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Abstract: The 0-day attack is a cyber-attack based on vulnerabilities that have not yet been published.
The detection of anomalous traffic generated by such attacks is vital, as it can represent a critical
problem, both in a technical and economic sense, for a smart enterprise as for any system largely
dependent on technology. To predict this kind of attack, one solution can be to use unsupervised
machine learning approaches, as they guarantee the detection of anomalies regardless of their prior
knowledge. It is also essential to identify the anomalous and unknown behaviors that occur within
a network in near real-time. Three different approaches have been proposed and benchmarked in
exactly the same condition: Deep Autoencoding with GMM and Isolation Forest, Deep Autoencoder
with Isolation Forest, and Memory Augmented Deep Autoencoder with Isolation Forest. These
approaches are thus the result of combining different unsupervised algorithms. The results show that
the addition of the Isolation Forest improves the accuracy values and increases the inference time,
although this increase does not represent a relevant problematic factor. This paper also explains the
features that the various models consider most important for classifying an event as an attack using
the explainable artificial intelligence methodology called Shapley Additive Explanations (SHAP).
Experiments were conducted on KDD99, NSL-KDD, and CIC-IDS2017 datasets.

Keywords: unsupervised machine learning; anomaly detection; near real-time; network traffic;
explainable artificial intelligence; SHAP

1. Introduction

Cyber attacks can impact the performance of networks (corporate or otherwise), allow
access to and the modification of confidential data, and compromise the security of virtually
any infrastructure belonging to the network itself. This issue can have a significant economic
impact on a smart enterprise. Zero-day attacks are unknown, never-before-seen attacks
based on undisclosed and unpublished flaws and the widespread knowledge of “you
cannot protect against what is unknown” [1]. Therefore, it is of fundamental importance to
create algorithms that are able to predict 0-day attacks in an automatic and fast way (near
real-time). Time is a crucial parameter concerning such attacks: in a system with a large
volume of traffic, if it cannot be analyzed in a reasonable time to avoid traffic accumulation,
and thus a bottleneck is generated. In a near real-time anomaly detection system, it is
necessary to consider the processing speed of the algorithm and the pattern variations
typical of attacks caused by the different network traffic that can be monitored in a real
context. In particular, network traffic is characterized by behaviors that vary based on
holidays, business hours, or times of the year characterized by higher or lower network
activity [2]. Therefore, the system must be able to respond to changes in the monitored
network traffic dynamically.

This work aims to study and design an anomaly detection system through the combi-
nation of machine learning algorithms capable of analyzing near real-time network traffic.
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The research focuses on classical Machine Learning algorithms and an innovative combina-
tion of them and how they can be used in a near real-time context, where it is necessary to
identify anomalous network traffic promptly.

The construction of a complete network traffic dataset is challenging as it is difficult
to enumerate all possible cases of “normality”, and the boundary between normality and
anomaly is often not well defined. This happens because creating a labeled dataset that
best reflects a real application context is very expensive. Moreover, in particular situations,
due to the frequent change of the characteristics of a process or the continuous emergence
of different behaviors, it is impossible to determine if the information is still valid.

Focusing also on unknown attacks, unsupervised approaches must be considered—
anomaly detection represents the primary strategy available.

Applying a supervised algorithm can limit the system’s effectiveness as it must con-
sider the variability of the networks, their different types, and the number of hosts that
assume unknown behavior. For this reason, in this work, it was chosen to use an unsu-
pervised algorithm, since this allows us to isolate anomalous behavior and also identify
unknown attacks [3]. These models implicitly assume that normal data are present in a
greater quantity than abnormal samples, so the algorithm can classify normal behavior by
clustering similar instances together and highlighting as abnormal a sample that deviates
from the cluster representing normality.

The state of the art of unsupervised Anomaly Detection algorithms shows that they
achieve lower performance than algorithms that use a supervised approach. Some al-
gorithms, such as the Extended Isolation Forest, reach performances comparable with
supervised algorithms, but the time spent in the prediction phase is not suitable for near
real-time applications. In order to improve the performance of unsupervised Anomaly
Detection algorithms, an approach combining Deep Learning and Shallow Learning al-
gorithms is proposed in this paper. The idea behind the proposed work is to maximize
the prediction speed using Deep Learning techniques and at the same time maximize the
accuracy index using robust Shallow Learning algorithms. In a near real-time Anomaly
Detection system, it is necessary to minimize the prediction time of the anomaly score
in order to allow the experts in the field to detect and respond to cyberattacks promptly.
Assuming that a large part of the monitored traffic is due to normal network activities, in a
first step, a Deep Learning algorithm is used to discriminate normal traffic from suspicious
traffic quickly. In the next step, only the suspicious traffic is further analyzed with an
Unsupervised Learning algorithm to accurately determine whether it is attributable to
abnormal activity or not. In this paper, three approaches are presented, which differ from
each other in the Deep Learning algorithm used in the first phase. Three types of algorithms
based on the autoencoder architecture have been identified:

• Deep Autoencoder Gaussian Mixture Model;
• Deep Autoencoder;
• Memory-Augmented Deep Autoencoder.

Connections considered normal by the Deep Learning algorithm do not need further
analysis; in contrast, for traffic considered suspicious in this approach, the Extended
Isolation Forest algorithm is used, which is considered a precise and stable algorithm to be
used in an unsupervised Anomaly Detection system. The approach proposed in this paper
aims to minimize the prediction time employed by a near real-time Anomaly Detection
system adopting an unsupervised approach and, at the same time, maximize the accuracy
of an unsupervised Anomaly Detection system.

The main contributions of this work are as follows:

• Proposal of three new algorithms merging unsupervised deep learning with shallow
learning using Extended Isolation Forest;

• Analysis of results in terms of precision, recall, F1, AUC ROC, and accuracy;
• Evaluation of training and execution times as expected in the near real-time context;



Appl. Sci. 2022, 12, 1759 3 of 20

• Finally, using the explainable artificial intelligence technique called SHAP, it was
shown that the features synthesized by the joint use of MemAE and EIF increase the
robustness of the results and improve their performance.

In Section 2 of this paper, the state of the art related to Machine Learning and Deep
Learning algorithms used to detect anomalous behaviors in a monitored network is de-
scribed. Subsequently, in Section 3, Deep Autoencoding with GMM and Isolation Forest,
Deep Autoencoder with Isolation Forest, and Memory-Augmented Deep Autoencoder with
Isolation Forest are proposed. Section 4 describes the setup of the experiments, the results,
and reasoning, including also an explainable artificial intelligence in order to understand
which are the features that the models identify and discriminate to find a 0-day attack.
Section 5 contains conclusions of this work.

2. Related Work

Anomaly Detection systems using a supervised approach achieve high performance,
which translates into a very low false alarm rate and a very high detection rate of cyberat-
tacks. Some of the most classical classification algorithms used for this purpose are Random
Forest [4], Support Vector Machine [5], and feed-forward neural networks [6]. However,
these approaches require a priori knowledge of the attacks to be detected.

In [7], an algorithm called Ensemble Consensus is proposed, which combines three of
the main unsupervised algorithms to detect anomalies present in network traffic. The algo-
rithms that make up Ensemble Consensus are Isolation Forest [8], Local Outlier Factor [9],
and Elliptic Envelope [10]. The Ensemble Consensus algorithm is tested using KDDCUP99
as the reference dataset. The reported results show that the Ensemble Consensus algorithm
achieves comparable performance with supervised algorithms such as Random Forest or
Support Vector Machine.

Tien et al. [11] compare stacked-autoencoders with various unsupervised learning
algorithms such as one-class SVM, Isolation forest, and others for dimensionality reduction
and classification by achieving high F1-sore values compared to supervised methods.

A comparison of various deep learning algorithms such as Convolutional Neural Net-
works (CNN) and Recurrent Neural Networks (RNNs) such as Long Short Term Memory
(LSTM) and Gated Recurrent Unit (GRU) network is instead proposed by Ahmad et al. [12]
and used to find zero-day anomalies within an IoT network with a False Acceptance Rate
(FAR) ranging from 0.23% to 7.98%.

Jamil et al. [13] use various unsupervised learning algorithms and compare them with
a model built through the Kalman filter. Such a model achieved unexpected results with
values above 97.02% accuracy.

An updated and detailed review on anomaly detection techniques to detect intrusions
and attacks is contained in [14]. Another review of no less importance and clarifying the
state of the art, the domain of interest, and the types of attacks is offered in [15].

Hariri et al. [16] propose the Extended Isolation Forest algorithm, which aims to solve
some issues identified in the Isolation Forest algorithm. The Isolation Forest algorithm is
one of the most robust and widely used Anomaly Detection algorithms and achieves good
performance when used to detect attacks contained in the KDDCUP99 dataset. Isolation
Forest relies on randomness in the selection of features and values. Because outliers are
“few and far between”, they stand out quickly from these random selections. Branch cuts
are always horizontal or vertical, introducing distortion and artifacts into the anomaly
score map. There is no fundamental aspect of the algorithm that requires this restriction to
select a branch cut with a random “slope” at each branch point. Like the standard Isolation
Forest algorithm, anomalies can be isolated quickly, whereas regular points require the
isolation of many branch cuts.

More recent Anomaly Detection systems use Deep Learning techniques to detect
anomalies. Some of the most promising work uses autoencoder-type neural networks to
learn the normal behavior of network traffic. Some of the algorithms researched for this
purpose are given below.
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The idea behind the work presented in [17] concerns the use of a deep autoencoder-
type neural network to learn the data describing the regular network traffic to be monitored.
Through the constructed model, such Anomaly Detection systems can analyze network
traffic and report traffic that deviates from the data learned in the training phase as anoma-
lous.

Zong et al. [18] propose an unsupervised algorithm called Deep Autoencoding Gaus-
sian Mixture Model, which uses in combination a Deep Autoencoder neural network with
Gaussian Mixture Model (GMM). In [18], it is used on the KDDCUP99 and NSL-KDD
datasets, and for both datasets used, the DAGMM algorithm performed numerically very
well.

Another unsupervised approach is the Deep Structured Energy Based Models (DSEBM)
algorithm [19], presented by Zhai et al., in whose proposed work Energy Based Model
EBMs are extended with deep structured EBMs called DSEBMs, in which an energy func-
tion is encoded through a deep neural network. The DSEBM algorithm generalizes classical
EBMs by building a new architecture applicable to a broader spectrum of applications, such
as anomaly detection.

Gong et al. created the Memory-Augmented Deep Autoencoder [20] algorithm, which
combines a deep autoencoder neural network with a memory module to mitigate a problem
encountered using a simple deep autoencoder network. The authors state that due to the
high generalization ability of the deep autoencoder network, sometimes even outliers are
reconstructed correctly in the decoding phase, causing a low reconstruction error failing
to detect outliers. In [20], the Memory-Augmented Deep Autoencoder algorithm is used
to detect cyber attacks present in the KDDCUP99 dataset. This paper mainly focuses on
an unsupervised approach; however, some interesting techniques use semi-supervised
approaches. Abdel-Basset et al. [21] propose a semi-supervised architecture oriented to
intrusion detection in the IoT context, named SS-Deep-ID. The experiments carried out
show that SS-Deep-ID obtains better precision, recall, F1-score, and accuracy results than the
other supervised and semi-supervised algorithms analyzed. In [22], Cheng et al. propose,
always within the IoT and Intrusion Detection domain, the first semi-supervised algorithm;
i.e., semisupervised hierarchical stacking temporal convolutional network (HS-TCN). The
primary focus of this work is to perform the labeling of a large amount of data with a
small amount of labeled data. Other interesting approaches are those provided by transfer
learning. Still in the area of Intrusion Detection aimed at IoT, Vu et al. [23] propose the
MMD-AE technique, which uses two autoencoder-type networks and the maximum mean
discrepancy metric, aiming at minimizing the distance between multiple hidden layers
between the two networks. Gao et al. [24], on the other hand, propose an approach to
the problem based on transforming network data into grayscale images, to which transfer
learning is added to increase its adaptivity and overall efficiency. The results show that
the approach performs better than the most common algorithms, also showing higher
robustness and generalization capability.

3. Proposed Approaches

In the application context under consideration, in which the proposed system must
detect the presence of abnormal traffic, it is necessary to maximize the accuracy index for
the Anomaly Detection algorithm. Low precision involves many false positives, which
represent the number of false alarms that a human operator must analyze. A high num-
ber of false positives can result in longer latencies for analyzing and responding to real
cyberattacks in the monitored network. Therefore, it is necessary to use an algorithm that
is oriented to maximize accuracy even if the recall index is penalized in some cases. To
achieve these goals, three new algorithms are proposed in this section, which combines a
basic algorithm (Deep Learning) with the Extended Isolation Forest. The basic algorithms
identified are related to the class of autoencoders and are Deep Autoencoding Gaussian
Mixture Model, Deep Autoencoder, and Memory-Augmented Deep Autoencoder, thus
giving rise to the following algorithms:
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• Deep Autoencoding Gaussian Mixture Model with Extended Isolation Forest (DAGMM-
EIF);

• Deep Autoencoder with Extended Isolation Forest (DA-EIF);
• Memory-augmented Deep Autoencoder with Extended Isolation Forest (MemAE-EIF).

Stacked-autoencoders or deep autoencoders are multilevel neural networks built to
create a subspace, called embedding, capable of capturing the significant pattern common
to various instances. It can intuitively be compared to the vector subspace constructed by
low-rank factorization by the singular value decomposition of a matrix. The main difference
is that stacked-autoencoders are, due to the activation functions, nonlinear. Specifically,
denoising stacked-autoencoders [25] introduce noise into the encoding, resulting in an
encoding that is a corrupted version of the original input data. It is precisely the “corrupted”
version of the data that is used to train the multilevel neural network, and thanks to the
use of appropriate loss functions, the gradient descent optimization algorithm allows us
to create a subspace (embedding) of lower dimensionality than the input that, however,
captures the most important information to reconstruct the clean pre-image with the lowest
possible error. The objective is to reproduce the original and undamaged version of the
original information. By comparing the corrupted data to the original data, the network
learns which data features are most important and which are unimportant/corrupted. In
other words, for a model to denoise the damaged data, it must have extracted the important
features of the data.

In addition to the Deep Autoencoder algorithm, two evolutions of this algorithm were
therefore considered. The DAGMM algorithm uses two Deep Autoencoder neural networks
to learn the network traffic referable to network activities considered normal. The intuition
behind the DAGMM algorithm concerns the training phase, in which the algorithm jointly
optimizes the parameters of the autoencoder network and the GMM model in an end-
to-end manner, exploiting a separate estimation network to facilitate the learning of the
mixture model parameters [18]. On the other hand, the MemAE algorithm introduces
a memory module into the autoencoder architecture to solve a simple autoencoder-type
neural network problem. In [20], the author states that in some cases, the model built
through an autoencoder can correctly reconstruct even samples that deviate from the
training set records, which could cause the Anomaly Detection system to fail. In the
algorithm’s training phase, it is not necessary to have all the classes related to the detected
attacks, but it is necessary to build a dataset containing only the network traffic considered
normal. The training set is initially divided into two portions:

• The first part comprises 60% of the training set and is used exclusively to train the
basic algorithm;

• The second part consists of 40% of the training set and is used to calculate the internal
anomaly threshold and train the EIF algorithm.

For each sample analyzed, the basic algorithm produces three new features that
represent the following:

• zc: the compressed sample calculated in the first step of the compression network;
• zed: the Euclidean distance between the sample under examination X and the sample

X′ reconstructed by the compression network;
• zcs: the cosine similarity metric calculated between the sample under examination X

and the sample X′ reconstructed by the compression network.

In this way, each sample X to be analyzed is described by the number of features
contained in X, plus three features of the vector called Z, where Z = [zc, zed, zcs].
In the second phase of the training process, it is necessary to construct the forest of trees of
the EIF algorithm, in which each sample of the training dataset is composed of the features
of X plus those of Z. Figure 1 shows the architecture of the Machine Learning algorithm
describing the training and recognition phases.

The proposed algorithm aims to increase the accuracy of the anomaly detection system
by exploiting the speed of the basic algorithm and the accuracy of the Extended Isolation
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Forest algorithm. Specifically, as can be seen from Figure 1, in the first step, the basic
algorithm is used to predict the anomaly score on sample X. If the score evaluated for
sample X is greater than an anomaly threshold defined in the training phase, the sample
is considered suspicious and must be analyzed with the EIF algorithm. Otherwise, the
prediction process ends, and the analyzed sample is considered normal. The samples
considered suspicious are analyzed by the EIF algorithm, which calculates the final anomaly
score. In particular, the EIF algorithm requires as input not only the features describing
the sample X but also the features of Z extracted from the sample reconstructed by the
DA algorithm.

Figure 1. Description of the training phase and recognition phase of the proposed approaches.

In the proposed algorithm, only the samples considered suspicious are also analyzed
by the EIF algorithm, so the prediction speed remains the same as in the basic algorithm
in the presence of normal samples. The samples considered suspicious are subsequently
analyzed by EIF, which can identify a part of the false positives and consequently increase
the system’s accuracy for anomaly detection.

As explained in the article presenting the Memory Augmented Deep Autoencoder
technique [20], the model uses the embedding autoencoder to create a query vector that
can retrieve the most similar elements contained within the memory and perform the
reconstruction. During the training phase of the MemAE-EIF algorithm, the normal data
model is used to update the memory continuously; in the last phase, the memory is
fixed, and the query and thus reconstruction is performed only on a few similar elements
contained in the fixed memory.

4. Experiment

All experiments were performed on a machine with an Intel core i7-8665U processor,
16 GB of RAM, and the Windows 10 Pro operating system. Section 4.1 describes the
datasets used to evaluate the algorithms examined in this paper. Section 4.2 contains all
the information related to the configuration of the algorithms used for the experiment.
Section 4.3 reports the results obtained from the experiments performed for the proposed
work. Section 4.4 analyzes the importance of the features involved using the SHAP library.
Finally, the results are discussed overall in Section 4.5.

4.1. Datasets

One of the main challenges in anomaly-based intrusion detection is the lack of ap-
propriate datasets for evaluating and comparing intrusion detection systems. This gap is
caused by the nature of the data, as the inspection of network traffic may expose sensitive
information and confidential or personal communications. In addition, publicly sharing
raw internet traffic may violate privacy laws. To solve this problem, network traffic is
captured in a simulated context. The advantage of using simulation as a network traffic
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generator is that it is free of privacy or sensitivity issues, but since real traffic is very
complex, simulating real traffic is a challenge.

Evaluating the effectiveness of the network traffic anomaly detection system requires
datasets that contain data on network traffic monitored over a given time interval in a
context in which activities related to regular network use and activities related to cyber-
attacks that generate anomalous traffic follow one another.

The Canadian Institute of Cybersecurity (CIC) provides several network traffic datasets
used by researchers and companies to evaluate their security systems. The primary datasets
identified to evaluate the effectiveness of the proposed Anomaly Detection algorithms are
as follows:

• KDDCUP99: The KDD Cup 1999 [26] dataset is one of the most widely used datasets
in system evaluation for network security. Since the proportion of data belonging to
the class identifying attacks is much larger than the proportion of data belonging to the
class defining normal traffic, the class relating to attacks is subsampled to a proportion
of 20%. A detailed description of the KDDCUP99 dataset has been published in [27].
The KDDCUP99 dataset consists of approximately 4,900,000 single connection vectors,
each of which contains 41 features. Each sample in the dataset is labeled with either
the class related to normal traffic or the classes identifying the simulated attack;

• NSL-KDD: The NSL-KDD dataset [28,29] is an improvement of its predecessor KD-
DCUP99, in which the issues defined in [27] are resolved. It is distributed as a set of
attribute relations (ARFF) and has 41 features per record. The features of the NSL-KDD
dataset are the same as the features of the KDDCUP99 dataset.
The NSL-KDD dataset has the following advantages over the original KDDCUP99 dataset:

– It does not include redundant records in the training dataset, so the classifiers
will not be skewed towards more frequent records;

– No duplicate records are present in the test datasets;
– The number of records selected from each set of difficulty levels is inversely

proportional to the percentage of records in the original KDDCUP99 dataset. As
a result, the classification rates of different machine learning methods vary over a
broader range, which makes it more efficient to have an accurate evaluation of
different learning techniques;

– The number of records in the training and testing dataset is reasonable, making
running the experiments on the entire set convenient without randomly selecting
a small portion. As a result, the evaluation results of the different research works
will be consistent and comparable.

• CIC-IDS2017: The CIC-IDS2017 [30,31] dataset contains network traffic recorded in a
controlled network environment for five days and includes traffic related to normal
activities performed by network users and traffic generated by cyberattacks such as
BruteForce, DoS, and Botnet. The dataset is provided as a set of PCAP files, which
can be played on a computer network interface. The dataset also includes a schedule
for attacks and a spreadsheet that contains more than 80 features extracted from
network traffic.

4.2. Experimental Setup

The unsupervised algorithms examined in this work are as follows:

• Extended Isolation Forest (EIF)
• Ensemble Consensus (EC)
• Deep Autoencoding Gaussian Mixture Model (DAGMM)
• Deep Autoencoding Gaussian - Extended Isolation Forest (DAGMM-EIF)
• Deep Autoencoder (DA)
• Deep Autoencoder - Extended Isolation Forest (DA-EIF)
• Deep Structured Energy Based Models (DSEBM)
• Memory-Augmented Deep Autoencoder (MemAE)
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• Memory-Augmented Deep Autoencoder—Extended Isolation Forest (MemAE-EIF)

The metrics examined to assess them are as follows:

• Precision
• Recall
• F1-Score
• Area Under the Receiver Operator Characteristic Curve (AUROC)
• Accuracy

The Recall, Precision, F1-Score, and Accuracy indices reported in the following tables
refer to macro measures; i.e., the weighted average over the number of the instances for each
class. In the present experiment, the test dataset samples can be labeled with anomalous
and normal classes. In unsupervised algorithm testing, the Anomaly Detection system can
distinguish the analyzed traffic into two classes, namely the class related to normal traffic,
represented by the label “0”, and the class indicating any attack, represented by the label
“1”. The reported results were computed through the K-Fold cross-validation [32] technique,
in which the value of K was set equal to 10. For the algorithms EIF, DAGMM, DA, DSEBM,
MemAE, DAGMM-EIF, MemAE-EIF, and DA-EIF, since they return an anomaly score for
each sample analyzed, it is necessary to define a threshold that allows the discrimination
of samples considered normal from samples considered anomalous. For the experiments
reported in this section, since the percentage of anomalies in the test dataset is known,
the anomaly threshold is configured with the value that allows isolating the percentage of
higher scores.

Only the numerical features were used to analyze the datasets.
The following are the configurations used to use each algorithm as an anomaly detector:

• Ensemble Consensus: The configuration reported in [7] is used, with the “soft consen-
sus” mode and a threshold of −0.2.

• Deep Autoencoding Gaussian Mixture Model: The neural network of the DAGMM
algorithm used the hyperbolic tangent activation function and was trained through
the Adam optimization algorithm [33] with a learning rate of 0.0001. The number of
epochs used for the training process is 180. The neural network used by the DAGMM
algorithm is described below:

– Compression network: The compression network has an input layer that contains
a dataset record’s features. The input layer thus consists of 38 nodes for the
KDDCUP99 and NSL-KDD datasets and 78 nodes for the CIC-IDS2017 dataset.
There are then 7 hidden layers, consisting of 60, 30, 10, 1 (which represents the
compression carried out on the record given as input), 10, 30, and 60 nodes.
The output layer contains the reconstructed features of the input record, so it is
composed of 38 nodes for the KDDCUP99 and NSL-KDD datasets; it is instead
composed of 78 nodes for the CIC-IDS2017 dataset.

– Estimation network: The output layer consists of a number of nodes equal to the
number of Gaussians used by the GMM algorithm. For the NSL-KDD dataset, the
output layer consists of five nodes; instead, for the KDDCUP99 and CIC-IDS2017
datasets, the number of nodes is four.

• Extended Isolation Forest: For the KDDCUP99 and NSL-KDD datasets, a forest of
200 trees with parameter ndim equal to 38 is used. Parameter ndim represents the num-
ber of columns to be combined to produce a subdivision within the trees. In the case of
the CIC-IDS2017 dataset, a forest of 200 trees with parameter ndim equal to 10 is used.
In addition, for the CIC-IDS2017 dataset, parameters prob_pick_pooled_gain and
ntry were configured, respectively, equal to 1 and 10. Parameter prob_pick_pooled_
gain denotes the probability of choosing the threshold on which to split a linear com-
bination of variables as the threshold that maximizes an aggregate standard deviation
gain criterion on the linear combination [34]. Parameter ntry indicates how many
linear combinations to try to determine the best threshold.
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• Deep Autoencoding Gaussian Mixture Model with Extended Isolation Forest: The
same configurations were used to configure the DAGMM-EIF algorithm as were used
to evaluate the algorithms individually.

• Deep Autoencoder: The neural network used by the Deep Autoencoder algorithm
was trained through the Adam [33] optimization algorithm with a learning rate of
0.0001. The number of epochs used in the training phase was 30 for the KDDCUP99
and NSL-KDD datasets and 20 for the CIC-IDS2017 dataset. The neural network uses
the Rectified Linear Unit activation function. For the KDDCUP99 and NSL-KDD
datasets, the network consists of the following layers: an input layer made up of
38 nodes, which contain the features of a record of the dataset; 3 hidden layers made
up of 26, 12 (which represent the compression carried out on the input record), and
26 nodes; and an output layer made up of 38 nodes, which contain the reconstructed
features of the input record. For the CIC-IDS2017 dataset, the network has an input
layer and an output layer of 78 nodes (corresponding to the dataset features and
reconstructed features) and 5 hidden layers made up of 50, 25, 10 (which represent the
compression carried out on the input record), 25, and 50 nodes.

• Deep Autoencoder with Extended Isolation Forest: The same configurations were
used to configure the DA-EIF algorithm as were used to evaluate the algorithms
individually.

• Deep Structured Energy Based Models for Anomaly Detection: The configuration
reported in [19] for the KDDCUP99 dataset was used to configure the DSEBM algo-
rithm. The neural network of the DSEBM algorithm was trained through the Adam
optimization algorithm [33] with a learning rate of 0.0001. The number of epochs used
for the training process was 20.

• Memory-Augmented Deep Autoencoder: The configuration reported in [20] for the
KDDCUP99 dataset was used to configure the MemAE algorithm. For the memory
module, the parameter N was configured equal to 50. The neural network of the
MemAE algorithm was trained through the Adam optimization algorithm [33] using
a learning rate of 0.00001 for the KDDCUP99 and NSL-KDD datasets and of 0.0001
for the CIC-IDS2017 dataset. The epochs used in training phase for KDDCUP99 and
CIC-IDS2017 numbered 30, while 20 were used for NSL-KDD. The neural network
uses the function of hyperbolic tangent activation, and the following layers constitute
it: an input layer and output layer with number of nodes equal to the number of
features in a single dataset record (38 for KDDCUP99 and NSL-KDD, 78 for CIC-
IDS2017), in which the input layer receives the sample and the output layer represents
the reconstructed sample; and 9 hidden layers constituted respectively by 120, 60, 30,
10, 3 (which represent the compression made on the record given in input), 10, 30, 60,
and 120 nodes.

• Memory-Augmented Deep Autoencoder with Extended Isolation Forest: The same
configurations were used to configure the MemAE-EIF algorithm as were used to
evaluate the algorithms individually.

4.3. Results

Below are tables containing the results obtained from the analyzed algorithms for each
dataset used for testing (Table 1).
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Table 1. Results obtained from testing unsupervised algorithms on the KDDCUP99 dataset.

Algorithm Precision Recall F1-Score σ (F1-Score) AUROC σ (AUROC) Accuracy

EC 0.8221 0.8102 0.8162 0.0026 0.8111 0.0026 0.8413
EIF 0.9177 0.9177 0.9177 0.0064 0.9177 0.0064 0.9478

DAGMM 0.9043 0.9056 0.9050 0.0051 0.9057 0.0051 0.9749
DAGMM-EIF 0.9157 0.9158 0.9157 0.0079 0.9158 0.0079 0.9410

DA 0.8657 0.8657 0.8657 0.0025 0.8657 0.0025 0.9150
DA-EIF 0.8914 0.8666 0.8770 0.0020 0.8666 0.0020 0.9234
DSEBM 0.8617 0.8617 0.8617 0.0021 0.8617 0.0021 0.9125
MemAE 0.9084 0.9084 0.9084 0.0021 0.9084 0.0021 0.9420

MemAE-EIF 0.9234 0.9219 0.9226 0.0015 0.9219 0.0015 0.9510

Table 2 shows the prediction times measured in milliseconds for each algorithm used
to analyze the KDDCUP99 dataset.

Table 2. Prediction times for analyzing 1000 records of the KDDCUP99 dataset. Times shown in the
table are measured in milliseconds.

Algorithm Prediction Time

EC 1187.610
EIF 274.780

DAGMM 2.810
DAGMM-EIF 211.670

DA 10.145
DA-EIF 451.557
DSEBM 13.620
MemAE 12.481

MemAE-EIF 527.001

Table 3 shows the results obtained from the tests performed on the NSL-KDD dataset.

Table 3. Results obtained from testing unsupervised algorithms on the NSL-KDD dataset

Algorithm Precision Recall F1-Score σ(F1-Score) AUROC σ(AUROC) Accuracy

EC 0.8635 0.8588 0.8602 0.1326 0.8588 0.1326 0.8617
EIF 0.9120 0.9120 0.9120 0.1530 0.9120 0.1530 0.9124

DAGMM 0.8845 0.8845 0.8845 0.0520 0.8845 0.0511 0.8851
DAGMM-EIF 0.9045 0.9045 0.9045 0.1307 0.9045 0.1307 0.9050

DA 0.8905 0.8905 0.8905 0.1770 0.8905 0.1770 0.8910
DA-EIF 0.9113 0.9113 0.9113 0.1423 0.9114 0.1392 0.9118
DSEBM 0.8698 0.8698 0.8698 0.1781 0.8698 0.1781 0.8704
MemAE 0.9118 0.9118 0.9118 0.1684 0.9118 0.1684 0.9122

MemAE-EIF 0.9172 0.9172 0.9172 0.1275 0.9172 0.1271 0.9175

Table 4 shows the prediction times measured in milliseconds for each algorithm used
to analyze the NSL-KDD dataset.
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Table 4. Prediction times for analyzing 1000 records of the NSL-KDD dataset. The times shown in
the table are measured in milliseconds.

Algorithm Prediction Time

EC 1198.630
EIF 246.960

DAGMM 1.830
DAGMM-EIF 141.140

DA 11.013
DA-EIF 401.161
DSEBM 14.010
MemAE 12.710

MemAE-EIF 476.712

Table 5 shows the results obtained from the tests performed on the CIC-IDS2017
dataset.

Table 5. Results obtained from testing unsupervised algorithms on the CIC-IDS2017 dataset.

Algorithm Precision Recall F1-Score σ (F1-Score) AUROC σ (AUROC) Accuracy

EC 0.6264 0.5961 0.6053 0.0381 0.5961 0.0318 0.7804
EIF 0.7063 0.7063 0.7063 0.0019 0.7063 0.0019 0.8142

DAGMM 0.6934 0.6934 0.6934 0.0078 0.6934 0.0078 0.8060
DAGMM-EIF 0.7083 0.7040 0.7056 0.1198 0.7040 0.1200 0.8182

DA 0.6774 0.6774 0.6774 0.0020 0.6774 0.0020 0.7990
DA-EIF 0.7051 0.6912 0.6975 0.0046 0.6912 0.0022 0.8148
DSEBM 0.6800 0.6800 0.6800 0.1879 0.6800 0.1879 0.7975
MemAE 0.7146 0.7146 0.7146 0.0015 0.7146 0.0015 0.8194

MemAE-EIF 0.7431 0.6972 0.7146 0.0001 0.6972 0.0056 0.8350

Table 6 shows the prediction times measured in milliseconds for each algorithm used
to analyze the CIC-IDS2017 dataset.

Table 6. Prediction times to analyze 1000 records from the CIC-IDS2017 dataset. Times shown in the
table are measured in milliseconds.

Algorithm Prediction Time

EC 12630.730
EIF 967.554

DAGMM 2.260
DAGMM-EIF 454.896

DA 12.309
DA-EIF 509.840
DSEBM 12.090
MemAE 13.980

MemAE-EIF 603.199

The results obtained show that the MemAE-EIF algorithm achieves the best perfor-
mance in terms of accuracy and F1-score for all the datasets examined. A high precision
rate is equivalent to a low number of false positives, which are false alarms that experts in
the field must handle. The new algorithms proposed in this work combine Deep Learning
and Unsupervised Learning algorithms to estimate the anomaly score associated with each
monitored connection in a network. In detail, Deep Learning algorithms are used to quickly
identify suspicious samples, which are subsequently analyzed with the Extended Isolation
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Forest algorithm. In addition to identifying connections that are likely to be anomalous,
the algorithms of Deep Learning generate new features which, together with the original
characteristics of the input, constitute the sample to provide an input to the algorithm
Extended Isolation Forest. It is interesting to evaluate the contribution in the new features
generated by the Deep Learning algorithms and how useful these features are to the Ex-
tended Isolation Forest algorithm in generating the anomaly score for the suspect samples.
Considering the datasets used, it is now desired to highlight which features most influence
the prediction process of the EIF model used by the MemAE-EIF algorithm. Through the
following experiment, we aim to verify if the new features introduced by the MemAE-EIF
algorithm affect the prediction process of the EIF algorithm and thus contribute to the
increase in metrics observed in the experiments conducted.

4.4. Explainable Artificial Intelligence with SHAP

This section aims to analyze the importance of each feature in the anomaly score
prediction process. To do this, the SHAP library [35–37] allows the estimation of the impact
of each feature in the prediction process. SHAP values (Shapley Additive Explanations)
represent an index that shows the contribution of a feature in driving the model output
from the baseline value to the computed value.

The features that push the prediction towards values greater than the base value will
have a SHAP value that is proportionally positive and vice versa in the opposite case.

Figure 2 shows a graph describing the SHAP values calculated for features in the
KDDCUP99 dataset using the EIF model of the MemAE-EIF algorithm. Specifically, the
y-axis presents, in descending order, the 15 features that most influence the predictive
model, while on the x-axis are the SHAP values calculated for each feature of each sample
analyzed. The dataset used to test the algorithm contains 20% anomalous samples, and the
remaining 80% are samples describing regular traffic.

The MemAE-EIF algorithm, in addition to the KDDCUP99 dataset features, generates
three new features, namely:

• Zc: Features of the compressed representation of the input sample. The autoencoder
network of the MemAE algorithm compresses the input into a representation consist-
ing of three characteristics indicated by [Zc1, Zc2, Zc3];

• euclidean distance: Euclidean distance between the sample given as input and the
sample reconstructed by the autoencoder network;

• cosine similarity: Cosine similarity between the sample given as input and the
sample reconstructed by the autoencoder network.

Figure 2. Summary plot of SHAP values calculated for the KDDCUP99 dataset using the EIF model
of the MemAE-EIF algorithm.
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From the graph in Figure 2, it can be observed that the features that most influence the
predictive process of the EIF algorithm are the features produced in the first stage of the
MemAE algorithm. In particular, the second most influential feature is the cosine similarity
measure calculated between the given input sample and the sample reconstructed by
the autoencoder network. The fourth most influential feature is the Euclidean distance
between the input sample and the sample reconstructed by the autoencoder network.
Moreover, from the same figure, it is possible to see that some of the features related to
the compressed representation Zc also rank among the 15 most influential features in the
anomaly score prediction process. Notably, the third feature of the compressed sample
ranks ninth. The graph provides information on how the values of a feature affect the
analyzed Machine Learning model. In particular, it can be seen that low values for the
feature cosine similarity (indicated with the color blue) imply a higher SHAP value
for the analyzed feature. High values of the feature cosine similarity imply a lower
influence of the analyzed feature using the EIF model. The inferred information is consistent
with the definition of cosine similarity, which states that if the cosine similarity metric
tends to zero, it implies that the compared samples are very different, while a metric with
a value tending to 1 implies that the given input sample is very similar to the sample
reconstructed by the autoencoder network. Thus, in the presence of anomalies, the value of
the cosine similarity metric is very low, implying a high SHAP value. Similarly, it can
be observed that high values of the characteristic euclidean distance (indicated with the
color magenta) imply a high SHAP value. In contrast, low values of the feature euclidean
distance imply a lower influence of the analyzed feature for the EIF model. In this case,
the deduced information is also consistent with the definition of Euclidean distance; if
the calculated Euclidean distance between a sample given as input and the reconstructed
sample of the autoencoder network has a high value, it implies that the autoencoder
network was not able to reconstruct the sample given as input. If the autoencoder network
cannot reconstruct a sample, the analyzed data are probably very different from the data in
the training dataset, so it can be considered an anomalous sample. A bar graph is shown
in Figure 3 that clearly shows the influence that each feature has on the prediction model.
In particular, on the abscissa axis are reported, in ascending order, the 15 most influential
features, while on the ordinate axis is reported the average value of SHAP for each feature
of the analyzed dataset.

Figure 3. Bar graph of SHAP values calculated for the KDDCUP99 dataset using the EIF model of
the MemAE-EIF algorithm.

From Figure 3, it is possible to observe that among the first 15 features with a higher av-
erage SHAP value are the features euclidean distance, cosine similarity and some
features related to the compressed sample Zc. Therefore, it is possible to state that the new
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features calculated by the MemAE-EIF model affect the prediction process of the anomaly
score.

As seen for the KDDCUP99 dataset, it is possible to analyze the SHAP values calculated
for the NSL-KDD dataset features using the MemAE-EIF algorithm. The dataset used to
test the algorithm contains 46% anomalous samples, and the remaining 54% are samples
describing normal traffic. For the NSL-KDD dataset, the records used for the training
and prediction phases of the EIF model related to the MemAE-EIF algorithm consist
of 43 features. The MemAE-EIF algorithm and the features in the NSL-KDD dataset
generate new features for each sample. Figure 4 shows a graph describing the SHAP
values computed for the features of the NSL-KDD dataset using the EIF model of the
MemAE-EIF algorithm.

Figure 4. Summary plot of SHAP values calculated for the NSL-KDD dataset using the EIF model of
the MemAE-EIF algorithm

From the graph in Figure 4, it can be observed that the features introduced in the
MemAE-EIF algorithm do not rank among the top 15 most influential features. However,
3 of the 6 features introduced by the proposed algorithm rank among the top 25 most
influential features: in detail, the features of the Zc1 Zc2 and Zc3 tablet representation
rank at position 25, 30, and 19, respectively, whereas the cosine similarity measure and the
Euclidean distance rank at position 31 and 24, respectively. From the SHAP analysis of the
43 features used to train the EIF model of the MemAE-EIF algorithm, it is observed that the
introduced features affect the prediction process of the anomaly score. Figure 5 shows a bar
graph displaying the influence of each feature in an analogous way to what was conducted
for the KDDCUP99 dataset.
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Figure 5. Bar graph of SHAP values calculated for the NSL-KDD dataset using the EIF model of the
MemAE-EIF algorithm.

As performed for the other two datasets, it is possible to analyze the SHAP values
calculated for the features in the CIC-IDS2017 dataset using the MemAE-EIF algorithm. The
dataset used to test the algorithm contains 20% anomalous samples, and the remaining 80%
are samples describing normal traffic. The records used for both the training and prediction
phase of the EIF model related to the MemAE-EIF algorithm consist of 83 features. Figure 6
shows the graph describing the SHAP values calculated for the features in the CIC-IDS2017
dataset using the EIF algorithm of the MemAE-EIF model.

Figure 6. Summary plot of SHAP values calculated for the CIC-IDS2017 dataset using the EIF model
of the MemAE-EIF algorithm.

Looking at Figure 6, it can be seen that the features introduced in the MemAE-EIF
algorithm do not rank among the top 15 most influential features. However, four of the
five features introduced by the proposed algorithm rank among the top half of the most
influential features. Specifically, the compressed representation features Zc1 Zc2, and Zc3
rank at positions 32, 61, and 28, respectively, while the cosine similarity measure and
Euclidean distance rank at positions 41 and 30, respectively. From the SHAP analysis of the
83 features used to train the EIF model of the MemAE-EIF algorithm, it was observed that
the introduced features affect the prediction process of the anomaly score.

Figure 7 shows the bar graph for the CIC-IDS2017 dataset, already produced for the
other two datasets.
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Figure 7. Bar graph of SHAP values calculated for the CIC-IDS2017 dataset using the EIF model of
the MemAE-EIF algorithm.

From the analyses performed in the present section, it has been verified that the
features of the sample compressed by the autoencoder network and the features related
to Euclidean distance and cosine similarity represent influential features in the prediction
process the MemAE-EIF algorithm. Therefore, it is possible to argue that the introduced
features improve the prediction process of the EIF model of the MemAE-EIF algorithm. In
conclusion, it is possible to state that, in the present section, it has been verified that for all
the datasets examined, the features introduced by the MemAE-EIF algorithm are useful
to the prediction process of the proposed Anomaly Detection algorithm, which achieves
results that exceed the performance obtained using the EIF model without the features
introduced in the same.

4.5. Discussion

From the results obtained in the experiments carried out in the present work, it is pos-
sible to observe that the proposed algorithms have reached performances comparable with
the state-of-the-art Anomaly Detection algorithms. Particularly, for the dataset KDDCUP99,
the best performances are obtained using the MemAE-EIF algorithm, which reaches an
F1-score index equal to 0.9234 and an AUROC index equal to 0.9219. Immediately after the
MemAE-EIF algorithm, the EIF and DAGMM-EIF algorithms are ranked with an F1-score
value of 0.9177 and 0.9157 and an AUROC value of 0.9177 and 0.9158, respectively.

For the NSL-KDD dataset, the best performance is obtained using the MemAE-EIF
algorithm, which achieves an F1-score index of 0.9172 and an AUROC index of 0.9172.
It can be observed how the proposed algorithms achieve performances that improve the
Deep Learning algorithm used as a base. In particular, the performance obtained using
the DAGMM algorithm is lower than the performance obtained using the DAGMM-EIF
algorithm for all the datasets examined. Similarly, the performance obtained using the DA
algorithm is lower than the performance obtained using the algorithm in combination with
the Extended Isolation Forest in each of the three datasets evaluated.

For the CIC-IDS2017 dataset, the performance obtained using the DAGMM-EIF and
DA-EIF algorithm is higher than the performance obtained using the DAGMM and DA
algorithms, respectively. However, the performance obtained using the MemAE-EIF al-
gorithm is superior to that obtained using the MemAE algorithm only in some of the
computed metrics. In particular, both algorithms achieve the same F1-score value, but the
MemAE-EIF algorithm’s accuracy index is higher than the accuracy index calculated for
the basic MemAE algorithm.
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For the CIC-IDS2017 dataset, the best performance is obtained using the MemAE-EIF
and MemAE algorithms. In particular, both algorithms achieve the same result for the
F-score index, but the MemAE-EIF algorithm allows for a sharp increase in precision at
the expense of recall. In particular, for the dataset CIC-IDS2017, the MemAE and MemAE-
EIF algorithms reach an F1-score index of 0.7146 and an AUROC index of 0.7146 and
0.6972, respectively. It is interesting to highlight how the precision index calculated for
the MemAE-EIF algorithm reaches a score of 0.7431, while the basic MemAE algorithm
obtains a precision score of 0.7146. From the obtained results, it is possible to prove that
all the proposed algorithms improve the accuracy of the Deep Learning algorithms used
as a base. Moreover, the MemAE-EIF algorithm achieves the best precision and F1-score
for all the datasets examined. From the analysis carried out in Section 4.4, it is possible to
observe that the internal characteristics introduced by the MemAE-EIF algorithm influence
the prediction process of the EIF model, which allows a high precision to be reached in
reporting anomalous events and therefore reduces the number of false alarms. This result
is relevant in a real-world context in which false alarms are handled by experts in the field,
taking their time away from analysis and response related to real cyber attacks.

5. Conclusions

The present work analyzes the state of the art of Anomaly Detection systems and how
innovative Machine Learning algorithms can be used for this purpose. In particular, the
study of Anomaly Detection systems has been guided by the application focus examined;
i.e., identifying near real-time anomalous behaviors within a network. Therefore, such
analysis has been focused on unsupervised Machine Learning algorithms, which allow
the detection of anomalous network traffic, knowing only the traffic of normal network
activities. In fact, unlike supervised approaches, it is unnecessary to have, and often not
possible to create, a training dataset that contains all the cyber attacks one wants to detect
for network anomaly detection systems.

Referring to the state of the art, three new Anomaly Detection algorithms have been
developed in the present work, which combines Unsupervised Learning and Deep Learning
techniques to detect in near real-time anomalous behaviors in a network. The excellent re-
sults obtained in the evaluation phase of these proposals affirm that the proposed Anomaly
Detection algorithms can detect cyberattacks by analyzing the network traffic, improving
the performance of their original components. From the results reported in Section 4.3, it
can be seen that the proposed algorithms, when used to analyze the KDDCUP99, NSL-KDD
and CIC-IDS2017 datasets, improve the performance of their respective base algorithms.

Moreover, the MemAE-EIF algorithm obtained the highest values for both the precision
index and the F1-score ratio for all the examined datasets.

The Deep Learning algorithms used have a higher prediction speed than tree-based
algorithms such as Extended Isolation Forest. On the other hand, algorithms such as
Extended Isolation Forest achieve outstanding performance in anomaly detection.

In the proposed algorithms, the prediction time is equivalent to the time taken by
the Deep Learning algorithm in the presence of normal samples, while when suspicious
samples are detected, it is necessary to add the time taken to extract the new features and
the time taken by the EIF algorithm to compute the anomaly score.

The algorithms employ an analysis time that allows the use of the Anomaly Detection
models built to analyze in near real-time the network traffic, maximizing the performance
in Anomaly Detection and thus obtaining an optimal compromise between temporal
performance and the performance of the classification itself. The prediction time of the
anomaly score used by each algorithm presented makes it possible to use the proposed
Anomaly Detection models to analyze in near real-time the network traffic. The increase
obtained in the classification scores permits, in a real-world context, the elimination of
many alerts that would have occurred on large volumes of network traffic. Furthermore,
assuming that in a real context, the traffic is mainly composed of connections that can be
traced back to network activities considered normal, the algorithms proposed in the present
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work can achieve a prediction time that tends towards the time taken by the Deep Learning
algorithm to identify suspicious samples. However, this approach has some limitations: it
is necessary to have GPU hardware to make the inference, which makes it difficult to apply
directly on devices such as routers, but requiring analysis servers or dedicated hardware;
it is also necessary to take into account strict memory constraints and high computation
times for the Extended Isolation Forest algorithm, as it is not parallelizable. Future research
directions are oriented to testing the system on other datasets, in particular in a cross-
dataset way (i.e., train, for example, the thresholds with a dataset and test with a second
dataset, obviously taking into account the constraints due to keeping the same features or a
subset of these) in order to evaluate the generalization capability of the system.
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Abbreviations

AUROC Area Under the Receiver Operation Characteristic Curve
CNN Convolutional Neural Network
DA Deep Autoencoder
DA-EIF Deep Autoencoder with Extended Isolation Forest
DAGMM Deep Autoencoding Gaussian Mixture Model
DAGMM-EIF Deep Autoencoding Gaussian Mixture Model with Extended Isolation Forest
DSEBM Deep Structured Energy Based Models
EBM Energy Based Models
EC Ensemble Consensus
EIF Extended Isolation Forest
FAR False Acceptance Rate
GMM Gaussian Mixture Model
GRU Gated Recurrent Unit
LSTM Long Short Term Memory
MemAE Memory Augmented Deep Autoencoder
MemAE-EIF Memory Augmented Deep Autoencoder with Extended Isolation Forest
RNN Recurrent Neural Network
SHAP Shapley Additive Explanations
SVM Support Vector Machine
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