
����������
�������

Citation: ElMorshedy, M.M.;

Fathalla, R.; El-Sonbaty, Y. Feature

Transformation Framework for

Enhancing Compactness and

Separability of Data Points in Feature

Space for Small Datasets. Appl. Sci.

2022, 12, 1713. https://doi.org/

10.3390/app12031713

Academic Editor: Valentino Santucci

Received: 24 December 2021

Accepted: 29 January 2022

Published: 7 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Feature Transformation Framework for Enhancing Compactness
and Separability of Data Points in Feature Space for
Small Datasets
Mahmoud Maher ElMorshedy * , Radwa Fathalla * and Yasser El-Sonbaty

Computer Science Department, Arab Academy for Science and Technology and Maritime Transport, College of
Computing and Information Technology, Alexandria 1029, Egypt; yasser@aast.edu
* Correspondence: elmorshedy@aast.edu (M.M.E.); radwa_fathalla@aast.edu (R.F.)

Abstract: Compactness and separability of data points are two important properties that contribute to
the accuracy of machine learning tasks such as classification and clustering. We propose a framework
that enhances the goodness criteria of the two properties by transforming the data points to a subspace
in the same feature space, where data points of the same class are most similar to each other. Most
related research about feature engineering in the input data points space relies on manually specified
transformation functions. In contrast, our work utilizes a fully automated pipeline, in which the
transformation function is learnt via an autoencoder for extraction of latent representation and
multi-layer perceptron (MLP) regressors for the feature mapping. We tested our framework on both
standard small datasets and benchmark-simulated small datasets by taking small fractions of their
samples for training. Our framework consistently produced the best results in all semi-supervised
clustering experiments based on K-means and different seeding techniques, with regards to clustering
metrics and execution time. In addition, it enhances the performance of linear support vector machine
(LSVM) and artificial neural network (ANN) classifier, when embedded as a preprocessing step before
applying the classifiers.

Keywords: compactness; separability; feature space; feature mapping; small datasets; autoencoder;
neural networks; support vector machines; classification; semi-supervised clustering

1. Introduction

One of the fundamental concepts in machine learning is the embedding of data
points in an appropriate feature space [1]. The choice of the feature space should be
driven by enhancing the topological properties of data clusters, ultimately leading to
better performance in pattern recognition tasks such as classification [2–4], clustering [5–7],
information retrieval [8–11], and regression [12,13]. Data points and latent features are two
spaces where feature engineering approaches operate.

One approach is projecting the data descriptors to an alternative feature space via a
hard-coded mathematical function. The evident example of this approach is the use of kernel
functions in SVM classifiers, aiming to improve the separability property to allow efficient
localization of the hyperplane [14]. Another example is the latent representation yielded on the
hidden layers of ANNs [15,16]. The goal is to increase the compactness of the class samples by
abstracting the input data from its specifics and details. Clearly there is a difference between
SVMs and ANNs in the intermediate goal; one opts for increasing separability while the other
increases compactness. In addition, in the former technique, the mapping is hand-engineered
kernels, whereas in the latter the mapping function is learned.

On another front, feature transformations retaining the original data space have been
limited to feature selection, normalization, and scaling [17]. Conceptually, non-parametric
learning approaches such as KNN [18] also belong to this paradigm of feature transforma-
tion and can be regarded as a projection of test samples into a subspace of training samples.

Appl. Sci. 2022, 12, 1713. https://doi.org/10.3390/app12031713 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12031713
https://doi.org/10.3390/app12031713
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3676-9132
https://doi.org/10.3390/app12031713
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12031713?type=check_update&version=2

Appl. Sci. 2022, 12, 1713 2 of 24

When the model is presented with unseen data, it uses a distance function to map the
data to the most similar pre-seen example. In essence, it is a classification approach with a
hypothetical embedded feature transformation step based on a distance mapping function.
Limitations of KNN have been thoroughly discussed in the literature [19–22]. One of its
drawbacks is the reliance of the mapping function on a linear distance measure [20] (e.g.,
Manhattan, Euclidean, Minkowski, and weighted Euclidean distance) between correspond-
ing individual features. However, it neglects the interrelation between features comprising
the data samples and their collaborative effect, thus limiting the ability of the distance func-
tion in expressing the similarity/dissimilarity of the samples [22]. In addition, the KNN
method does not promote properties of compactness and separability of data embeddings
in the feature space.

Additionally, oversampling approaches operate both spaces [17,23]. Oversampling
creates synthetic examples by relocating feature vectors of given examples along the line
segments joining the k nearest neighbor examples of the same class. Although this approach
shows improvement in the accuracy of classification tasks in case of imbalanced and small
datasets, it does not improve the compactness and separability of data points. It could
happen that a minority class sample could have a majority class sample as its neighbor,
which will create false positive samples.

State-of-the-art deep learning algorithms have achieved near-human-level accuracy
in applications such as computer vision [24–28]. Nevertheless, one challenge remains for
these algorithms when faced with inadequate amounts in acquiring adequate amounts of
labeled data [29]. Otherwise, these models are subject to overfitting [30] due to the large
number of parameters to learn in complex networks which reduce the network’s ability to
generalize and cause the network to memorize examples. Also, labeling is widely regarded
as a manual labor-intensive and resource-consuming process. In other cases, there are
great difficulties in the initial acquisition process of the data samples, a problem that is
well-known in the field of bioinformatics [31]. All these factors result in the occurrence
of small-sized datasets in either supervised or semi-supervised settings, thus limiting the
generalization ability of the end classifier [32]. This challenge is exaggerated in the case of
the existence of high intra-class variability [33,34], which leads to classes of low density in
the feature space. In fact, these challenging factors impact clustering algorithms as well [35].
Concurrently, they have a jarring effect on the clusters, creating disjoint subdivisions and
hindering the discovery of the class structure in its entirety in space.

In our work, the main contribution is proposing a model architecture which fully
automates the learning of the transformation function that operates on unseen samples so
that they resemble approximations of samples encountered in the training set. There are
two aspects evident in our framework. First, we preserve the same feature space as the
original data points. Second, we relocate input samples in a subspace while improving the
goodness criteria of separability and compactness [36–39]. To the best of our knowledge,
this is the first time these aspects have been combined to carry out the task of selecting the
feature vector embedding space.

To this end, we train two main network models that, combined, comprise the transfor-
mation function. We train an autoencoder for feature extraction and reconstruction of the
training samples. We create Cartesian product pairs of the training samples resulting in a set
of ordered pairs and extract their embeddings from the encoder of the trained autoencoder.
Then, a bridging regression network learns to map the embeddings of the first element in
each ordered pair (as input variables to the regression network) to the embeddings of the
second element in the pair (as target variables). We use the encoder of the autoencoder, the
bridging network, and the decoder from the autoencoder to transform the training and test
samples of each class to very similar (template-like) samples of the same class resulting in a
reduction in intra-class variance and an increase in the inter-class variance. This helps to
enhance the accuracy over the transformed test set of an off-the-shelf classifier trained on
the training samples augmented with the transformed training samples.

Appl. Sci. 2022, 12, 1713 3 of 24

Data augmentation [17] is an effective technique to handle overfitting in the case of
small datasets and enhance generalization of the machine learning model, particularly
ANNs, by increasing both amount and diversity of data samples. The significance of
our work is highlighted in the case of small datasets (|n|) with high variability. We fully
exploit the samples available in the datasets by a pairing mechanism where we pair each
example with all other examples of the same class and we study the samples’ inter-relations∣∣n2
∣∣, thus incrementing the learning data pool. In addition, we augment the dataset with

reconstructions of latent features of the samples after being subjected to a regression step.
Another contribution to this work is the applicability of our proposed model in a

semi-supervised clustering setting where a few labeled data samples are utilized to learn
clustering of the plentiful unlabeled data in a partially labeled dataset [40,41]. We use
the labeled data samples to train our model to learn the transformation function, then we
transform the unlabeled data using our trained model. We feed the transformed examples
to a clustering technique. We show that not only is the clustering time of the transformed
data points significantly reduced compared to using the same clustering techniques on the
untransformed data points, but also all clustering metrics used to measure the performance
of the clustering techniques notably improve.

Several efforts have been proposed in the field of feature engineering in general and
in the settings where there is a focus on improving compactness and separability. Feature
engineering is a preprocessing task to improve the prediction performance of a machine
learning model on a dataset by applying a transformation function on its feature space.
Many feature engineering techniques [42] yielding feature vectors in the same input data
space are limited to scaling and normalization or simply applying hand-crafted arithmetic
or aggregation functions to the features to construct more suitable features benefitting the
machine learning model’s performance. One problem of feature engineering is finding a
particularly good transformation for a given set of features given a set of transformation
functions. In [3], instead of enumerating and trying all transformation functions and
their combinations by training and testing models, which is computationally impractical,
the authors automate the decision-making process of recommending the transformation
functions applied to the features. In our work, our aim is to learn the transformation
function, instead of using hand-crafted transformation functions, and using our learnt
parameters to relocate the feature space of the data samples.

Intra-class compactness and inter-class separability are commonly studied in the field
of machine learning. The two characteristics are crucial measures of how effectively a model
produces discriminant features. Approaches vary in tackling the problem of improving
compactness and separability of features. In [39], the authors propose a feature optimizer
that calculates a center for each class by averaging samples in a mini-batch and optimizes
the calculated centers at each iteration by minimizing a feature optimization loss that
consists of two distances, the distance of samples in the mini-batch to its correct center, and
the other is to its nearest wrong center. Another approach that extends the loss function
of a model is proposed by Pilarczyk et al. [36]. They use intra-class variance loss as a
regularization term for training deep neural network (DNN) classifiers. This approach is
different from the previous approach as the centroids of classes that contribute to calculating
the intra-class variance loss are learned through an additional Hadamard layer attached
to the convolutional neural network (CNN) architecture where its parameters represent
the class centers. Luo et al. [37] proposed a Gaussian-based Softmax function that can be
easily implemented and can replace the Softmax function in CNNs. The proposed function
improves intra-class compactness and inter-class separability that improves classification
on several multi-label classification datasets. Liu et al. [38] proposed to employ a margin
constraint in the original Softmax function which explicitly encourages the learning of
more discriminative features.

All the aforementioned approaches show the importance of enhancing the discrimi-
nant nature of learned features which consequently improves the performance of under-
lying models. However, a common limitation of these approaches is that they extend or

Appl. Sci. 2022, 12, 1713 4 of 24

change the used loss function in DNN architectures limiting the choice of classifiers to
DNN classifiers. This conclusion encourages us to tackle the problem using a different
approach. Our approach uses a combination of supervised and generative models that
create a framework for transforming the learned features into an enhanced feature subspace
promoting the compactness and separability of classes. Our proposed model is a pluggable
model before any classifier type model not limited by a particular type of classifiers, as in
other approaches.

We also investigate the intra-cluster compactness and inter-cluster separability in the
field of unsupervised and semi-supervised learning to enhance clustering performance.
Most hard clustering techniques such as basic K-means [43] and clustering algorithms are
based on K-means [44,45]. These types of clustering algorithm work by only minimizing
the within-cluster distance while neglecting the between-cluster distance. Huang et al. [46]
proposed a series of extension to the K-means-based clustering algorithms where they
utilize the idea of a global centroid and maximizing the distance between clusters’ centroids
(increasing the between-cluster separation) while still minimizing the distances between
data points and the centroids of the clusters (improving the within-cluster compactness).
Soft-clustering algorithms that utilize the intra-cluster as well as the inter-cluster distances
have also emerged, such as enhanced soft subspace clustering (ESSC) [47] and supervised
enhanced soft subspace clustering (SESSC) [48]. SESSC is based on ESSC which considers
both the within-cluster compactness and between-cluster separation. In addition, SESSC
takes advantage of the label information in a semi-supervised setting. Therefore, SESSC
can be used as a standalone classifier or integrated into a fuzzy classifier to further improve
its performance.

The remainder of the paper is organized into three sections. Section 2 elaborates
on our proposed method in three subsections corresponding to three modules of the
proposed framework. Section 3 illustrates our conducted experiments and the evaluation
of the proposed framework in two settings, a semi-supervised clustering setting, and a
supervised setting. Finally, Section 4 concludes the paper.

2. Method

Given a dataset D =
{

DTr, DTs} split into two subsets, there are a training set DTr and a
testing set DTs with LTr = {`i}N

i=1 and LTs = {`i}M
i=1 where N and M are

∣∣DTr
∣∣ and

∣∣DTs
∣∣,

respectively. Typically, the given dataset is a small dataset or a dataset with very small number
of labeled examples compared to the number of unlabeled examples N � M. The aim for our
model is to learn a transformation function f

(
Xk
)
= Yk

∣∣∣ Yk ∼= µk, k = 0 . . . K− 1 where K

is the number of classes in the dataset. The function maps each sample (xk
i ∈ Xk) of the same

class to a yk
i , where yk

i approximates µk centroid (mean sample) of the same class.
As illustrated in Figure 1, our proposed framework consists of three main modules:

feature extraction, feature mapping, and reconstruction. For feature extraction, we train an
autoencoder [49] AE, which is a generative model that reconstructs the available training
samples in the dataset Xk, through learning their latent representation. In the feature
mapping module, we first pair the training samples of each class with all other samples of
the same class. Second, we use the trained autoencoder to extract the features of the pairs.
Then, we train a mapping network that consists of a set of multilayer perceptron (MLP)
regressors B =

{
MLP1, MLP2, . . . , MLPN f

}
, where N f is the number of latent features in

the embedding layer Z of the autoencoder AE. Each MLP regressor in the network learns
to output zs

i ∈ Z, s = 1, 2, . . . , N f . Finally, we take the mapped latent features Ẑ from
the feature mapping network B and feed it into the decoder of the trained autoencoder to
reconstruct the mapped samples Yk.

Appl. Sci. 2022, 12, 1713 5 of 24

Figure 1. Architecture of the proposed framework.

After training the whole framework, we use it to map the test set examples to a more
compact space for intra-class samples and separable for inter-class samples. Evaluating a
classifier on the transformed samples gives better accuracy and loss than evaluating the
same classifier on the untransformed examples. In the next three subsections, we explain
the details of the three modules composing our framework.

2.1. Feature Extraction Using Autoencoders

Autoencoders are neural networks that are unsupervised (they can be thought of as
self-supervised) learning models. Autoencoders were first introduced in [50] as neural net-
works that learn the compressed internal representation of some input while reconstructing
the same input. An autoencoder tries to learn a function gW, b(x) = x̂ by minimizing the
reconstruction error of the input so that x̂ is as similar as possible to x. The autoencoder
achieves this by encoding the input into the feature space using an encoder subnetwork,
then decodes it back using a decoder subnetwork [49,51]. The learned representation (latent
features) can be extracted and used in different machine learning tasks [52–55]. Following
the same notion, we use autoencoders in our framework to extract features Z of samples
Xk that are used as input in the next module of the framework for training the bridging
network of MLP regressors.

The mathematics of an autoencoder can be formulated as defined in [56] as follows:

E : X → Z, (1)

D : Z → X̂, (2)

Such that (1) and (2) satisfy:

argmin E, DE[∆(X, D ◦ E(X))], (3)

where E is the expected value of the reconstruction error function ∆ over the distribution of
X. E is the encoder function that maps the original input X to a latent representation Z at the
bottleneck of the autoencoder. The decoder function D does the opposite by mapping the
latent features Z at the bottleneck to the output of the decoder network approximating the
original input X. Training the encoder and the decoder networks involves optimizing the
networks’ parameters (W, b) through backpropagating the reconstruction error between
the decoder’s output and the original input.

In our framework, we train a deep autoencoder network on the training set DTr,
such that the autoencoder learns a latent representation Z for all samples in the dataset

Appl. Sci. 2022, 12, 1713 6 of 24

while minimizing the mean-squared error (MSE) (as the error function ∆) of the decoder
reconstructions.

2.2. Feature Mapping Network

In this module, we aim to train a network to learn a transformation function that
could later be used to map the testing set to a feature space with improved properties
of separability and compactness. Our approach is to learn a regression function that
transforms the distribution of the embeddings of each class to a more compact distribution.
As we shortly show, regressors with high bias and low variance tend to output a value close
to the average of the target. Following this observation, we want to force the regression
model even more to learn a value close to the average of each feature embedding.

Bias-variance tradeoff is a widely studied problem in the field of machine learning [57,58].
The dilemma was first formally introduced in [59], and it refers to a model property where
the estimation error of the model can be decomposed into two terms, known as bias and
variance, thus, either bias or variance can affect the performance of a model. The bias error
is the difference between the expected (average) prediction of our model and the target
correct value which results from oversimplifying the estimated function and missing the
regularities in the training data. The variance error is the difference between the average
prediction of our model for a given data point which results from the sensitivity of the
model to irregularities in the training data.

As illustrated in Figure 2, there is often a tradeoff between the contribution of bias and
variance to the estimation error as conflict arises from trying to simultaneously minimize
the two error terms. The variance error can be reduced through smoothing the signal which
will in effect introduce a high bias as the model will be oversmoothed and will miss the
specifics of the underlying data points resulting in an underfitting scenario where both
the training and test errors are high. On the other hand, the high bias can be reduced
by increasing the complexity (number of fitting parameters) of the model, but then the
variance of the model will increase as the model will have more capacity to fit the noise and
irregularities of the underlying training data points and not generalizing to the target signal.
This scenario is referred to as overfitting, giving a low training error while degrading the
predictive performance on the test data.

Figure 2. Bias and variance as a function of model complexity.

As we observe, the MLP regressor models for the bridging network learn to predict
the average value of the target feature values for the same class. The intuition behind that
observation is that the model is not complex enough to fit the underlying data (underfitting
to data points), which means the model has too much bias. According to the bias-variance
tradeoff, the high bias model will have a low variance to reduce the whole mean-squared
error (MSE), which decomposes into the two terms of Bias and Variance:

MSE = Bias2 + Variance (4)

Appl. Sci. 2022, 12, 1713 7 of 24

In the book Doing Bayesian data analysis [60], the author stated that the mean of a
distribution is the value that minimizes the expected squared deviation. As can be mathe-
matically proven (see Appendix A), the mean-squared error has a lower bound value as
the variance of Y (the target output) when Ŷ (the predicted output) equals the average of
Y. Therefore, the model will predict values closer to the average, trying to reach the lower
bound of the MSE.

We also found that if we train the regressor with different outputs for the same set of
corresponding inputs, the regressor will minimize its error by outputting a value close to
the average of the presented target values. A plausible explanation for this behavior is that
having different target values for the same input features resembles adding noise to the
output. Adding noise to the input or the output (less common) is a well-known regular-
ization method to aid generalization (lowering the variance) and avoid overfitting [61–63].
According to the bias-variance tradeoff theory, reducing the variance error will, in effect,
give a high bias model as the model’s error decomposes into bias and variance errors.
Therefore, adding variant targets for the same input encourages the network’s output to be
a smooth function of the input.

To feed the regressors with different target outputs for the same latent representation,
we pair the features of each example with m examples of the same class. We experimented
with different values for m, but we found that pairing each example with all other examples
of the same class (m = |Dk|) gives better results.

The pairing algorithm can be described as getting the Cartesian Product for each set of
samples Dk belonging to the same class with itself. Identical ordered pairs are excluded.

TCP = Dk × Dk = {(a, b) | a ∈ Dk and b ∈ {Dk − {a}}} ∀ k ∈ K (5)

As described in Algorithm 1, we do the Cartesian product of each class k set of samples
by pairing each sample with all other samples of the same class k, such that if we have
m examples in a class, we end up having m× (m− 1) samples per class in the Cartesian
product set TCP. We form two sets T1 and T2 from the ordered pairs of the Cartesian
product set TCP such that T1 = {ai}, i = 0, 1, . . . , m and T2 =

{
bj
}

, j = 0, 1, . . . , m
and i 6= j, i.e., we form two sets, T1 for the first elements and T2 for the second elements
of the ordered pairs. The pairing algorithm is applied to the training set DTr where we
group the training samples by labels LTr, and results in two sets Tr1 and Tr2 (ground truth
training set for the feature mapping network) with repeated examples in each, where
|Tr1| = |Tr2| = m× (m− 1)× K.

Algorithm 1. The Pairing Algorithm.

Require: DTr, LTr, K
1 Group DTr by LTr
2 Tr1 ← [], Tr2 ← [], LTr1 ← [], LTr2 ← []
3 st = 0
4 for k← 0 to K− 1 do
5 m← getClassLength(k)
6 for i← 0 to m do
7 for j← 0 to m, j 6= i do
8 append DTr

[st+i] to Tr1
9 append DTr

[st+j] to Tr2
10 append LTr [st+i] to LTr1
11 append LTr [st+j] to LTr2
12 end
13 st = st + m
14 end
15 end

Appl. Sci. 2022, 12, 1713 8 of 24

After we have our two training sets (Tr1, Tr2) from the pairing algorithm, we extract
the features Z1 and Z2 (ground truth latent features) for the two sets Tr1 and Tr2 using our
trained autoencoder AE from the previous module. For the mapping network, we train a
set of MLP regressors

{
MLP1, MLP2, . . . , MLPN f

}
where N f is the number of embedded

features |Z2|, such that each MLP regressor corresponds to one latent feature zs
2, i of the N f

features in Z2, and we use Z1, i as the same input for all MLP regressors. We can either train
the N f MLP regressors serially or in parallel as they correspond to independent outputs, so
we choose to train them in parallel to speed up the training process.

2.3. Mapped Features Reconstruction

In the third module of our framework, we use the decoder of the trained autoencoder
AE to reconstruct the latent representations Ẑ obtained from the regressors, in the feature
mapping network module, back to the input space Yk, where yk

i approximates µk centroid
(mean sample) of the same class.

A summary of the transformation pipeline is shown in Algorithm 2. Given a training
set DTr and a test set DTs, we first extract the features Ztr of DTr from the trained autoen-
coder AE and map Ztr, using the trained regressors in the feature mapping network B, to
Ẑtr, then, we use the decoder of AE to reconstruct Ẑtr to the input space yielding D̂Tr. We
do the same for DTs resulting in the transformed test set D̂Ts.

Our proposed framework can be embedded as a preprocessing step in semi-supervised
and supervised settings. In the semi-supervised setting, we use the limited training (labeled)
set DTr to train our framework and transform the test (unlabeled) set DTs and cluster the
transformed unlabeled set D̂Ts using a clustering algorithm. In the supervised setting, we
use an off-the-shelf classifier in the following setting: the plain training set DTr augmented
with the transformed training set D̂Tr using our framework as shown in Algorithm 2. The
augmentation of the mapped training samples increases the size of the learning data pool
which is beneficial in the case of small size datasets where the lack of training samples
increases the chance of overfitting. Our augmentation resembles SMOTE augmentation in
that we both operate in the feature space to generate the augmented samples. However,
our augmentation is different in that we do not interpolate new data samples among a
number of neighboring samples, conversely, we transform the available data samples to a
group of similar data samples approximating the mean sample of the target class. Also,
SMOTE increases the density of samples of the same class within the same boundaries of
data clusters without relocation of clusters which does not provide any improvement in
the separability and compactness characteristics.

Algorithm 2. The Transformation Pipeline.

Require: DTr, DTs

1 Ztr ← Extract f eatures o f DTr f rom the trained autoencoder AE
2 Ẑtr ← Predict f eatures using the trained MLP regressors and Ztr as input
3 D̂Tr ← Reconstruct the predicted f eatures Ẑtr using the decoder o f AE
4 Repeat f or DTs

3. Evaluation

To evaluate our proposed model, we tested our model in two different machine
learning tasks: semi-supervised clustering and classification. We conducted experiments on
five different datasets, and we calculated various clustering metrics for the semi-supervised
clustering setting that show the model’s ability to achieve its goal of improving compactness
and separability among targets. Also, we showed that the model enhances an off-the-shelf
classifier’s accuracy indicating the classifier is able to achieve better decision boundaries
on the target classes.

Appl. Sci. 2022, 12, 1713 9 of 24

3.1. Datasets

We evaluated our proposed model on five different datasets. We used the three stan-
dard benchmark datasets: MNIST [64], Fashion-MNIST [65], USPS [66], and we further
evaluated our model on two already small datasets: the three-target MSTAR dataset [67]
which is widely used in automatic target recognition (ATR) of synthetic aperture radars
(SAR) images, and the Breast Cancer Wisconsin (WDBC) dataset from the UCI reposi-
tory [68]. For the benchmark datasets (MNIST, Fashion-MNIST, and USPS), we used a very
small subset of the training examples to simulate a limited training data problem, and we
appended the remaining training images to the test set.

Both MNIST and Fashion-MNIST datasets contain 60,000 training and 10,000 test
samples, while the three-target MSTAR and WDBC datasets contain only 698 and 569
training samples, respectively, which are significantly less than those in the MNIST and
Fashion-MNIST datasets. Therefore, we chose at random a ratio of 1% per class of the
training images and appended the remaining images to the test set. We ended up with
596 training and 69,404 test images for the MNIST dataset, and 600 training and 69,400
test images for the Fashion-MNIST dataset. For the USPS dataset, which consists of 7291
training and 2007 test images, we selected 10% of the training images per class making a
total of 725 training and 8573 test images. The samples of the WDBC dataset were split into
70% (398) training and 30% (171) testing samples. A summary of the number of training
and testing samples, number of classes, and input sizes is listed in Table 1.

Table 1. The number of training and testing samples, number of classes, and input sizes for each dataset.

Dataset MNIST Fashion-
MNIST USPS MSTAR WDBC

No. of Training
Samples 596 600 725 698 398

No. of Testing Samples 69,404 69,400 8573 587 171
No. of Classes 10 10 10 3 2

Input Size 28 × 28 28 × 28 16 × 16 128 × 128 30

3.2. Experimental Setup

We used an autoencoder architecture for feature extraction. The autoencoder architec-
ture vary from dataset to another. A summary of the autoencoder architecture, batch size
and number of epochs used for each dataset is presented in Table 2. For some datasets, we
increased the number of epochs to test for potential overfitting when the model keeps train-
ing. Because of this, the model overfitting is subject to the model’s complexity, especially,
in the case of small datasets [69]. However, as can be seen from Figure 3, the reconstruction
loss of the AE remains smooth as the model keeps training.

Table 2. Autoencoder architecture, batch sizes and number of epochs for each dataset.

Dataset MNIST Fashion-
MNIST USPS MSTAR WDBC

Flattened Input Size 784 784 256 16,384 30
AE Architecture 512-256-512 512-256-512 512-128-512 256-64-256 32-16-32

Batch Size 50 50 50 50 10
No. of Epochs 1200 1200 600 100 200

Appl. Sci. 2022, 12, 1713 10 of 24

Figure 3. Autoencoder error loss vs. epochs on the five datasets: (a) MNIST; (b) Fashion-MNIST; (c)
USPS; (d) MSTAR; (e) WDBC.

For MLP regressors architecture, we used only one hidden layer of 50 hidden units
with ReLU activation function and an output layer of only one output node with linear
activation, and we used an adaptive learning rate γ initialized at 0.001. The use of the
ReLU activation function stemmed from the advantages of ReLU over sigmoidal functions
such as sparsity representation and to avoid the saturation problem of sigmoidal activation
functions which cause the vanishing gradient problem [70]. We adopted the same MLP
architecture for all MLP regressors in the feature mapping network. We adopted an Adam
optimizer for backpropagation of the Mean-Squared Error (MSE) for both the autoencoder
and the MLP regressors used in the feature mapping network for the ease of hyperparameter
tuning. Figure 3 depicts the MSE loss of the autoencoder for each of the five datasets. For
the code and implementation details, please refer to Supplementary Materials.

As per our proposed method, we took the Fashion-MNIST dataset as an example of
applying our algorithm. We trained the autoencoder with its corresponding architecture
(784-512-256-512-784) on the 600 training images (60 samples per class), then we created

Appl. Sci. 2022, 12, 1713 11 of 24

the Cartesian Product set as in Algorithm 1 using the 600 images in two sets Tr1 and Tr2 of
size 60× 59× 10 = 35, 400 data samples.

We then extracted features of Tr1 and Tr2 using our trained autoencoder resulting
in two matrices of features Z1 and Z2, both of size [35, 400× 256]. Next, we trained 256
MLP regressors {MLP1, MLP2, . . . , MLP256} using Z1 as input and Z2 as target variables,
where each MLP regressor takes as input the whole feature vector zi ∈ Z1 and learns to
output one target feature zs

i ∈ Z, s = 1, 2, . . . , 256, i = 0, 1, . . . , 35, 400. To speed up the
training process, we distributed the training of the 256 MLP regressors over eight processes
that run in parallel such that each process corresponds to 256/8 = 16 MLP regressors.

Afterwards, we used the trained MLP regressors to double the size of the training set
DTr by transforming the 600 original samples, as shown in Algorithm 2, and augmenting
the transformed samples D̂Tr, so we ended up having a training set {DTr, D̂Tr} of 1200
images. We also transformed the original test set DTs of 69,400 test images resulting in D̂Ts

of 69,400 images as well.
We did the same for all the datasets (each dataset with its AE architecture and hyper-

parameters as shown in Table 2) and tested our model in two settings, a semi-supervised
clustering setting and a classification setting, explained in the next two subsections.

3.2.1. Semi-Supervised Clustering Setting

In the semi-supervised clustering setting, we measured the performance of clustering
original test (unlabeled) samples (DTs) (without transformation) and clustering transformed
test (unlabeled) samples (D̂Ts) (using our model trained on the few labeled samples).
As a clustering algorithm, we used the K-means algorithm [43] with different centroid
initialization methods, K-means++ [71], random, and PCA-based (where we calculated the
principal component analysis for each sample in the test set and performed the K-means
algorithm on the PCA components). We calculated the clustering evaluation metrics, listed
below, for each clustering scenario. The experiment is repeated for each test set of the five
datasets and results are presented in Table 3. Besides the clustering evaluation metrics, we
calculated the clustering time for each scenario (without and with our model).

Clustering Metrics. We used various clustering metrics that relate to within-cluster
and between-cluster measures that related to the compactness and separability properties
of the targets. The metrics used and their mathematical formulations are listed below.

• Inertia [43]: Within-cluster sum-of-squares criterion.

n

∑
i=0

min
µj∈C

(∥∥xi,−, µj
∥∥2
)

(6)

• Homogeneity, Completeness, and V-Measure [72]: Homogeneity measures a score that
each cluster contains only members of a single class. Completeness measures a score
that all data points of the same class are assigned to the same cluster. V-Measure
measures how successfully homogeneity and completeness have been satisfied.

Vβ =
(1 + β)× H × C

β× H + C
(7)

• Adjusted Rand Index (ARI) [73]: Measures the similarity of two assignments (ground
truth and predicted cluster assignment), ignoring permutations.

RI =
a + b

C
nsamples
2

(8)

ARI =
RI− E[RI]

max(RI)− E[RI]
(9)

Appl. Sci. 2022, 12, 1713 12 of 24

• Adjusted Mutual Information (AMI) [74]: Measures the agreement of two assignments
(ground truth and predicted cluster assignment), ignoring permutations. Given two
cluster assignments U and V, their entropies, mutual information, and adjusted mutual
information are defined respectively as:

H(U) = −
|U|

∑
i=1

P(i) log P(i) (10)

where P(i) = |Ui|/N is the probability that an object picked from U at random belongs
to class Ui. Same for P′(j) and V.

H(V) = −
|V|

∑
j=1

P′(j) log P′(j) (11)

MI(U, V) =
|U|

∑
i=1

|V|

∑
j=1

P′′ (i, j) log
P′′ (i, j)

P(i)P′(j)
(12)

where P′′ (i, j) =
∣∣Ui ∩Vj

∣∣/N is the joint probability that an object picked at random
belongs to both classes Ui and Vj.

AMI =
MI− E[MI]

mean(H(U), H(V))− E[MI]
(13)

where E is the expected value of the mutual information.
• Silhouette Coefficient [75]: The silhouette coefficient for a single data point is defined

as follows:
S =

b− a
max(a, b)

(14)

where a is the mean distance between the data point and all other points within the
same cluster and b is the mean distance between the data point and all other points in
the nearest cluster. The mean silhouette coefficient is calculated for all data points, and
the higher the score, the better the defined clusters indicating a lower within-cluster
distance and a higher between-cluster distance.

As can be seen from Table 3, using our model to map the test set consistently yielded
the best results in all clustering performance metrics over all used datasets. An improve-
ment in both the inertia of clusters and the silhouette coefficient indicates that our model
achieves its goal of promoting compactness (within-class) and separability (between-class)
of data points which subsequently improves all other clustering metrics. Also, using our
model to map samples before clustering gives a significant reduction in clustering time
of the algorithm, particularly for large datasets (like MNIST and Fashion-MNIST) when
applying the K-means++ initialization method.

We also report a comparison to another clustering algorithm (SESSC) [48] on the WDBC
dataset. As can be seen from Table 3, their performance on the test set without mapping
produces lower values in all calculated clustering metrics relative to using our model on
the K-means algorithm with any initialization method. Also, it is noteworthy that applying
their algorithm on the mapped test set using our model enhances their performance, which
supports our claim that our proposed method is pluggable to any clustering algorithm (hard
or soft). We applied their provided code (https://github.com/YuqiCui/SESSC (accessed
on 19 January 2022)) on other datasets and followed the guideline for hyperparameter fine
tuning mentioned in their paper. However, we were not able to conduct the experiment
except for the WDBC dataset. This led to the conclusion that their implementation does not
support datasets with relatively high dimensionality.

https://github.com/YuqiCui/SESSC

Appl. Sci. 2022, 12, 1713 13 of 24

Table 3. Semi-supervised clustering performance evaluation results. Bolded values indicate the best
results achieved in each metric. DTs is the original unlabeled test set (without transformation) and
D̂Ts is the transformed (using our model) unlabeled test set.

Dataset K-Means Init.
Method Test Set Time Inertia H C Vβ ARI AMI S

MNIST

K-Means++
DTs 119.802 s 42,141,554 0.421 0.443 0.432 0.322 0.421 0.058
D̂Ts 32.010 s 14,454,470 0.658 0.680 0.669 0.586 0.658 0.396

Random
DTs 62.014 s 42,142,078 0.417 0.439 0.428 0.318 0.417 0.060
D̂Ts 31.006 s 14,454,470 0.658 0.680 0.669 0.586 0.658 0.381

PCA-Based
DTs 14.302 s 42,142,060 0.417 0.439 0.428 0.317 0.417 0.055
D̂Ts 8.425 s 14,454,470 0.658 0.680 0.669 0.586 0.658 0.394

Fashion-
MNIST

K-Means++
DTs 41.216 s 30,290,316 0.505 0.536 0.520 0.338 0.505 0.151
D̂Ts 24.270 s 7,065,023 0.705 0.707 0.706 0.636 0.705 0.505

Random
DTs 44.563 s 30,243,539 0.493 0.518 0.505 0.348 0.493 0.137
D̂Ts 38.562 s 7,067,789 0.693 0.712 0.702 0.607 0.693 0.510

PCA-Based
DTs 10.170 s 30,820,962 0.488 0.503 0.495 0.344 0.488 0.131
D̂Ts 8.454 s 8,803,305 0.675 0.690 0.682 0.587 0.675 0.479

USPS

K-Means++
DTs 1.636 s 1,449,834 0.576 0.583 0.580 0.473 0.575 0.117
D̂Ts 1.038 s 333,792 0.847 0.848 0.848 0.863 0.847 0.615

Random
DTs 1.328 s 1,456,828 0.547 0.569 0.558 0.445 0.546 0.118
D̂Ts 0.889 s 333,788 0.847 0.847 0.847 0.863 0.847 0.571

PCA-Based
DTs 0.478 s 1,449,824 0.577 0.584 0.580 0.474 0.576 0.119
D̂Ts 0.197 s 33,793 0.846 0.847 0.847 0.863 0.846 0.621

MSTAR

K-Means++
DTs 3.305 s 9,242,633 0.012 0.016 0.014 0.009 0.009 0.015
D̂Ts 2.174 s 4,280,437 0.524 0.528 0.526 0.526 0.522 0.388

Random
DTs 2.142 s 9,232,361 0.017 0.019 0.018 0.009 0.014 0.024
D̂Ts 1.589 s 4,280,491 0.522 0.527 0.524 0.523 0.520 0.390

PCA-Based
DTs 0.835 s 9,245,153 0.022 0.023 0.023 0.019 0.019 0.019
D̂Ts 0.590 s 4,280,491 0.522 0.527 0.524 0.523 0.520 0.371

WDBC

K-Means++
DTs 0.013 s 3454 0.668 0.689 0.678 0.777 0.666 0.391
D̂Ts 0.010 s 958 0.904 0.904 0.904 0.953 0.904 0.873

Random
DTs 0.010 s 3454 0.668 0.689 0.678 0.777 0.666 0.391
D̂Ts 0.008 s 958 0.904 0.904 0.904 0.953 0.904 0.873

PCA-Based
DTs 0.003 s 3454 0.668 0.689 0.678 0.777 0.666 0.391
D̂Ts 0.002 s 958 0.904 0.904 0.904 0.953 0.904 0.873

SESSC
DTs 1.491 s - 0.871 0.867 0.869 0.930 0.868 0.286
D̂Ts 1.151 s - 0.954 0.950 0.952 0.977 0.952 0.711

3.2.2. Classification Setting

We devised an experiment where we employ our model before training a classifier
to map both the training set and the test set. We then trained the classifier on the plain
training set (DTr) augmented with the mapped training set (D̂Tr) using our model, and we
evaluated the classifier on the mapped test set (D̂Ts). We compared our experiment with
a baseline experiment where we trained the classifier on the plain training set (DTr) and
evaluated it on the plain test set (DTs).

We deployed a neural network (NN) and a linear SVM models for the classification
task. We used a linear SVM as a classifier because improving accuracy with a linear
classifier demonstrates the linear separability enhancement of transformed data points.
We measured the accuracy for both classifier models (NN and LSVM) and the loss for
the NN model. Experiments were repeated 10 times independently and average accuracy
and average loss was calculated over the 10 runs for each experiment and compare the
obtained results of the baseline experiment against ours. Both experiments with both

Appl. Sci. 2022, 12, 1713 14 of 24

classifiers were run for the five datasets and results are listed in Table 4 and illustrated in
Figure 4. From the results, one can observe that the accuracy of both the neural network
and the linear SVM classifiers are enhanced in nearly all the datasets. Also, we can see that
the LSVM classifier’s accuracies with our model are on par with the NN classifier which
indicates that the linear separability is enhanced because of our model. We can observe that
the SVM classifier outperforms the NN classifier on the MSTAR dataset in both settings,
with and without our model. A plausible explanation for why the NN classifier performs
poorly on such a dataset is that NN classifiers suffer when the input data dimensionality is
high. This drawback of NN classifiers is relatively remedied when the number of training
samples is adequately large relative to the number of parameters preventing the plausible
overfitting [76]. This is unfortunately not available in our case of small datasets, especially
the MSTAR dataset. On the other hand, SVM training requires a much smaller number of
data samples as they rely on the support vectors which is a very small subset of the training
samples. We also conducted experiments on classifiers used in [48] and added their results
on the WDBC dataset in Table 4. The used classifiers were SESSC as a standalone classifier,
ESSC_LSE, and SESSC_LSE (the ESSC and the SESSC clustering algorithms integrated with
a fuzzy classifier, respectively). We can notice that again using our model to transform the
test set improves their performance as other classifiers, which further proves the pluggable
feature of our model.

Table 4. Classification results. DTr is the original training set (without transformation) and {DTr, D̂Tr}
is the original training DTr set augmented with the transformed (using our model) training set D̂Tr.
Bolded values indicate the best results achieved in each metric.

Dataset Classifier Train Set Test Set Average Accuracy Average Loss

MNIST
NN

DTr DTs 0.829278 0.588378{
DTr , D̂Tr} D̂Ts 0.890600 0.423493

LSVM
DTr DTs 0.747853 -{

DTr , D̂Tr} D̂Ts 0.866773 -

Fashion-
MNIST

NN
DTr DTs 0.780324 0.652228{

DTr , D̂Tr} D̂Ts 0.809889 0.648123

LSVM
DTr DTs 0.709376 -{

DTr , D̂Tr} D̂Ts 0.780488 -

USPS
NN

DTr DTs 0.905552 0.328199{
DTr , D̂Tr} D̂Ts 0.938645 0.245099

LSVM
DTr DTs 0.861530 -{

DTr , D̂Tr} D̂Ts 0.937175 -

MSTAR
NN

DTr DTs 0.721635 0.528935{
DTr , D̂Tr} D̂Ts 0.641397 0.620295

LSVM
DTr DTs 0.904600 -{

DTr , D̂Tr} D̂Ts 0.980579 -

WDBC

NN
DTr DTs 0.976023 0.101761{

DTr , D̂Tr} D̂Ts 0.988304 0.034921

LSVM
DTr DTs 0.964912 -{

DTr , D̂Tr} D̂Ts 0.988304 -

ESSC_LSE
DTr DTs 0.949708 -{

DTr , D̂Tr} D̂Ts 0.985965 -

SESSC
DTr DTs 0.954386 -{

DTr , D̂Tr} D̂Ts 0.992398 -

SESSC_LSE
DTr DTs 0.971930 -{

DTr , D̂Tr} D̂Ts 0.990058 -

Appl. Sci. 2022, 12, 1713 15 of 24

Figure 4. Classification accuracies on the five datasets.

In addition to the proposed classification setting, we undertook a set of pilot exper-
iments on a limited number of the used datasets. In Set-1 of the pilot experiments, we
trained the classifier on only DTr (without augmenting D̂Tr) and tested its performance on
the transformed test set D̂Ts. Although our pilot experiment improved the classifier perfor-
mance in most of the datasets, we found that training the classifier with the augmented set
consistently gave better results over all datasets since augmentation increased the size of the
training set which reduced the classifier overfitting. Also, adding the transformed samples
to the training pool helps the classifier to achieve better decision boundaries relative to
the transformed test samples D̂Ts as it was trained on the transformed training samples
before, which makes it achieve better results. A summary of the pilot experiment results is
presented in Table 5 and Figure 5.

Table 5. Set-1 pilot experiment results. DTr is the original training set (without transformation), DTs

is the original unlabeled test set (without transformation), and D̂Ts is the transformed (using our
model) unlabeled test set. Bolded values indicate the best results achieved in each metric.

Dataset Classifier Train Set Test Set Average Accuracy Average Loss

MNIST
NN

DTr DTs 0.829278 0.588378
DTr D̂Ts 0.884564 0.409574

LSVM
DTr DTs 0.747853 -
DTr D̂Ts 0.856637 -

Fashion-
MNIST

NN
DTr DTs 0.780324 0.652228
DTr D̂Ts 0.804369 0.593578

LSVM
DTr DTs 0.709376 -
DTr D̂Ts 0.676829 -

Appl. Sci. 2022, 12, 1713 16 of 24

Figure 5. Set-1 pilot experiment accuracies on the MNIST and Fashion-MNIST datasets.

In Set-2 of the pilot experiments, we compared two options. Option 1 was using the
reconstructions of the third module as input to the classifier versus the original input data
(as demonstrated before). Option 2 was proceeding to the applied classifier with the output
of the second module, which were the latent representations obtained from the regressors,
versus using the latent representations obtained directly from the autoencoder. Results
for semi-supervised clustering and classification are shown in Tables 6 and 7, respectively.
Bolded values indicate the best results obtained in each metric except for Inertia where
bolded value indicate the best results obtained for each option separately as Inertia is not
a normalized metric. The results show that Option 1 is slightly better than Option 2 in
most cases in both semi-supervised and supervised settings. In addition, the reconstruction
option has the added privilege of not interfering with any subsequent machine learning
task. Because the output is of the same dimensionality and nature of the input data, (i.e.,
no changes are needed for the baseline classification and clustering model setups).

Table 6. Set-2 pilot experiment semi-supervised clustering setting results. DTs is the original unlabeled
test set (without transformation), D̂Ts is the transformed (using our model) unlabeled test set. Zts and
Ẑts are the features extracted from the autoencoder of the original test set DTs and the transformed
test set D̂Ts, respectively. Bolded values indicate the best results achieved in each metric.

Dataset K-Means
Init. Method Option Test Set Time Inertia H C Vβ ARI AMI S

MNIST

K-Means++
Option1 DTs 119.802

s 42,141,554 0.421 0.443 0.432 0.322 0.421 0.058

D̂Ts 32.010 s 14,454,470 0.658 0.680 0.669 0.586 0.658 0.396

Option2 Zts 19.931 s 14,528,156 0.537 0.544 0.541 0.418 0.537 0.063
Ẑts 15.100 s 6,730,338 0.666 0.676 0.671 0.570 0.666 0.329

Random
Option1 DTs 62.014 s 42,142,078 0.417 0.439 0.428 0.318 0.417 0.060

D̂Ts 31.006 s 14,454,470 0.658 0.680 0.669 0.586 0.658 0.381

Option2 Zts 18.312 s 14,510,545 0.526 0.535 0.531 0.397 0.526 0.066
Ẑts 11.168 s 6,730,342 0.666 0.676 0.671 0.570 0.666 0.329

PCA-Based
Option1 DTs 14.302 s 42,142,060 0.417 0.439 0.428 0.317 0.417 0.055

D̂Ts 8.425 s 14,454,470 0.658 0.680 0.669 0.586 0.658 0.394

Option2 Zts 4.908 s 14,510,560 0.526 0.535 0.531 0.397 0.526 0.062
Ẑts 3.618 s 6,847,240 0.655 0.664 0.659 0.567 0.655 0.262

Appl. Sci. 2022, 12, 1713 17 of 24

Table 6. Cont.

Dataset K-Means
Init. Method Option Test Set Time Inertia H C Vβ ARI AMI S

Fashion-
MNIST

K-Means++
Option1 DTs 41.216 s 30,290,316 0.505 0.536 0.520 0.338 0.505 0.151

D̂Ts 24.270 s 7,065,023 0.705 0.707 0.706 0.636 0.705 0.505

Option2 Zts 14.065 s 12,138,071 0.506 0.523 0.515 0.315 0.506 0.103
Ẑts 9.982 s 4,670,369 0.674 0.677 0.676 0.588 0.674 0.325

Random
Option1 DTs 44.563 s 30,243,539 0.493 0.518 0.505 0.348 0.493 0.137

D̂Ts 38.562 s 7,067,789 0.693 0.712 0.702 0.607 0.693 0.510

Option2 Zts 18.293 s 12,179,589 0.510 0.524 0.517 0.331 0.510 0.084
Ẑts 10.308 s 4,670,369 0.674 0.677 0.676 0.588 0.674 0.355

PCA-Based
Option1 DTs 10.170 s 30,820,962 0.488 0.503 0.495 0.344 0.488 0.131

D̂Ts 8.454 s 8,803,305 0.675 0.690 0.682 0.587 0.675 0.479

Option2 Zts 3.447 s 12,274,965 0.514 0.530 0.522 0.361 0.514 0.100
Ẑts 2.250 s 5,529,373 0.644 0.663 0.653 0.531 0.643 0.329

Table 7. Set-2 pilot experiment classification setting results. Bolded values indicate the comparison
result between the two options. DTr is the original training set (without transformation) and {DTr,
D̂Tr} is the original training DTr set augmented with the transformed (using our model) training
set D̂Tr. {Ztr, Ẑtr} is the features extracted from the autoencoder of the original training set DTr

augmented with the extracted features of the transformed training set D̂Tr, respectively.

Dataset Classifier Option Train Set Test Set Average Accuracy Average Loss

MNIST

NN
Option1 DTr DTs 0.829278 0.588378
Option2 Ztr Zts 0.817143 0.728606
Option1

{
DTr , D̂Tr} D̂Ts 0.890600 0.423493

Option2 {Ztr , Ẑtr} Ẑts 0.881613 0.415675

LSVM
Option1 DTr DTs 0.747853 -
Option2 Ztr Zts 0.817158 -
Option1

{
DTr , D̂Tr} D̂Ts 0.866773 -

Option2 {Ztr , Ẑtr} Ẑts 0.736704 -

Fashion-
MNIST

NN
Option1 DTr DTs 0.780324 0.652228
Option2 Ztr Zts 0.782837 0.770872
Option1

{
DTr , D̂Tr} D̂Ts 0.809889 0.648123

Option2 {Ztr , Ẑtr} Ẑts 0.808163 0.728820

LSVM
Option1 DTr DTs 0.709376 -
Option2 Ztr Zts 0.763546 -
Option1

{
DTr , D̂Tr} D̂Ts 0.780488 -

Option2 {Ztr , Ẑtr} Ẑts 0.800102 -

In addition, to further prove the effectiveness of our proposed method, we have
provided a comparison with different conventional methods that work on the improvement
of classification accuracy of the two naturally small datasets used in this research (WDBC
and MSTAR). First, we compared the WDBC dataset to other existing methods that improve
the classification accuracy over the dataset using different techniques, mostly feature
selection. The WDBC dataset was first normalized and then split into 70–30% training and
testing sets. The comparison results are shown in Table 8. As can be seen from the table,
our proposed method achieves the second highest accuracy which exhibits the model’s
effectiveness on this dataset.

Appl. Sci. 2022, 12, 1713 18 of 24

Table 8. The WDBC dataset comparison results of the proposed method with other methods. The
results are sorted in descending order. Bolded values are the results obtained from this study.

Method Classification Accuracy

Rahman et al. [77] 99.40%
Proposed Method + SESSC 99.23%
Proposed Method + LSVM 98.83%

Yoon et al. [78] 98.80%
Zhang et al. [79] 98.36%

Murugan et al. [80] 98.19%
Nekkaa et al. [81] 97.88%
Aalaei et al. [82] 97.30%

Mafarja et al. [83] 97.10%
Azhagusundari et al. [84] 73.78%

We also compared our MSTAR three-target classification accuracy result (98.06%)
with other research done on classification accuracy enhancement on the same dataset. We
compared with some conventional methods that do not employ data augmentation such
as [85] that uses a joint sparse representation (JRS) model, [86] which makes use of phase
and amplitude as well as image data, a sparse representation classifier, and Riemannian
manifolds, Euclidean distance restricted autoencoder [87], and a hierarchical recognition
system that is based on a constrained restricted Boltzmann machine (RBM) [88]. In addition,
we included a method that uses data augmentation (deep learning method based on visual
cortical system [89]). The comparison results presented in Table 9 show that the LSVM
using our model achieves a comparable accuracy to other research results; also, it is worth
noting the effect of data augmentation on classification accuracy such as in [89] where using
data augmentation enhances the classification accuracy by 4.6%.

Table 9. The MSTAR three-target dataset comparison results of the proposed method with other
methods. The results are sorted in descending order. Bolded value is the result of this study.

Method Classification Accuracy

Proposed Method + LSVM 98.06%
Ni et al. [89] (With Data Augmentation) 96.70%

Dong et al. [86] 96.10%
Cui et al. [88] 95.31%

Deng et al. [87] 94.14%
Zhang et al. [85] 93.20%

Ni et al. [89] (Without Data Augmentation) 92.10%

Besides the quantitative results that demonstrate our model’s ability to improve the
compactness and separability properties, we show qualitative results through visualizing
the mapped features in the feature space using t-SNE [90]. Figure 6 depicts the t-SNE of the
plain test set vs. the mapped test set for the five datasets. One can observe that the classes
are more separable and compact, especially overlapped classes as, for example, shown by
the digits 4 and 9 in the MNIST dataset (highlighted in red circles).

Appl. Sci. 2022, 12, 1713 19 of 24

Figure 6. Cont.

Appl. Sci. 2022, 12, 1713 20 of 24

Figure 6. TSNE visualizations of the test set without mapping (left) vs. mapped with our model
(right): (a) MNIST; (b) Fashion-MNIST; (c) USPS; (d) MSTAR; (e) WDBC.

4. Conclusions

This paper proposes a framework that has the potential to improve the compactness
and separability properties of data points, which consistently boosts the performance
of any off-the-shelf classifier, or a semi-supervised clustering model. We have utilized
the generative capacity of autoencoders to reconstruct data points, thus preserving the
original input feature space. This characteristic of our proposed framework makes it
easily pluggable before a classifier model (not limited by a specific classifier type) or semi-
supervised clustering model. We have also utilized an array of MLP regressors for mapping
the latent representation of the input samples to approximations of the centroids of the
classes. We conducted experiments on five different datasets (MNIST, Fashion-MNIST,
USPS, MSTAR, and WDBC) to demonstrate the results of our proposed method. We
concluded that plugging our model as a preprocessing step gives better results in all the
datasets in both classification and semi-supervised clustering tasks. We also compared
the proposed method to other existing methods on enhancing the classification accuracy
over the WDBC and MSTAR datasets. We illustrated the importance of augmenting small
datasets with the produced approximation of the centroids of the classes and how it further
improves the classifier results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12031713/s1.

Author Contributions: Conceptualization, M.M.E. and R.F.; methodology, M.M.E. and R.F.; software,
M.M.E.; validation, M.M.E., R.F. and Y.E.-S.; formal analysis, R.F. and Y.E.-S.; investigation, M.M.E.;
resources, M.M.E. and R.F.; data curation, M.M.E.; writing—original draft preparation, M.M.E.;
writing—review and editing, R.F. and Y.E.-S.; visualization, M.M.E.; supervision, R.F and Y.E.-S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available
online. MNIST: http://yann.lecun.com/exdb/mnist/ (accessed on 10 December 2021); Fashion-
MNIST: https://github.com/zalandoresearch/fashion-mnist/tree/master/data/fashion (accessed
on 10 December 2021); USPS: https://www.kaggle.com/bistaumanga/usps-dataset (accessed on 10
December 2021); MSTAR: https://www.sdms.afrl.af.mil/index.php?collection=mstar&page=targets
(accessed on 10 December 2021); WDBC: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Wisconsin+(Diagnostic) (accessed on 10 December 2021).

Acknowledgments: The authors would like to thank all anonymous reviewers and editors for their
helpful suggestions for the improvement of this paper.

https://www.mdpi.com/article/10.3390/app12031713/s1
https://www.mdpi.com/article/10.3390/app12031713/s1
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist/tree/master/data/fashion
https://www.kaggle.com/bistaumanga/usps-dataset
https://www.sdms.afrl.af.mil/index.php?collection=mstar&page=targets
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic

Appl. Sci. 2022, 12, 1713 21 of 24

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof that the Mean-Square Error across a dataset D has a lower bound value of
Var(Y):

Let Y be the true output and Ŷ the predicted output of the network, then the expected
value ED of the mean-squared error over the entire dataset D is ED

[(
Y− Ŷ

)2
]
.

With µ denoting the mean of Y, we can express ED

[(
Y− Ŷ

)2
]

as:

ED

[(
Y− Ŷ

)2
]
= ED

[(
Y− µ + µ− Ŷ

)2
]

= ED

[(
(Y− µ) +

(
µ− Ŷ

))2
]

= ED

[(
(Y− µ)2 +

(
µ− Ŷ

)2
+ 2(Y− µ)

(
µ− Ŷ

))] (A1)

Since expectation of the sum is the sum of expectations, and constants can be pulled
out of expectations, the expression can be written as follows:

ED

[(
(Y− µ)2 +

(
µ− Ŷ

)2
+ 2(Y− µ)

(
µ− Ŷ

))
]

= ED

[
(Y− µ)2

]
+ED

[(
µ− Ŷ

)2
]
+ 2
(
µ− Ŷ

)
ED[(Y− µ)]

(A2)

Given the definition of variance and that the expectation of a constant equals the
constant, the expression is written as follows:

ED

[
(Y− µ)2

]
+ED

[(
µ− Ŷ

)2
]
+ 2
(
µ− Ŷ

)
ED[(Y− µ)]

= Var(Y) +
(
µ− Ŷ

)2
+ 2
(
µ− Ŷ

)
ED[(Y− µ)]

(A3)

The term ED[(Y− µ)] can be evaluated as follows:

ED[(Y− µ)] = ED[Y]−ED[µ] = µ− µ = 0 (A4)

which gives,

Var(Y) +
(
µ− Ŷ

)2
+ 2
(
µ− Ŷ

)
ED[(Y− µ)]= Var(Y) +

(
µ− Ŷ

)2
+ 2
(
µ− Ŷ

)
× 0

= Var(Y) + µ− Ŷ
(A5)

Thus,
ED

[(
Y− Ŷ

)2
]
≥ Var(Y) (A6)

with equality holding when Ŷ = µ.

References
1. Storcheus, D.; Rostamizadeh, A.; Kumar, S. A Survey of Modern Questions and Challenges in Feature Extraction. In Proceedings

of the 1st International Workshop on Feature Extraction: Modern Questions and Challenges at NIPS 2015, PMLR, Montreal, QC,
Canada, 8 December 2015; pp. 1–18.

2. Wang, M.; Lin, L.; Wang, F. Improving Short Text Classification through Better Feature Space Selection. In Proceedings of the
2013 Ninth International Conference on Computational Intelligence and Security, Washington, DC, USA, 14–15 December 2013;
pp. 120–124.

3. Nargesian, F.; Samulowitz, H.; Khurana, U.; Khalil, E.B.; Turaga, D. Learning Feature Engineering for Classification. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August
2017; pp. 2529–2535.

4. Zhang, P.; Shi, B.; Smith, C.D.; Liu, J. Nonlinear Feature Space Transformation to Improve the Prediction of MCI to AD
Conversion. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2017, Quebec

Appl. Sci. 2022, 12, 1713 22 of 24

City, QC, Canada, 11–13 September 2017; Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S., Eds.;
Springer International Publishing: Cham, Switzerland, 2017; pp. 12–20.

5. Guo, X.; Zhu, E.; Liu, X.; Yin, J. Deep Embedded Clustering with Data Augmentation. In Proceedings of the 10th Asian Conference
on Machine Learning, PMLR, Beijing, China, 4 November 2018; pp. 550–565.

6. Guo, X.; Liu, X.; Zhu, E.; Yin, J. Deep Clustering with Convolutional Autoencoders. In Proceedings of the International Conference
on Neural Information Processing, Guangzhou, China, 14–18 November 2017; Springer: Berlin/Heidelberg, Germany, 2017;
pp. 373–382.

7. Em, Y.; Gag, F.; Lou, Y.; Wang, S.; Huang, T.; Duan, L.-Y. Incorporating Intra-Class Variance to Fine-Grained Visual Recognition.
In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017;
pp. 1452–1457.

8. Passalis, N.; Iosifidis, A.; Gabbouj, M.; Tefas, A. Variance-Preserving Deep Metric Learning for Content-Based Image Retrieval.
Pattern Recognit. Lett. 2020, 131, 8–14. [CrossRef]

9. Wu, G.; Han, J.; Guo, Y.; Liu, L.; Ding, G.; Ni, Q.; Shao, L. Unsupervised Deep Video Hashing via Balanced Code for Large-Scale
Video Retrieval. IEEE Trans. Image Process. 2018, 28, 1993–2007. [CrossRef] [PubMed]

10. Gysel, C.V.; De Rijke, M.; Kanoulas, E. Neural Vector Spaces for Unsupervised Information Retrieval. ACM Trans. Inf. Syst. TOIS
2018, 36, 1–25. [CrossRef]

11. Yu, J.; Lu, Y.; Qin, Z.; Zhang, W.; Liu, Y.; Tan, J.; Guo, L. Modeling Text with Graph Convolutional Network for Cross-Modal
Information Retrieval. In Proceedings of the Pacific Rim Conference on Multimedia, Hefei, China, 21–22 September 2018; Springer:
Cham, Switzerland, 2018; pp. 223–234.

12. Jean, N.; Xie, S.M.; Ermon, S. Semi-Supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive
Variance. arXiv 2018, arXiv:1805.10407.

13. Zhu, C.; Idemudia, C.U.; Feng, W. Improved Logistic Regression Model for Diabetes Prediction by Integrating PCA and K-Means
Techniques. Inform. Med. Unlocked 2019, 17, 100179. [CrossRef]

14. Mathew, J.; Pang, C.K.; Luo, M.; Leong, W.H. Classification of Imbalanced Data by Oversampling in Kernel Space of Support
Vector Machines. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 4065–4076. [CrossRef]

15. Becker, M.; Lippel, J.; Stuhlsatz, A.; Zielke, T. Robust Dimensionality Reduction for Data Visualization with Deep Neural
Networks. Graph. Models 2020, 108, 101060. [CrossRef]

16. Zhou, L.; Wang, Z.; Luo, Y.; Xiong, Z. Separability and Compactness Network for Image Recognition and Superresolution. IEEE
Trans. Neural Netw. Learn. Syst. 2019, 30, 3275–3286. [CrossRef]

17. Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
18. Sun, J.; Du, W.; Shi, N. A Survey of KNN Algorithm. Inf. Eng. Appl. Comput. 2018, 1, 770. [CrossRef]
19. Guo, G.; Wang, H.; Bell, D.; Bi, Y.; Greer, K. KNN Model-Based Approach in Classification. In Proceedings of the OTM

Confederated International Conferences “On the Move to Meaningful Internet Systems”, Catania, Italy, 3–7 November 2003;
Springer: Berlin/Heidelberg, Germany, 2003; pp. 986–996.

20. Abu Alfeilat, H.A.; Hassanat, A.B.; Lasassmeh, O.; Tarawneh, A.S.; Alhasanat, M.B.; Eyal Salman, H.S.; Prasath, V.S. Effects
of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review. Big Data 2019, 7, 221–248. [CrossRef]
[PubMed]

21. Ertuğrul, Ö.F. A Novel Distance Metric Based on Differential Evolution. Arab. J. Sci. Eng. 2019, 44, 9641–9651. [CrossRef]
22. Jiao, L.; Geng, X.; Pan, Q. BP k NN: k-Nearest Neighbor Classifier with Pairwise Distance Metrics and Belief Function Theory.

IEEE Access 2019, 7, 48935–48947. [CrossRef]
23. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
24. Greenwald, N.F.; Miller, G.; Moen, E.; Kong, A.; Kagel, A.; Fullaway, C.C.; McIntosh, B.J.; Leow, K.; Schwartz, M.S.; Dougherty,

T. Whole-Cell Segmentation of Tissue Images with Human-Level Performance Using Large-Scale Data Annotation and Deep
Learning. bioRxiv 2021. [CrossRef] [PubMed]

25. Zhang, X.; Luo, H.; Fan, X.; Xiang, W.; Sun, Y.; Xiao, Q.; Jiang, W.; Zhang, C.; Sun, J. Alignedreid: Surpassing Human-Level
Performance in Person Re-Identification. arXiv 2017, arXiv:1711.08184.

26. Zhuang, J.; Hou, S.; Wang, Z.; Zha, Z.-J. Towards Human-Level License Plate Recognition. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018 ; pp. 306–321.

27. Munasinghe, S.; Fookes, C.; Sridharan, S. Human-Level Face Verification with Intra-Personal Factor Analysis and Deep Face
Representation. IET Biometr. 2018, 7, 467–473. [CrossRef]

28. Matek, C.; Schwarz, S.; Spiekermann, K.; Marr, C. Human-Level Recognition of Blast Cells in Acute Myeloid Leukaemia with
Convolutional Neural Networks. Nat. Mach. Intell. 2019, 1, 538–544. [CrossRef]

29. Zhao, W. Research on the Deep Learning of the Small Sample Data Based on Transfer Learning. In Proceedings of the AIP Conference
Proceedings, Chongqing City, China, 27–28 May 2017; AIP Publishing LLC: New York, NY, USA, 2017; Volume 1864, p. 020018.

30. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

31. Cao, Y.; Geddes, T.A.; Yang, J.Y.H.; Yang, P. Ensemble Deep Learning in Bioinformatics. Nat. Mach. Intell. 2020, 2, 500–508.
[CrossRef]

http://doi.org/10.1016/j.patrec.2019.11.041
http://doi.org/10.1109/TIP.2018.2882155
http://www.ncbi.nlm.nih.gov/pubmed/30452370
http://doi.org/10.1145/3196826
http://doi.org/10.1016/j.imu.2019.100179
http://doi.org/10.1109/TNNLS.2017.2751612
http://doi.org/10.1016/j.gmod.2020.101060
http://doi.org/10.1109/TNNLS.2018.2890550
http://doi.org/10.1186/s40537-019-0197-0
http://doi.org/10.18063/ieac.v1i1.770
http://doi.org/10.1089/big.2018.0175
http://www.ncbi.nlm.nih.gov/pubmed/31411491
http://doi.org/10.1007/s13369-019-04003-5
http://doi.org/10.1109/ACCESS.2019.2909752
http://doi.org/10.1613/jair.953
http://doi.org/10.1038/s41587-021-01094-0
http://www.ncbi.nlm.nih.gov/pubmed/34795433
http://doi.org/10.1049/iet-bmt.2017.0050
http://doi.org/10.1038/s42256-019-0101-9
http://doi.org/10.1145/3065386
http://doi.org/10.1038/s42256-020-0217-y

Appl. Sci. 2022, 12, 1713 23 of 24

32. Mishra, S.; Yamasaki, T.; Imaizumi, H. Improving Image Classifiers for Small Datasets by Learning Rate Adaptations. In Proceedings
of the 2019 16th International Conference on Machine Vision Applications (MVA), Tokyo, Japan, 27–31 May 2019; pp. 1–6.

33. Li, X.; Yu, L.; Chang, D.; Ma, Z.; Cao, J. Dual Cross-Entropy Loss for Small-Sample Fine-Grained Vehicle Classification. IEEE
Trans. Veh. Technol. 2019, 68, 4204–4212. [CrossRef]

34. Lohit, S.; Wang, Q.; Turaga, P. Temporal Transformer Networks: Joint Learning of Invariant and Discriminative Time Warping. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 12426–12435.

35. Bradley, P.S.; Fayyad, U.M. Refining Initial Points for K-Means Clustering. In Proceedings of the ICML, Madison, WI, USA, 24–27
July 1998; Citeseer; Morgan Kaufmann: San Francisco, CA, USA, 1998; Volume 98, pp. 91–99.

36. Pilarczyk, R.; Skarbek, W. On Intra-Class Variance for Deep Learning of Classifiers. arXiv 2019, arXiv:1901.11186. [CrossRef]
37. Luo, Y.; Wong, Y.; Kankanhalli, M.; Zhao, Q. G-Softmax: Improving Intraclass Compactness and Interclass Separability of Features.

IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 685–699. [CrossRef]
38. Liu, W.; Wen, Y.; Yu, Z.; Yang, M. Large-Margin Softmax Loss for Convolutional Neural Networks. In Proceedings of the ICML,

New York, NY, USA, 20–22 June 2016; Volume 2, p. 7.
39. Li, C.; Liu, Z.; Ren, J.; Wang, W.; Xu, J. A Feature Optimization Approach Based on Inter-Class and Intra-Class Distance for Ship

Type Classification. Sensors 2020, 20, 5429. [CrossRef] [PubMed]
40. Zeng, H.-J.; Wang, X.-H.; Chen, Z.; Lu, H.; Ma, W.-Y. CBC: Clustering Based Text Classification Requiring Minimal Labeled Data.

In Proceedings of the Third IEEE International Conference on Data Mining, Melbourne, FL, USA, 22 November 2003; pp. 443–450.
41. Shukla, A.; Cheema, G.S.; Anand, S. Semi-Supervised Clustering with Neural Networks. In Proceedings of the 2020 IEEE Sixth

International Conference on Multimedia Big Data (BigMM), New Delhi, India, 24–26 September 2020; pp. 152–161.
42. Zheng, A.; Casari, A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists; O’Reilly Media, Inc.:

Sebastopol, CA, USA, 2018; ISBN 978-1-4919-5319-8.
43. Lloyd, S. Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
44. Chan, E.; Ching, W.-K.; Ng, M.; Huang, J. An Optimization Algorithm for Clustering Using Weighted Dissimilarity Measures.

Pattern Recognit. 2004, 37, 943–952. [CrossRef]
45. Huang, J.Z.; Ng, M.K.; Rong, H.; Li, Z. Automated Variable Weighting in K-Means Type Clustering. IEEE Trans. Pattern Anal.

Mach. Intell. 2005, 27, 657–668. [CrossRef] [PubMed]
46. Huang, X.; Ye, Y.; Zhang, H. Extensions of Kmeans-Type Algorithms: A New Clustering Framework by Integrating Intracluster

Compactness and Intercluster Separation. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1433–1446. [CrossRef] [PubMed]
47. Deng, Z.; Choi, K.-S.; Chung, F.-L.; Wang, S. Enhanced Soft Subspace Clustering Integrating Within-Cluster and between-Cluster

Information. Pattern Recognit. 2010, 43, 767–781. [CrossRef]
48. Cui, Y.; Wang, H.; Wu, D. Supervised Enhanced Soft Subspace Clustering (SESSC) for TSK Fuzzy Classifiers. arXiv 2020,

arXiv:2002.12404.
49. Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2021, arXiv:2003.05991.
50. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; California University, San

Diego La Jolla Institute for Cognitive Science: San Diego, CA, USA, 1985.
51. Meng, Q.; Catchpoole, D.; Skillicom, D.; Kennedy, P.J. Relational Autoencoder for Feature Extraction|IEEE Conference Publication|IEEE

Xplore. Available online: https://ieeexplore.ieee.org/abstract/document/7965877/ (accessed on 2 December 2021).
52. Ryu, S.; Choi, H.; Lee, H.; Kim, H. Convolutional Autoencoder Based Feature Extraction and Clustering for Customer Load

Analysis. IEEE Trans. Power Syst. 2020, 35, 1048–1060. [CrossRef]
53. Liu, Y.; Xie, D.; Gao, Q.; Han, J.; Wang, S.; Gao, X. Graph and Autoencoder Based Feature Extraction for Zero-Shot Learning. In

Proceedings of the Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China,
10–16 August 2019; International Joint Conferences on Artificial Intelligence Organization: Macao, China, 2019; pp. 3038–3044.

54. Luo, X.; Li, X.; Wang, Z.; Liang, J. Discriminant Autoencoder for Feature Extraction in Fault Diagnosis. Chemom. Intell. Lab. Syst.
2019, 192, 103814. [CrossRef]

55. Polic, M.; Krajacic, I.; Lepora, N.; Orsag, M. Convolutional Autoencoder for Feature Extraction in Tactile Sensing. IEEE Robot.
Autom. Lett. 2019, 4, 3671–3678. [CrossRef]

56. Baldi, P. Autoencoders, Unsupervised Learning, and Deep Architectures. In Proceedings of the ICML Workshop on Unsupervised
and Transfer Learning, JMLR Workshop and Conference Proceedings, Washington, DC, USA, 27 June 2012; pp. 37–49.

57. Doroudi, S. The Bias-Variance Tradeoff: How Data Science Can Inform Educational Debates—Shayan Doroudi. 2020. Available
online: https://journals.sagepub.com/doi/full/10.1177/2332858420977208 (accessed on 2 December 2021).

58. Mehta, P.; Bukov, M.; Wang, C.-H.; Day, A.G.R.; Richardson, C.; Fisher, C.K.; Schwab, D.J. A High-Bias, Low-Variance Introduction
to Machine Learning for Physicists. Phys. Rep. 2019, 810, 1–124. [CrossRef] [PubMed]

59. Geman, S.; Bienenstock, E.; Doursat, R. Neural Networks and the Bias/Variance Dilemma. Neural Comput. 1992, 4, 1–58.
[CrossRef]

60. Kruschke, J. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan; Academic Press: Boston, MA, USA, 2014; ISBN
978-0-12-405916-0.

61. An, G. The Effects of Adding Noise During Backpropagation Training on a Generalization Performance. Neural Comput. 1996, 8,
643–674. [CrossRef]

http://doi.org/10.1109/TVT.2019.2895651
http://doi.org/10.2478/fcds-2019-0015
http://doi.org/10.1109/TNNLS.2019.2909737
http://doi.org/10.3390/s20185429
http://www.ncbi.nlm.nih.gov/pubmed/32971862
http://doi.org/10.1109/TIT.1982.1056489
http://doi.org/10.1016/j.patcog.2003.11.003
http://doi.org/10.1109/TPAMI.2005.95
http://www.ncbi.nlm.nih.gov/pubmed/15875789
http://doi.org/10.1109/TNNLS.2013.2293795
http://www.ncbi.nlm.nih.gov/pubmed/25050942
http://doi.org/10.1016/j.patcog.2009.09.010
https://ieeexplore.ieee.org/abstract/document/7965877/
http://doi.org/10.1109/TPWRS.2019.2936293
http://doi.org/10.1016/j.chemolab.2019.103814
http://doi.org/10.1109/LRA.2019.2927950
https://journals.sagepub.com/doi/full/10.1177/2332858420977208
http://doi.org/10.1016/j.physrep.2019.03.001
http://www.ncbi.nlm.nih.gov/pubmed/31404441
http://doi.org/10.1162/neco.1992.4.1.1
http://doi.org/10.1162/neco.1996.8.3.643

Appl. Sci. 2022, 12, 1713 24 of 24

62. Bishop, C.M. Training with Noise Is Equivalent to Tikhonov Regularization. Neural Comput. 1995, 7, 108–116. [CrossRef]
63. Neelakantan, A.; Vilnis, L.; Le, Q.V.; Sutskever, I.; Kaiser, L.; Kurach, K.; Martens, J. Adding Gradient Noise Improves Learning

for Very Deep Networks. arXiv 2015, arXiv:1511.06807.
64. Lecun, Y. The Mnist Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on

10 December 2021).
65. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv

2017, arXiv:1708.07747.
66. Hull, J.J. A Database for Handwritten Text Recognition Research. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 550–554.

[CrossRef]
67. Mossing, J.C.; Ross, T.D. Evaluation of SAR ATR Algorithm Performance Sensitivity to MSTAR Extended Operating Condition-

sProceedings of the Aerospace/Defense Sensing and ControlsOrlando, FL, USA, 13–17 April 1998, pp. 554–565.
68. Graff, C. UCI Machine Learning Repository; University of California, School of Information and Computer Science: Irvene, CA,

USA, 2019; Volume 4, Available online: http://archive.ics.uci.edu/ml (accessed on 20 December 2021).
69. Bischl, B.; Mersmann, O.; Trautmann, H.; Weihs, C. Resampling Methods for Meta-Model Validation with Recommendations for

Evolutionary Computation. Evol. Comput. 2012, 20, 249–275. [CrossRef]
70. Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the Fourteenth International

Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Fort Lauderdale, FL, USA,
11–13 April 2011; pp. 315–323.

71. Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. Available online: http://ilpubs.stanford.edu:
8090/778/ (accessed on 2 December 2021).

72. Rosenberg, A.; Hirschberg, J. V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure. In Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), Prague, Czech Republic, 28–30 June 2007; Association for Computational Linguistics: Prague, Czech Republic,
2007; pp. 410–420.

73. Steinley, D. Properties of the Hubert-Arable Adjusted Rand Index. Psychol. Methods 2004, 9, 386–396. [CrossRef]
74. Vinh, N.X.; Epps, J.; Bailey, J. Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization

and Correction for Chance. J. Mach. Learn. Res. 2010, 11, 2837–2854.
75. Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987,

20, 53–65. [CrossRef]
76. Zanaty, E.A. Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in Data Classification. Egypt. Inform. J. 2012,

13, 177–183. [CrossRef]
77. Rahman, M.A.; Muniyandi, R.C. An Enhancement in Cancer Classification Accuracy Using a Two-Step Feature Selection Method

Based on Artificial Neural Networks with 15 Neurons. Symmetry 2020, 12, 271. [CrossRef]
78. Yoon, H.; Park, C.-S.; Kim, J.S.; Baek, J.-G. Algorithm Learning Based Neural Network Integrating Feature Selection and

Classification. Expert Syst. Appl. 2013, 40, 231–241. [CrossRef]
79. Zhang, Y.; Gong, D.; Hu, Y.; Zhang, W. Feature Selection Algorithm Based on Bare Bones Particle Swarm Optimization.

Neurocomputing 2015, 148, 150–157. [CrossRef]
80. Murugan, A.; Sridevi, T. An Enhanced Feature Selection Method Comprising Rough Set and Clustering Techniques. In Proceedings

of the 2014 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 18–20
December 2014. [CrossRef]

81. Nekkaa, M.; Boughaci, D. A Memetic Algorithm with Support Vector Machine for Feature Selection and Classification. Memetic
Comput. 2015, 7, 59–73. [CrossRef]

82. Aalaei, S.; Shahraki, H.; Rowhanimanesh, A.; Eslami, S. Feature Selection Using Genetic Algorithm for Breast Cancer Diagnosis:
Experiment on Three Different Datasets. Iran. J. Basic Med. Sci. 2016, 19, 476–482. [PubMed]

83. Mafarja, M.; Mirjalili, S. Whale Optimization Approaches for Wrapper Feature Selection. Appl. Soft Comput. 2018, 62, 441–453.
[CrossRef]

84. Azhagusundari, B. An Integrated Method for Feature Selection Using Fuzzy Information Measure. In Proceedings of the 2017 International
Conference on Information Communication and Embedded Systems (ICICES), Chennai, India, 23–24 February 2017; pp. 1–6.

85. Zhang, H.; Nasrabadi, N.M.; Zhang, Y.; Huang, T.S. Multi-View Automatic Target Recognition Using Joint Sparse Representation.
IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 2481–2497. [CrossRef]

86. Dong, G.; Kuang, G. Target Recognition in SAR Images via Classification on Riemannian Manifolds. IEEE Geosci. Remote Sens.
Lett. 2015, 12, 199–203. [CrossRef]

87. Deng, S.; Du, L.; Li, C.; Ding, J.; Liu, H. SAR Automatic Target Recognition Based on Euclidean Distance Restricted Autoencoder.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3323–3333. [CrossRef]

88. Cui, Z.; Cao, Z.; Yang, J.; Ren, H. Hierarchical Recognition System for Target Recognition from Sparse Representations. Math.
Probl. Eng. 2015, 2015, e527095. [CrossRef]

89. Ni, J.C.; Xu, Y.L. SAR Automatic Target Recognition Based on a Visual Cortical System. In Proceedings of the 2013 6th International
Congress on Image and Signal Processing (CISP), Hangzhou, China, 16–18 December 2013; Volume 2, pp. 778–782.

90. van der Maaten, L.; Hinton, G. Viualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.

http://doi.org/10.1162/neco.1995.7.1.108
http://yann.lecun.com/exdb/mnist/
http://doi.org/10.1109/34.291440
http://archive.ics.uci.edu/ml
http://doi.org/10.1162/EVCO_a_00069
http://ilpubs.stanford.edu:8090/778/
http://ilpubs.stanford.edu:8090/778/
http://doi.org/10.1037/1082-989X.9.3.386
http://doi.org/10.1016/0377-0427(87)90125-7
http://doi.org/10.1016/j.eij.2012.08.002
http://doi.org/10.3390/sym12020271
http://doi.org/10.1016/j.eswa.2012.07.018
http://doi.org/10.1016/j.neucom.2012.09.049
http://doi.org/10.1109/ICCIC.2014.7238376
http://doi.org/10.1007/s12293-015-0153-2
http://www.ncbi.nlm.nih.gov/pubmed/27403253
http://doi.org/10.1016/j.asoc.2017.11.006
http://doi.org/10.1109/TAES.2012.6237604
http://doi.org/10.1109/LGRS.2014.2332076
http://doi.org/10.1109/JSTARS.2017.2670083
http://doi.org/10.1155/2015/527095

	Introduction
	Method
	Feature Extraction Using Autoencoders
	Feature Mapping Network
	Mapped Features Reconstruction

	Evaluation
	Datasets
	Experimental Setup
	Semi-Supervised Clustering Setting
	Classification Setting

	Conclusions
	Appendix A
	References

