct feedback.
The use of Explainable Artificial Intelligence technique called SHAP based on Shapely
values, which in turn, bases its roots on the proven Nash equilibrium and game theory,
allowed for extracting what are the most important API calls to catch in order to classify



Appl. Sci. 2022, 12, 1645 15 of 16

an instance as malignant or what other API calls are safe. These insights were generated
automatically and without any human intervention allowing, thus, the development of an
automatic visualization tool for suspicious API calls.
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