
����������
�������

Citation: Cambou, B.F.; Jain, S. Key

Recovery for Content Protection

Using Ternary PUFs Designed with

Pre-Formed ReRAM. Appl. Sci. 2022,

12, 1785. https://doi.org/10.3390/

app12041785

Academic Editor: Cheonshik Kim

Received: 25 January 2022

Accepted: 7 February 2022

Published: 9 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Key Recovery for Content Protection Using Ternary PUFs
Designed with Pre-Formed ReRAM
Bertrand Francis Cambou * and Saloni Jain

Department of Applied Physics and Material Science, College of Engineering Informatics and Applied Sciences,
Northern Arizona University, Flagstaff, AZ 86011, USA; sj799@nau.edu
* Correspondence: Bertrand.cambou@nau.edu

Featured Application: Protection, and secure delivery of digital files in a network of terminal
devices connected to a service provider.

Abstract: Physical unclonable functions, embedded in terminal devices, can be used as part of the
recovery process of session keys that protect digital files. Such an approach is only valuable when
the physical element offers sufficient tamper resistance. Otherwise, error correcting codes should be
able to handle any variations arising from aging, and environmentally induced drifts of the terminal
devices. The ternary cryptographic protocols presented in this paper, leverage the physical properties
of resistive random-access memories operating at extremely low power in the pre-forming range to
create an additional level of security, while masking the most unstable cells during key generation
cycles. The objective is to reach bit error rates below the 10−3 range from elements subjected to drifts
and environmental effects. We propose replacing the error correcting codes with light search engines,
that use ciphertexts as helper data to reduce information leakage. The tamper-resistant schemes
discussed in the paper include: (i) a cell-pairing differential method to hide the physical parameters;
(ii) an attack detection system and a low power self-destruct mode; (iii) a multi-factor authentication,
information control, and a one-time read-only function. In the experimental section, we describe how
prototypes were fabricated to test and quantify the performance of the suggested methods, using
static random access memory devices as the benchmark.

Keywords: key recovery; content protection; cybersecurity; unclonable devices; network of IoT;
tamper resistance; error correction

1. Introduction

Physical elements, physical unclonable functions (PUFs), tags, and other hardware
systems have been proposed to secure both terminal devices and their digital files because
they can be tamper resistant. Considering the economic importance of such developments
in the field of information technology, the systems are often protected by patents, as seen
with these recent patents [1–4]. This list is for reference purposes only, and is not exhaustive,
given the breath of the topic under consideration. In [1], the recovery of a root key from the
measurement of a circuit function with a PUF is proposed. A checkpointing feature is used
to periodically mark measurements of this function and track drift in the value of the root
key over the life of a digital device. In [2], PUF-based devices are proposed to distribute
encrypted messages to a control device connected through a wide-area communication
network. In [3], systems and methods are proposed to improve a computer system’s
resistance to tampering. Most components of the system do not have the same level of
protection against tampering as the PUF. The tamper protection provided by the PUF may
be extended to other components of the system, thus creating a network of tamper-resistant
components. In [3], the system includes a tamper detection circuit that receives signals from
the component(s). The tamper detection circuit generates an output signal which indicates

Appl. Sci. 2022, 12, 1785. https://doi.org/10.3390/app12041785 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12041785
https://doi.org/10.3390/app12041785
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9272-6527
https://doi.org/10.3390/app12041785
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12041785?type=check_update&version=2

Appl. Sci. 2022, 12, 1785 2 of 24

whether any of the components have been tampered with. If the output signal indicates
that one of the components has been tampered with, the PUF corrects and mitigates the
loss of secret information. Finally, [4] describes a system for recording digitally signed files
using an authorization token.

In this study, our interest is in terminal devices that are part of networks of the
internet of things (IoTs), and which interact with a service provider. We propose end-to-end
solutions that are based on the recovery of cryptographic keys from tamper-resistant PUFs,
as a means of protecting the delivery and storage of digital files in a network of IoTs and
terminal devices, driven by a service provider. This paper is organized as follows:

[Section 2] In this section we present a generic description of one-way unclonable functions
and physical unclonable functions. We also present how the use of ternary states has the
potential to reduce the bit error rates in the part per million range (ppm).
[Section 3] The architecture allowing the secure key recovery from the ternary PUFs, is
shown in Section 3. The replacement of mainstream error correcting codes (ECC) by a
search engine such as response-based cryptography (RBC) is suggested. We explain how
the helper data needed by ECC is replaced by a message digest of the key that does not
leak information.
[Section 4] The overall architecture allowing the encryption and decryption of the stored dig-
ital files with the session key, is shown in Section 4. We present variations that incorporate
public key infrastructures (PKIs).
[Section 5] In this section we detail how the ternary PUFs can be implemented with
resistive random-access memories (ReRAM) operating in the pre-forming range. We
suggest methods to exploit their physical properties to enhance tamper resistance, to sense
certain attacks, and to self-destruct the device, at low power, when needed.
[Section 6] In Section 6, the experimental work conducted to validate the concept is pre-
sented. A full prototype with custom ReRAM circuits allows the characterization and
optimization of the solutions in terms of latencies and bit error rates. The cryptographic al-
gorithms selected for this study are SHA-3, SHAKE, and elliptic curves, and the algorithms
under consideration for standardization for the post-quantum cryptography are by NIST.

2. One Way Unclonable Functions with Ternary States
2.1. One Way Unclonable Functions

The one-way unclonable functions “Ψ” in this paper, are defined as functions gen-
erating a stream of bits “K” from a random number “T”, and individual digital access
instructions “IDAccess”, as shown in Equation (1):

K← Ψ (T, IDAccess) (1)

The function Ψ is kept secret in such a way that the knowledge of T and IDAccess does
not disclose K; therefore, it is assumed that (T, IDAccess) can become public information.

2.1.1. Random Number (T)

• The random number T feeds an extended output function (XOF) pointing at a set of
addresses A contributing to the generation of stream K. For example, the XOF can be a
SHAKE from the message digest MD of the SHA-3 hashing function.

• T can be concatenated with password PW, as shown in Equation (2):

A← XOF←MD← Hash (T⊕ PW) (2)

• With the use of a password, or another multi-factor scheme, T can be freely disclosed
through insecure communication channels.

Appl. Sci. 2022, 12, 1785 3 of 24

2.1.2. Individual Digital Access Instructions (IDAccess):

• The individual digital access IDAccess is used to retrieve the set of instructions “I”
needed to generate K from the set of addresses A. To enhance security, I can be XORed
with the message digest “MD” of the XOF as shown in Equation (3):

I← Hash (IDAccess⊕MD) (3)

• With this protection, IDAccess can be freely disclosed through insecure communication
channels.

• The set of instructions I can incorporate is a ternary representation that reduces
the bit error rates (BER) of the output stream K, and it can offer additional protec-
tion. When an opponent tests the one-way function without knowing the position of
the ternary states, Ψ generates streams with high BER and potentially damages the
structure permanently.

2.1.3. One-Way-Ness of the Function Ψ

• The knowledge of K does not disclose the input parameters (T, IDAccess).
• The knowledge of one input parameter alone, T or IDAccess, does not disclose K.

2.1.4. Collision Avoidance

• Any change in the input parameters is likely to generate different output.
• Two different outputs are most likely the result of different inputs unless the difference

in the output is small enough.
• Repeating the function Ψ could result in small variations of the K stream; let us say

that typically 90% of the stream will be the same.

2.1.5. Un-Clonability

• The function is unclonable and can have a physical execution, making it highly unlikely
to be duplicated.

• During “enrollment”, the image of the one-way function of the client device can be
downloaded in a look-up table of the controlling device. This allows the controlling
device to communicate safely with the client device as both parties can independently
generate the same stream K from the shared input parameters T and IDAccess, and
then they can use K as part of a cryptographic protocol.

2.2. One Way Unclonable Functions with PUFs

The one-way unclonable functions can be implemented with PUFs, exploiting nanocom-
ponents that are unique and unclonable due to small variations occurring in their fabrication.
PUFs are currently used for both authentication and key generation. PUFs are described
by the one-way function of f converting n-bit challenges C = {c1; . . . ; ci; . . . ; cn} in m-bit
responses K= {k1; . . . ; kj; . . . ; km}; ci and kj ∈ {0, 1}:

K = f(C)← C (4)

C = (T, IDAccess) of Section 2.1 is the stream of challenges, while K is the stream of
responses. During key generation cycles, the responses of K should match the ones
generated upfront during enrollment. The protocols based on PUFs are effective with error-
correcting schemes that are able to handle moderate aging, and environmental effects [5–8].
Examples of implementation with various PUFs are summarized in Table 1.

2.2.1. Ring Oscillator PUFs

Ring oscillator (RO) PUFs are designed typically with 16 to 256 CMOS-based circuits,
each oscillate at a slightly different value due to small variations during fabrication [9]. The
pairing of two rings generates a consistent response, 0 or 1, if the first ring oscillates slower
or faster than the second one. RO-based PUFs are widely used to secure field programable

Appl. Sci. 2022, 12, 1785 4 of 24

gate array circuits (FPGA), and some integrated circuits. They can, however, be subject
to side-channel analysis through electromagnetic interference. The set of addresses A
generated from T can point to a set of RO pairs in a particular order. The set of instructions
I point to a subset of ROs, and to a targeted value of the power supply. The responses of
the PUF are the stream K.

2.2.2. Arbiter PUFs

Arbiter PUFs are designed with chains of the multiplexer (MUX) circuits, each allowing
the transmission of electronic signals through two possible paths, up or down [10]. The
chains feed Reset-Set latches, which switch to 0 or 1 when the delay at the Reset pad is
either faster or slower than the delay at the Set. The stream of addresses A generated from
T, point to a set of instructions that drive the MUXs. The set of instructions I point to a
subset of instructions in order to generate the responses K.

2.2.3. SRAM-Based PUFs

Each cell of a static random-access memory (SRAM) is a flip-flop that has an equal
chance to wake as a 0 or 1 after the occurrence of a power-off—power-on cycle [11–13].
Most of the cells tend to wake consistently, in the same way, thereby creating a fingerprint
of the device. These types of PUFs are widely used because most electronic components
already contain arrays of SRAM cells. The set of addresses A generated from T can point to
a set of addresses in a particular order. The set of instructions I can point to a subset of the
array. The responses of the PUF become the stream K. The entropy can be excellent when
the SRAM array is large enough; however, methods to read the content of the memory are
available when the device is lost to the opponent.

2.2.4. ReRAM-Based PUFs

This PUF is discussed in detail in this paper as it has interesting tamper-resistant
features [14,15]. Each cell of a resistive random-access memory (ReRAM) has a unique
resistance value that is compared to a median value. The value, 0 or 1, is generated from
each cell depending on whether the resistance has been lower or higher than the median.
The set of addresses A generated from T can point to a set of addresses in a particular
order. The set of instructions I can point to a subset of the array. The responses of the PUF
become the stream K. Other random access memory circuits such as DRAMs [16], Flash
memories [17–19], and MRAMs [20,21] can also be used to design PUFs.

Table 1. Examples of challenge-response configurations for various PUFs.

PUF
Challenges

Responses
T IDAccess

RO To point at a set of M pairs
of ROs

To point at a subset of
N pairs of RO (N < M)

To avoid pairs oscillating at a
similar frequency

Each N pair of ROs
generates a 0 or 1

Arbiter
M sets of instructions driving

MUXs in the up or
down position

To point at a subset of
N instructions (N < M)

To avoid the sets of
instructions known to be

unstable

Each N set of
instructions

generates a 0 or 1

SRAM To point at M addresses in the
SRAM array

To point at a subset of
N addresses (N < M)

To avoid the SRAM cells
known to be unstable

Each N cell of SRAM
array

generates a 0 or 1

ReRAM To point at M addresses in the
ReRAM array

To point at a subset of
N addresses (N < M)

To avoid the ReRAM cells
known to be unstable

Each N cell of ReRAM
array

generates a 0 or 1

2.3. Use of Ternary States to Protect the One-Way Unclonable Functions

The addition of a third state allows the tracking of the portions of the PUF that should
be masked because they are fuzzy, marginal, unstable, or fragile. The objective is then

Appl. Sci. 2022, 12, 1785 5 of 24

to reduce BERs and improve reliability [22,23]. A thorough enrollment cycle to identify
these “weak” portions and their masking during response generation, results in a better
quality PUF, requiring little to no error-correcting scheme for cryptographic key generation.
The knowledge of the addresses with fragile physical elements that can be damaged
during normal operations have tamper-resistance properties [15]. A cryptographic protocol
generating keys solely from the addresses of PUFs that are known to be reliable does not
damage the weak portions of the PUF. However, an opponent trying to interact with the
PUF without such knowledge could partially damage the PUF, leaving behind traces of
the attack. A protocol to sense attacks could include reading these addresses at a very low
electric current, to detect abnormal BERs.

Ternary-based logic, as opposed to mainstream binary logic, offers additional levels
of security in cryptographic systems. The number of possible states is higher, which
adds obfuscation and entropy. The addition of an additional state has been successfully
integrated into PUF-based key generation schemes [23]. The handshake between a server
initiating a new key generation cycle, and a client device equipped with a PUF, cannot be
successfully initiated by a man-in-the-middle attack, which is unaware of the positions of
the tri-states. Such a ternary representation can be combined with a scheme in which the
keys generated by the addressable PUFs are different when the electrical currents injected
into the physical elements change [15].

2.4. Error-Correcting Methods Versus Search Engines

Error-correcting schemes mitigate the differences between responses generated on-demand,
and those collected during enrollment [24–28]. The responses of a PUF must be perfectly
corrected in order to be used as cryptographic keys. The design of search engines is considered
in this paper to replace error-correction methods, with the aim of enhancing tamper resistance.

2.4.1. Error-Correcting Codes (ECC)

As shown in Figure 1, the challenges transmitted by the server (T, IDAccess) allow
the generation of the response K’ from the PUF, which should be similar to the initial
responses K extracted from the information stored in a secure database by the server
during enrollment. ECC is needed to uncover the stream K from the potentially erratic
stream K’, and to generate error-free cryptographic keys. ECC exploits data streams called
“helpers” to correct the erratic bits. In certain applications, the data helpers need to be
protected by encryption schemes to avoid leakages to the opponents [29]. A fuzzy extractor
embedded in the client device reads K’ and the data helper to find K. The computing power
consumed by the fuzzy extractor could be prohibitive for power-constrained IoTs, making
these devices vulnerable to side-channel analysis. ECC has been successfully implemented
with PUF BERs below 10%.

2.4.2. Response-Based Cryptography (RBC)

RBC enhances the protection of the key generation process by eliminating the need to
operate a fuzzy extractor at the client device level, see Figure 2. In lieu of generating a data
helper from K, the client device hashes K’ to generate the message digest H(K’), which
is transmitted to the server. The RBC is a search engine that is able to recover K’ from K
and the message digest H(K’) [30–32]. Through an iterative process, the RBC search engine
hashes the initial response K = K0 and compares the message digest H(K0) and H(K’). If
these two do not match, the RBC tests all data streams K1k from a Hamming distance of 1 of
K0. If these do not match, the RBC iterates and tests all data streams K2k from a Hamming
distance of 2. Such an iterative process can handle Hamming distances up to 3, and 256-bit
long responses. Beyond this, the latencies become prohibitive. A scheme fragmenting the
data streams with nonces has been documented as effective with BERs as high as 20%. For
example, if 256-bit long responses are impacted by 7% BERs, a fragmentation of 4 is applied;
with SHA-128, H(K’) as a 4 × 128-bit long stream. Each fragment is filled with nonces
and is hashed. The RBC does not necessarily consume less power than a mainstream ECC,

Appl. Sci. 2022, 12, 1785 6 of 24

and it is not faster; however, the burden is moved to the server, thereby reducing both
the vulnerability and the power consumption at the client device level. The hashing of
K’ is a light operation. Hashing methods such as SHA-128 or SHA-256 are extremely fast,
and commercial implementation in hardware embedded in cryptographic processors is
available. The RBC can also benefit from high-performance computing (HPC), graphic
processor units (GPU), and associative processor units (APU), all of which leverage the
possibility of distributing the search through parallel computations [33,34]. This approach
can also leverage noise injection schemes relying on HPC solutions, which reduce the risk
of exposure to certain attacks. The opponents need access to similar computing power
in order to participate. The use of HPC is not recommended for the “RBC-light” version
needed for key recovery, see Section 3.3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 25

Figure 1. Block diagram of an ECC scheme. The challenges (T, IDAccess) generate the responses K
from the image of the PUF stored by the server, and the response K′ from the PUF. The helper
transmitted by the server allows the ECC fuzzy extractor of the client device to recover K from K′.

2.4.2. Response-based Cryptography (RBC)
RBC enhances the protection of the key generation process by eliminating the need

to operate a fuzzy extractor at the client device level, see Figure 2. In lieu of generating a
data helper from K, the client device hashes K′ to generate the message digest H(K′),
which is transmitted to the server. The RBC is a search engine that is able to recover K′
from K and the message digest H(K′) [30–32]. Through an iterative process, the RBC
search engine hashes the initial response K = K0 and compares the message digest H(K0)
and H(K′). If these two do not match, the RBC tests all data streams K1k from a Hamming
distance of 1 of K0. If these do not match, the RBC iterates and tests all data streams K2k
from a Hamming distance of 2. Such an iterative process can handle Hamming distances
up to 3, and 256-bit long responses. Beyond this, the latencies become prohibitive. A
scheme fragmenting the data streams with nonces has been documented as effective with
BERs as high as 20%. For example, if 256-bit long responses are impacted by 7% BERs, a
fragmentation of 4 is applied; with SHA-128, H(K′) as a 4 × 128-bit long stream. Each frag-
ment is filled with nonces and is hashed. The RBC does not necessarily consume less
power than a mainstream ECC, and it is not faster; however, the burden is moved to the
server, thereby reducing both the vulnerability and the power consumption at the client
device level. The hashing of K′ is a light operation. Hashing methods such as SHA-128 or
SHA-256 are extremely fast, and commercial implementation in hardware embedded in
cryptographic processors is available. The RBC can also benefit from high-performance
computing (HPC), graphic processor units (GPU), and associative processor units (APU),
all of which leverage the possibility of distributing the search through parallel computa-
tions [33,34]. This approach can also leverage noise injection schemes relying on HPC so-
lutions, which reduce the risk of exposure to certain attacks. The opponents need access
to similar computing power in order to participate. The use of HPC is not recommended
for the “RBC-light″ version needed for key recovery, see Section 3.3.

Figure 1. Block diagram of an ECC scheme. The challenges (T, IDAccess) generate the responses
K from the image of the PUF stored by the server, and the response K’ from the PUF. The helper
transmitted by the server allows the ECC fuzzy extractor of the client device to recover K from K’.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 25

Figure 2. Block diagram of RBC search engine scheme. The challenges (T, IDAccess) generate the
responses K0 from the image of the PUF, and the responses K′ from the PUF. The RBC finds K′
through an iterative process from K and H(K′).

3. Session Key Recovery with Ternary PUFs
3.1. Preparation Cycle—Session Key Encapsulation

The objective of this protocol, shown in Figure 3, is to protect a session key Sk by the
embedded PUF during powering off cycles of a client device. It is assumed in this protocol
that the databases of the client device could be lost to the opponent. Therefore, the infor-
mation stored in these databases is considered public information. Without the PUF, or
its image, the secret key Sk should not be retrievable. During the preparation phase, the
challenges (T, IDAccess) generating the responses K from the database are transmitted to
the client device by the secure server. To enhance security, it is assumed that the client
device does not know the fuzzy positions that are tracked with ternary states. The data
stream IDAccess allows the masking of the fuzzy positions, which has the objective of
reducing BERs at the client level. This requires the thorough identification and storage in
the database, by the secure server, of the erratic cells during an enrollment cycle. The ses-
sion key Sk is then encrypted by the client device using the freshly generated responses
K′. The information stored by the client device is (T, IDAccess) the challenges, H(K′), the
hash message digest of the response K′, and E(Sk, K′) is the ciphertext generated by en-
crypting the Sk with K′.

Figure 2. Block diagram of RBC search engine scheme. The challenges (T, IDAccess) generate the
responses K0 from the image of the PUF, and the responses K’ from the PUF. The RBC finds K’
through an iterative process from K and H(K’).

Appl. Sci. 2022, 12, 1785 7 of 24

3. Session Key Recovery with Ternary PUFs
3.1. Preparation Cycle—Session Key Encapsulation

The objective of this protocol, shown in Figure 3, is to protect a session key Sk by
the embedded PUF during powering off cycles of a client device. It is assumed in this
protocol that the databases of the client device could be lost to the opponent. Therefore, the
information stored in these databases is considered public information. Without the PUF,
or its image, the secret key Sk should not be retrievable. During the preparation phase,
the challenges (T, IDAccess) generating the responses K from the database are transmitted
to the client device by the secure server. To enhance security, it is assumed that the client
device does not know the fuzzy positions that are tracked with ternary states. The data
stream IDAccess allows the masking of the fuzzy positions, which has the objective of
reducing BERs at the client level. This requires the thorough identification and storage
in the database, by the secure server, of the erratic cells during an enrollment cycle. The
session key Sk is then encrypted by the client device using the freshly generated responses
K’. The information stored by the client device is (T, IDAccess) the challenges, H(K’),
the hash message digest of the response K’, and E(Sk, K’) is the ciphertext generated by
encrypting the Sk with K’.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 25

Figure 3. Block diagram of the encapsulation of the session key Sk. IDAccess is computed from the
image of the PUF. The challenges (T, IDAccess) generate K′ from the PUF. The client devices store
the challenges, the ciphertext of Sk encrypted with K′, and the message digest H(K′).

3.2. Session Key Recovery
In the key recovery cycle, see Figure 4, the challenges (T, IDAccess) are retrieved by

the client device, and used to generate the responses K″ from the PUFs that are not neces-
sarily identical to K′ due to the drifts of the parameters driving the PUF. The search en-
gine, such as RBC, uses the message digest H(K′) to retrieve K′ from K″.

Mainstream ECC schemes can replace the search engine in the architecture presented
in Figure 4, whereby the message digest is replaced by a data helper. The session key Sk
is recovered by decrypting the ciphertext with K′. The opponent cannot recover the ses-
sion key without having access to the PUF, which can strengthen the system′s tamper
resistance. The session key can be used in various symmetrical cryptographic schemes
such as AES and DES, or in public key infrastructures such as Elliptic curves, RSA, and
Post Quantum Cryptographic codes such as Dilithium, Kyber, NTRU, Falcon, Saber, Rain-
bow, and Classic McEliece [35–42].

Figure 4. Block diagram of the recovery of the session key Sk by the client device. The challenges
(T, IDAccess) generate K″ from the PUF. The search engine finds K′ through an iterative process
from K″ and H(K′). The ciphertext is decrypted with K′ to recover Sk.

Figure 3. Block diagram of the encapsulation of the session key Sk. IDAccess is computed from the
image of the PUF. The challenges (T, IDAccess) generate K’ from the PUF. The client devices store
the challenges, the ciphertext of Sk encrypted with K’, and the message digest H(K’).

3.2. Session Key Recovery

In the key recovery cycle, see Figure 4, the challenges (T, IDAccess) are retrieved by the
client device, and used to generate the responses K” from the PUFs that are not necessarily
identical to K’ due to the drifts of the parameters driving the PUF. The search engine, such
as RBC, uses the message digest H(K’) to retrieve K’ from K”.

Mainstream ECC schemes can replace the search engine in the architecture presented
in Figure 4, whereby the message digest is replaced by a data helper. The session key Sk is
recovered by decrypting the ciphertext with K’. The opponent cannot recover the session
key without having access to the PUF, which can strengthen the system’s tamper resistance.
The session key can be used in various symmetrical cryptographic schemes such as AES
and DES, or in public key infrastructures such as Elliptic curves, RSA, and Post Quantum
Cryptographic codes such as Dilithium, Kyber, NTRU, Falcon, Saber, Rainbow, and Classic
McEliece [35–42].

Appl. Sci. 2022, 12, 1785 8 of 24

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 25

Figure 3. Block diagram of the encapsulation of the session key Sk. IDAccess is computed from the
image of the PUF. The challenges (T, IDAccess) generate K′ from the PUF. The client devices store
the challenges, the ciphertext of Sk encrypted with K′, and the message digest H(K′).

3.2. Session Key Recovery
In the key recovery cycle, see Figure 4, the challenges (T, IDAccess) are retrieved by

the client device, and used to generate the responses K″ from the PUFs that are not neces-
sarily identical to K′ due to the drifts of the parameters driving the PUF. The search en-
gine, such as RBC, uses the message digest H(K′) to retrieve K′ from K″.

Mainstream ECC schemes can replace the search engine in the architecture presented
in Figure 4, whereby the message digest is replaced by a data helper. The session key Sk
is recovered by decrypting the ciphertext with K′. The opponent cannot recover the ses-
sion key without having access to the PUF, which can strengthen the system′s tamper
resistance. The session key can be used in various symmetrical cryptographic schemes
such as AES and DES, or in public key infrastructures such as Elliptic curves, RSA, and
Post Quantum Cryptographic codes such as Dilithium, Kyber, NTRU, Falcon, Saber, Rain-
bow, and Classic McEliece [35–42].

Figure 4. Block diagram of the recovery of the session key Sk by the client device. The challenges
(T, IDAccess) generate K″ from the PUF. The search engine finds K′ through an iterative process
from K″ and H(K′). The ciphertext is decrypted with K′ to recover Sk.

Figure 4. Block diagram of the recovery of the session key Sk by the client device. The challenges
(T, IDAccess) generate K” from the PUF. The search engine finds K’ through an iterative process from
K” and H(K’). The ciphertext is decrypted with K’ to recover Sk.

3.3. Light Search Engine Implementation

A light version of the RBC was developed for the ReRAMs because the BERs were
low enough and because the fuzzy positions of the PUFs were masked by the ternary
states. In our model, the search was restricted to Hamming distances of 0 and 1. When
no message digest matches H(K’), rather than exploring higher Hamming distances, the
process iterates through a new query of the PUF with the same challenges (T, IDAccess)
to generate new responses. Using the numerical example of a case with average BERs of
2 10−3 following a normal distribution, statistically, such a distribution creates an average
of 0.5 bad bits on a 256-bit long stream. During on-demand response generation, such a PUF
has approximately a 60% chance of experiencing zero bad bit, a 30% chance of experiencing
one bad bit, an 8% chance of experiencing two bad bits, and a 2% of experiencing at least
three bad bits. The RBC-light typically takes 10−4 s to check the Hamming distance of zero,
30 ms to check all configurations at a Hamming distance of one, 2 s to test all configurations
at a Hamming distance of two, and 200 s to test all configurations at a Hamming distance
of three. The latency to generate a fresh response from the PUF is only 10 ms, therefore
re-setting the process after the search at a Hamming distance of one does cut the average
latency. Statistically, 90% of the searches are positive after one query, and only 1% require
a second query. A variation of the protocol was evaluated in which the client device has
a database with a fuzzy state position that is able to find the full challenge (T, IDAccess)
on its own, without assistance from the server. The security of such a scheme is slightly
degraded as a third party could have access to the database containing these positions.

4. Content Protection with Ternary Unclonable Functions

One way to protect digital files is to encrypt them with a cryptographic key, such
as the session key Sk presented in Section 3. The same session key can be used to either
encrypt or decrypt multiple digital files. In this section, we present methods for delivering
and protecting digital files, each of which is protected by its own set of keys. Rather than
using on-demand challenge-response pairs (CRPs) to protect session keys, we suggest
using a different CRP for each digital file. The random number T and the individual digital
access parameter IDAccess of each CRP generates the response K protecting a particular
digital file M.

Appl. Sci. 2022, 12, 1785 9 of 24

4.1. Preparation Cycle—Encryption and Delivery of the Digital Files

As shown in Figure 5, the process of preparing the delivery of a digital file M starts
with the generation of a set of challenges (T, IDAccess). T is obtained through a random
number generator, and IDAccess is computed from the look-up table containing an image
of the PUF. This allows for the masking of the ternary positions, as well as the parameters
such as the electric current that is injected during the key generation. The digital file M is
encrypted with responses K. An example of the protocol that encrypts and transmits the
ciphertext to a client device is as follows:

• Both communicating parties have independent access to a shared password PW;
number T and PW are XORed. The resulting stream is hashed with a SHA-3 generating
MD, which is extended with a SHAKE to generate stream A for the m addresses:

MD← SHA-3 (T ⊕ PW)
A← SHAKE(MD)
A is pointing at the m addresses of the PUF

• The m-bit long mask is retrieved from IDAccess to hide the addresses containing fuzzy
positions. This leaves k positions, k < m, for response generation from the image of
the PUF. The output is the k-long response K.

• The digital file M is encrypted into ciphertext C with K, the responses K are hashed
with a SHA-3 to get H(K), and the mask is XORed with MD.

• T, C, and H(K) are transmitted to the client device.

As presented in Section 2.1, it is important to prevent the opponent from knowing the
fuzzy positions, as well as any other parameters. The suggested protocol assumes that T,
C, and H(K) can be transmitted through non-secure channels. The information is protected
by the password and needs IDAccess, as well as the PUF, or its image to disclose the digital
file M. At this point of the protocol, the client device does not have access to the digital file.
As needed, the server can prepare multiple digital files with multiple challenges. In the
commercial context and example of the delivery of movies, the service provider can send a
stream of files to its customer, each encrypted with its own responses.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 25

• T, C, and H(K) are transmitted to the client device.
As presented in Section 2.1, it is important to prevent the opponent from knowing

the fuzzy positions, as well as any other parameters. The suggested protocol assumes that
T, C, and H(K) can be transmitted through non-secure channels. The information is pro-
tected by the password and needs IDAccess, as well as the PUF, or its image to disclose
the digital file M. At this point of the protocol, the client device does not have access to
the digital file. As needed, the server can prepare multiple digital files with multiple chal-
lenges. In the commercial context and example of the delivery of movies, the service pro-
vider can send a stream of files to its customer, each encrypted with its own responses.

Figure 5. Block diagram of the encryption of digital file M. The challenges (T, IDAccess) generate K
from the image of the PUF. M is encrypted with K. The client device stores T, ciphertext C, and
message digest H(K). The server keeps IDAccess in a look-up table.

4.2. Decryption of the Digital Files by the Client Device
To trigger the read cycle, the server communicates the missing piece of the chal-

lenges, IDAccess, which the client device combines with T, see Figure 6. The one-way
unclonable function generates the responses K′ from the PUF, providing the necessary
information to the client device to generate the key K from K′ ← Ψ (T, IDAccess).

Figure 6. Block diagram of the decryption of M. The server transmits IDAccess to trigger the process.
The challenges (T, IDAccess) generate K′ from the PUF. The search engine finds K through an iter-
ative process from K′ and H(K). The ciphertext is decrypted with K to recover M.

Figure 5. Block diagram of the encryption of digital file M. The challenges (T, IDAccess) generate
K from the image of the PUF. M is encrypted with K. The client device stores T, ciphertext C, and
message digest H(K). The server keeps IDAccess in a look-up table.

4.2. Decryption of the Digital Files by the Client Device

To trigger the read cycle, the server communicates the missing piece of the challenges,
IDAccess, which the client device combines with T, see Figure 6. The one-way unclonable
function generates the responses K’ from the PUF, providing the necessary information to
the client device to generate the key K from K’← Ψ (T, IDAccess).

Appl. Sci. 2022, 12, 1785 10 of 24

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 25

• T, C, and H(K) are transmitted to the client device.
As presented in Section 2.1, it is important to prevent the opponent from knowing

the fuzzy positions, as well as any other parameters. The suggested protocol assumes that
T, C, and H(K) can be transmitted through non-secure channels. The information is pro-
tected by the password and needs IDAccess, as well as the PUF, or its image to disclose
the digital file M. At this point of the protocol, the client device does not have access to
the digital file. As needed, the server can prepare multiple digital files with multiple chal-
lenges. In the commercial context and example of the delivery of movies, the service pro-
vider can send a stream of files to its customer, each encrypted with its own responses.

Figure 5. Block diagram of the encryption of digital file M. The challenges (T, IDAccess) generate K
from the image of the PUF. M is encrypted with K. The client device stores T, ciphertext C, and
message digest H(K). The server keeps IDAccess in a look-up table.

4.2. Decryption of the Digital Files by the Client Device
To trigger the read cycle, the server communicates the missing piece of the chal-

lenges, IDAccess, which the client device combines with T, see Figure 6. The one-way
unclonable function generates the responses K′ from the PUF, providing the necessary
information to the client device to generate the key K from K′ ← Ψ (T, IDAccess).

Figure 6. Block diagram of the decryption of M. The server transmits IDAccess to trigger the process.
The challenges (T, IDAccess) generate K′ from the PUF. The search engine finds K through an iter-
ative process from K′ and H(K). The ciphertext is decrypted with K to recover M.

Figure 6. Block diagram of the decryption of M. The server transmits IDAccess to trigger the process.
The challenges (T, IDAccess) generate K’ from the PUF. The search engine finds K through an iterative
process from K’ and H(K). The ciphertext is decrypted with K to recover M.

The search engine, similar to the one described in Section 3.2 for session key recovery,
recovers the initial responses K from K’ and the message digest H(K). This allows access to
the digital file M by decrypting the ciphertext C = E(M,K). Any symmetrical encryption
scheme such as AES or DES can be considered for use in this method. We used AES-256 in
this study. A commercial application example is where a service provider communicates
IDAccess after receiving a payment from a client’s device for a digital file such as a movie.
Other practical examples are suggested in the summary section of this paper (Section 7).

4.3. Protection of Digital Files Stored by IoT Terminals

The method proposed in this section to protect digital files is a variation of that
presented above. Here, the information generated at the IoT level and which is stored by
the IoT for future use is protected. The objective is to prevent a third party from simply
retrieving information from the memory unit of the IoT, which is equipped with its own
one-way unclonable function. During the preparation cycle, as shown in Figure 7, the
server generates the challenges (T, IDAccess) from the image of the PUF. The client device
goes through the following steps:

• Retrieves the challenges (T, IDAccess).
• The responses K are generated with the PUF, from the challenges.
• The IoT hashes K for the search engine.
• The file M is encrypted with K to generate the ciphertext C.
• The IoT stores T, C, and the message digest H(K), but not IDAccess, which is only

stored for future reference by the server.

The IoT can only decrypt message M after receiving from the server the individual
digital access information IDAccess. The server can delegate the responsibility to dispatch
IDAccess to a third party. If the one-way function is tamper-resistant, an opponent cannot
decrypt M without an image of the one-way unclonable function. An example of the
implementation of the decryption of M by the client device is as follows:

• Receive IDAccess.
• Read from the memory number T, ciphertext C, and message digest H(K).
• Generation of K’ from the one-way unclonable function.
• Retrieve K from K’ and H(K) with a search engine.
• Decrypt the digital file using K as a cryptographic key.

Appl. Sci. 2022, 12, 1785 11 of 24

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 25

The search engine, similar to the one described in Section 3.2 for session key recovery,
recovers the initial responses K from K′ and the message digest H(K). This allows access
to the digital file M by decrypting the ciphertext C = E(M,K). Any symmetrical encryption
scheme such as AES or DES can be considered for use in this method. We used AES-256
in this study. A commercial application example is where a service provider communi-
cates IDAccess after receiving a payment from a client′s device for a digital file such as a
movie. Other practical examples are suggested in the summary section of this paper (Sec-
tion 7).

4.3. Protection of digital files stored by IoT terminals
The method proposed in this section to protect digital files is a variation of that pre-

sented above. Here, the information generated at the IoT level and which is stored by the
IoT for future use is protected. The objective is to prevent a third party from simply re-
trieving information from the memory unit of the IoT, which is equipped with its own
one-way unclonable function. During the preparation cycle, as shown in Figure 7, the
server generates the challenges (T, IDAccess) from the image of the PUF. The client device
goes through the following steps:
• Retrieves the challenges (T, IDAccess).
• The responses K are generated with the PUF, from the challenges.
• The IoT hashes K for the search engine.
• The file M is encrypted with K to generate the ciphertext C.
• The IoT stores T, C, and the message digest H(K), but not IDAccess, which is only

stored for future reference by the server.
The IoT can only decrypt message M after receiving from the server the individual

digital access information IDAccess. The server can delegate the responsibility to dispatch
IDAccess to a third party. If the one-way function is tamper-resistant, an opponent cannot
decrypt M without an image of the one-way unclonable function. An example of the im-
plementation of the decryption of M by the client device is as follows:
• Receive IDAccess.
• Read from the memory number T, ciphertext C, and message digest H(K).
• Generation of K′ from the one-way unclonable function.
• Retrieve K from K′ and H(K) with a search engine.
• Decrypt the digital file using K as a cryptographic key.

Figure 7. Block diagram of the encryption of file M for IoTs. The server prepares the challenges (T,
IDAccess). The digital file M is encrypted with K by the IoT, which stores only T, ciphertext C, and
message digest H(K). The server keeps IDAccess in a look-up table for future operations.

Figure 7. Block diagram of the encryption of file M for IoTs. The server prepares the challenges
(T, IDAccess). The digital file M is encrypted with K by the IoT, which stores only T, ciphertext C,
and message digest H(K). The server keeps IDAccess in a look-up table for future operations.

5. Implementation with SRAM and ReRAM Devices

The methods proposed to recover session keys and to protect digital files can be
implemented with any one-way function that verifies Equation (1) in Section 2. The
implementation with SRAM is straightforward, as the devices are commercially available.
The implementation with pre-formed ReRAM requires the design of custom circuits, as
well as a rather complex data acquisition board, that interfaces with the Wi-FIRE ChipKit
engineering board from Digilent. One of the aims of such a dual implementation was
to benchmark the tamper-resistant ReRAM-based solution with more established SRAM-
based solutions. The core engine of the engineering board is a microcontroller manufactured
by Microchip with a 200 MHz 32-bit MIPS processor, a 2 MB embedded Flash, and a 500 KB
SRAM. The board is powered via a USB port, and it operates at 3.3 volts.

As shown in Figure 8, the custom boards containing the memory devices are plugged
into the ChipKit board. In this analysis, the engineering boards communicated with the PC
through a USB cable. To collect the initial responses, the SRAM and ReRAM systems went
through quick enrollment cycles, where the unstable cells were categorized with a third
state; all initial responses were stored in look-up tables. The server generates 256-bit long
keys from the look-up tables, and the Chipkits generate 256-bit long keys from the PUFs.
The SRAM and the ReRAM systems use the same RBC and also similar handshake schemes
between the server and the client devices. Different protocols are needed to generate the
keys from each PUF, as described below.

5.1. Description and Analysis of the SRAM Implementation

A set of switches allows quick power-off cycling of the SRAM to reset the device prior
to the response generation. The load around the I/Os of the SRAM are such that a power-off
cycle still takes at least two seconds before the flip-flops of each cell are properly grounded.
The read cycles of the SRAM are extremely fast, a 256-bit long key only needs 10 µs. Most
SRAM cells always wake in the same state, as a “0” or a “1” after power off—power on
cycles; however, 3 to 5 % of the array changes states in each cycle. This could result in high
BERs, so during the enrollment cycle of each SRAM, we performed repetitive power-off-on
cycles to identify the unstable cells.

Examples of the experimental results are shown in Figure 9. The results represent
30 successive key generation cycles, lasting 2 s each; the enrollment had 100 cycles at room
temperature. At each key generation cycle, the server randomly selects 512 positions, of
which 256 are masked to keep only the most stable cells. The 256-bit long keys generated
from the look-up table are on the left, those from the SRAM-PUF are on the right, and are

Appl. Sci. 2022, 12, 1785 12 of 24

followed by the count of errors. The average BERs were about one percent, i.e., 3 erratic
bits per key, which were due to both the SRAM instability and noises in the electronic
system. Such BERs are well within the capability of the RBC, with false reject rates (FRR)
below 1%, and one-second average latencies. After about 100 cycles, we were left with
approximately 88 % of the cells waking in the same state, the rest of the population had
at least one erratic response. At between 100 cycles and 1000 cycles, less than 5% of the
additional cell population was still unstable.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 25

5. Implementation with SRAM and ReRAM Devices
The methods proposed to recover session keys and to protect digital files can be im-

plemented with any one-way function that verifies Equation (1) in Section 2. The imple-
mentation with SRAM is straightforward, as the devices are commercially available. The
implementation with pre-formed ReRAM requires the design of custom circuits, as well
as a rather complex data acquisition board, that interfaces with the Wi-FIRE ChipKit en-
gineering board from Digilent. One of the aims of such a dual implementation was to
benchmark the tamper-resistant ReRAM-based solution with more established SRAM-
based solutions. The core engine of the engineering board is a microcontroller manufac-
tured by Microchip with a 200 MHz 32-bit MIPS processor, a 2 MB embedded Flash, and
a 500 KB SRAM. The board is powered via a USB port, and it operates at 3.3 volts.

As shown in Figure 8, the custom boards containing the memory devices are plugged
into the ChipKit board. In this analysis, the engineering boards communicated with the
PC through a USB cable. To collect the initial responses, the SRAM and ReRAM systems
went through quick enrollment cycles, where the unstable cells were categorized with a
third state; all initial responses were stored in look-up tables. The server generates 256-bit
long keys from the look-up tables, and the Chipkits generate 256-bit long keys from the
PUFs. The SRAM and the ReRAM systems use the same RBC and also similar handshake
schemes between the server and the client devices. Different protocols are needed to gen-
erate the keys from each PUF, as described below.

Figure 8. Pictures of the hardware set up for the SRAM (left), and the ReRAM (right). The data
acquisition board for the memory chips is plugged into “WiFire″ engineering boards provided by
Digilent. A pair of ReRAM devices are needed for the differential circuit generating responses.

5.1. Description and Analysis of the SRAM Implementation
A set of switches allows quick power-off cycling of the SRAM to reset the device prior

to the response generation. The load around the I/Os of the SRAM are such that a power-
off cycle still takes at least two seconds before the flip-flops of each cell are properly
grounded. The read cycles of the SRAM are extremely fast, a 256-bit long key only needs
10 µs. Most SRAM cells always wake in the same state, as a “0″ or a “1″ after power off—
power on cycles; however, 3 to 5 % of the array changes states in each cycle. This could
result in high BERs, so during the enrollment cycle of each SRAM, we performed repeti-
tive power-off-on cycles to identify the unstable cells.

Examples of the experimental results are shown in Figure 9. The results represent 30
successive key generation cycles, lasting 2 s each; the enrollment had 100 cycles at room
temperature. At each key generation cycle, the server randomly selects 512 positions, of

Figure 8. Pictures of the hardware set up for the SRAM (left), and the ReRAM (right). The data
acquisition board for the memory chips is plugged into “WiFire” engineering boards provided by
Digilent. A pair of ReRAM devices are needed for the differential circuit generating responses.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 25

which 256 are masked to keep only the most stable cells. The 256-bit long keys generated
from the look-up table are on the left, those from the SRAM-PUF are on the right, and are
followed by the count of errors. The average BERs were about one percent, i.e., 3 erratic
bits per key, which were due to both the SRAM instability and noises in the electronic
system. Such BERs are well within the capability of the RBC, with false reject rates (FRR)
below 1%, and one-second average latencies. After about 100 cycles, we were left with
approximately 88 % of the cells waking in the same state, the rest of the population had at
least one erratic response. At between 100 cycles and 1000 cycles, less than 5% of the ad-
ditional cell population was still unstable.

Figure 9. Set of thirty 256-bit long key generation cycles with SRAM. The keys generated by the
server from the look-up table are on the left, those generated from the SRAM PUF are on the right,
followed by the count of errors. BERs are in the one percent range.

The results presented below in Figure 10 were derived from using the same method-
ology of varying the number of enrollment cycles at different temperatures. We per-
formed tens of thousands of key generation cycles to obtain statistically significant results,
which is necessary to report BERs in the one part per million range. The SRAM was sub-
jected to 1000 enrollment cycles at different temperatures: 0 °C in light blue, 20 °C in red,
40 °C in grey, 60 °C in orange, and 80 °C in dark blue. The BER was then computed with
responses generated in the 0 °C to 80 °C temperature range for each temperature of en-
rollment. We observed smaller BERs, in the 2 10−5 range, when the responses were gener-
ated at the same temperature as the enrollment; however, the BERs quickly degraded
when these temperatures did not match. A multi-temperature enrollment, shown in green
in Figure 9, yielded BERs in the 1·10−5 to 2·10−6 range. However, such a high-quality en-
rollment is time-consuming as we needed to pause two seconds between cycles, in addi-
tion to the 3 s needed to test the devices. The multi-temperature enrollment took 5 × 5000
s, or 7 h, which is not practical for some applications.

Figure 9. Set of thirty 256-bit long key generation cycles with SRAM. The keys generated by the
server from the look-up table are on the left, those generated from the SRAM PUF are on the right,
followed by the count of errors. BERs are in the one percent range.

Appl. Sci. 2022, 12, 1785 13 of 24

The results presented below in Figure 10 were derived from using the same methodol-
ogy of varying the number of enrollment cycles at different temperatures. We performed
tens of thousands of key generation cycles to obtain statistically significant results, which is
necessary to report BERs in the one part per million range. The SRAM was subjected to
1000 enrollment cycles at different temperatures: 0 ◦C in light blue, 20 ◦C in red, 40 ◦C in
grey, 60 ◦C in orange, and 80 ◦C in dark blue. The BER was then computed with responses
generated in the 0 ◦C to 80 ◦C temperature range for each temperature of enrollment. We
observed smaller BERs, in the 2 × 10−5 range, when the responses were generated at the
same temperature as the enrollment; however, the BERs quickly degraded when these
temperatures did not match. A multi-temperature enrollment, shown in green in Figure 9,
yielded BERs in the 1 × 10−5 to 2 × 10−6 range. However, such a high-quality enrollment
is time-consuming as we needed to pause two seconds between cycles, in addition to the
3 s needed to test the devices. The multi-temperature enrollment took 5 × 5000 s, or 7 h,
which is not practical for some applications.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 25

Figure 10. BER of the SRAM PUF (Y-axis). The enrollment consisted of 1000 power off/on cycles at
0 °C, 20 °C, 40 °C, 60 °C, and 80 °C. The responses were generated at 0 °C, 20 °C, 40 °C, 60 °C, and
80 °C (X-axis), for each temperature of enrollment. Shown in green, the enrollment was conducted
at multiple temperatures, and the BERs were low regardless of temperature during response gener-
ation.

5.2. Description and Analysis of the ReRAM Implementation
The two ReRAM circuits were designed with 1.2 volt I/Os, which require voltage

shifters and pin expenders to be connected to the ChipKit. Such an interface is complex
and slows down the engineering board. We anticipate that the final iteration of this tech-
nology will be based on 3.3 volt I/Os. The decision to design the board with two 4 Kbit
ReRAM circuits, rather than one, allowed faster read cycles of about 10 ms for a 256-bit
long key, and higher tamper resistance. To increase entropy, the responses were generated
by injecting a small electric current that can randomly vary from 100 nA and 800 nA every
100 nA, in pairs of cells, each located in separate arrays of 4 k cells. The number of possible
challenge-response pairs in this experiment was 8 × 4096 × 4096 = 128 million. The re-
sponse was a “0″ when the first cell had a resistance lower than the second cell, and a “1″,
in the opposite configuration.

To reduce BERs, the cells having similar resistance values should be removed. Exam-
ples of the experimental results, leveraging the differential pre-formed ReRAM-based sys-
tem, are shown in Figure 11. These results represent 30 successive key generation cycles,
lasting 2 s each, and after this, there was a quick enrollment of both ReRAM arrays at
room temperature for 80 read cycles.

The starting point for the protocol is that 512 pairs of cells are randomly selected, of
which 256 pairs act as a buffer, keeping the remaining 256 pairs further apart in resistance
values. The 256-bit long keys generated from the look-up table are on the left, those from
the ReRAM-PUF are on the right, followed by the count of errors. Here, we only observed
one error, during the key generation cycle number 26, which could be due to the instability
of the ReRAM or noise in the electronic system. Such BERs are within the capability of a
light version of the RBC, using keys located at a Hamming distance of zero or one.

Figure 10. BER of the SRAM PUF (Y-axis). The enrollment consisted of 1000 power off/on cycles at
0 ◦C, 20 ◦C, 40 ◦C, 60 ◦C, and 80 ◦C. The responses were generated at 0 ◦C, 20 ◦C, 40 ◦C, 60 ◦C, and
80 ◦C (X-axis), for each temperature of enrollment. Shown in green, the enrollment was conducted at
multiple temperatures, and the BERs were low regardless of temperature during response generation.

5.2. Description and Analysis of the ReRAM Implementation

The two ReRAM circuits were designed with 1.2 volt I/Os, which require voltage
shifters and pin expenders to be connected to the ChipKit. Such an interface is complex and
slows down the engineering board. We anticipate that the final iteration of this technology
will be based on 3.3 volt I/Os. The decision to design the board with two 4 Kbit ReRAM
circuits, rather than one, allowed faster read cycles of about 10 ms for a 256-bit long key, and
higher tamper resistance. To increase entropy, the responses were generated by injecting a
small electric current that can randomly vary from 100 nA and 800 nA every 100 nA, in
pairs of cells, each located in separate arrays of 4 k cells. The number of possible challenge-
response pairs in this experiment was 8 × 4096 × 4096 = 128 million. The response was a
“0” when the first cell had a resistance lower than the second cell, and a “1”, in the opposite
configuration.

To reduce BERs, the cells having similar resistance values should be removed. Ex-
amples of the experimental results, leveraging the differential pre-formed ReRAM-based
system, are shown in Figure 11. These results represent 30 successive key generation cycles,
lasting 2 s each, and after this, there was a quick enrollment of both ReRAM arrays at room
temperature for 80 read cycles.

Appl. Sci. 2022, 12, 1785 14 of 24Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 25

Figure 11. Set of thirty, 256-bit long key generation cycles, with two ReRAM devices. The keys gen-
erated by the server from the look-up table are on the left, those generated from the ReRAM PUF
are on the right, followed by the count of errors. The BERs are very low, in the 10−4 range.

In Figure 12, an experiment to quantify the effect of the size of the buffer is presented.
To generate 256-bit long keys, 256 + k pairs were selected, with k being the number of
extra pairs, with the lowest differences in resistance values, that were removed. The goal
was to remove enough pairs to generate 256-bit keys with BERs in the part per million
(ppm) range. The size of the buffer k can be lowered when the cell-to-cell differences in
resistance values are large enough, and predictable, compared with fluctuations due to
the measurement scheme. In our experiment, we designed circuits with high accuracy in
the differential read, with latencies below 100 µs per read-cycle. The lowest buffer sizes,
around 29 pairs, were observed at room temperature and 800 nA. The largest buffer sizes,
around 35 pairs, were observed at 80 °C and 100 nA.

The protocols presented in the experimental section of this paper used 256 pairs as a
buffer, which was anticipated to generate BERs way below 1 ppm. Many other parameters
besides the ReRAM PUFs impacts BERs at such low levels; therefore, the exact quantifica-
tion of the BERs is not easy and will be the subject of future research.

Figure 11. Set of thirty, 256-bit long key generation cycles, with two ReRAM devices. The keys
generated by the server from the look-up table are on the left, those generated from the ReRAM PUF
are on the right, followed by the count of errors. The BERs are very low, in the 10−4 range.

The starting point for the protocol is that 512 pairs of cells are randomly selected, of
which 256 pairs act as a buffer, keeping the remaining 256 pairs further apart in resistance
values. The 256-bit long keys generated from the look-up table are on the left, those from
the ReRAM-PUF are on the right, followed by the count of errors. Here, we only observed
one error, during the key generation cycle number 26, which could be due to the instability
of the ReRAM or noise in the electronic system. Such BERs are within the capability of a
light version of the RBC, using keys located at a Hamming distance of zero or one.

In Figure 12, an experiment to quantify the effect of the size of the buffer is presented.
To generate 256-bit long keys, 256 + k pairs were selected, with k being the number of
extra pairs, with the lowest differences in resistance values, that were removed. The goal
was to remove enough pairs to generate 256-bit keys with BERs in the part per million
(ppm) range. The size of the buffer k can be lowered when the cell-to-cell differences in
resistance values are large enough, and predictable, compared with fluctuations due to
the measurement scheme. In our experiment, we designed circuits with high accuracy in
the differential read, with latencies below 100 µs per read-cycle. The lowest buffer sizes,
around 29 pairs, were observed at room temperature and 800 nA. The largest buffer sizes,
around 35 pairs, were observed at 80 ◦C and 100 nA.

The protocols presented in the experimental section of this paper used 256 pairs
as a buffer, which was anticipated to generate BERs way below 1 ppm. Many other
parameters besides the ReRAM PUFs impacts BERs at such low levels; therefore, the exact
quantification of the BERs is not easy and will be the subject of future research.

The differential protocol we developed for the two ReRAM circuits also protects the
system against an opponent trying to read the resistance values of the ReRAM arrays.
After enrolment, the two circuits can be mounted in such a way that only differential
measurements can be conducted. In Figure 13, the number of days needed to read all pairs,
as a function of the size of the array, is shown, together with the number of possible currents
injected into each cell. For example, it takes 1000 days to read all possible pairs produced
by two arrays of 512 K-bits each, and there are 25 possible levels of injection currents.

Appl. Sci. 2022, 12, 1785 15 of 24Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 25

Figure 12. The size of the buffer (Y-axis) that is required to produce a BER at 1 ppm for 256-bit long
keys generated from a pair of ReRAM circuits. The lowest buffer is observed with currents of 800
nA, from 0 °C to 80 °C (X-axis). In this case, 288 cells are required to produce a 256-bit long key with
BER at 1 ppm.

The differential protocol we developed for the two ReRAM circuits also protects the
system against an opponent trying to read the resistance values of the ReRAM arrays.
After enrolment, the two circuits can be mounted in such a way that only differential
measurements can be conducted. In Figure 13, the number of days needed to read all pairs,
as a function of the size of the array, is shown, together with the number of possible cur-
rents injected into each cell. For example, it takes 1000 days to read all possible pairs pro-
duced by two arrays of 512 K-bits each, and there are 25 possible levels of injection cur-
rents.

Figure 13. Modelling the time in days to complete the crypto-analysis of pairs of ReRAM devices.
The time to completion increases exponentially, proportional to the size of the array and to the num-
ber of possible injected currents.

5.3. Comparative Analysis of SRAM versus ReRAM Schemes
SRAM PUFs are widely available, cheap, easy to use, and fast [43]. This is a perfect

technology to use to implement the methods presented in this paper, namely, key recov-
ery, content delivery, and digital file protection. SRAM PUFs are a perfect fit for a range
of applications that are not directly exposed to side-channel attacks, and applications

Figure 12. The size of the buffer (Y-axis) that is required to produce a BER at 1 ppm for 256-bit long
keys generated from a pair of ReRAM circuits. The lowest buffer is observed with currents of 800 nA,
from 0 ◦C to 80 ◦C (X-axis). In this case, 288 cells are required to produce a 256-bit long key with BER
at 1 ppm.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 25

Figure 12. The size of the buffer (Y-axis) that is required to produce a BER at 1 ppm for 256-bit long
keys generated from a pair of ReRAM circuits. The lowest buffer is observed with currents of 800
nA, from 0 °C to 80 °C (X-axis). In this case, 288 cells are required to produce a 256-bit long key with
BER at 1 ppm.

The differential protocol we developed for the two ReRAM circuits also protects the
system against an opponent trying to read the resistance values of the ReRAM arrays.
After enrolment, the two circuits can be mounted in such a way that only differential
measurements can be conducted. In Figure 13, the number of days needed to read all pairs,
as a function of the size of the array, is shown, together with the number of possible cur-
rents injected into each cell. For example, it takes 1000 days to read all possible pairs pro-
duced by two arrays of 512 K-bits each, and there are 25 possible levels of injection cur-
rents.

Figure 13. Modelling the time in days to complete the crypto-analysis of pairs of ReRAM devices.
The time to completion increases exponentially, proportional to the size of the array and to the num-
ber of possible injected currents.

5.3. Comparative Analysis of SRAM versus ReRAM Schemes
SRAM PUFs are widely available, cheap, easy to use, and fast [43]. This is a perfect

technology to use to implement the methods presented in this paper, namely, key recov-
ery, content delivery, and digital file protection. SRAM PUFs are a perfect fit for a range
of applications that are not directly exposed to side-channel attacks, and applications

Figure 13. Modelling the time in days to complete the crypto-analysis of pairs of ReRAM devices. The
time to completion increases exponentially, proportional to the size of the array and to the number of
possible injected currents.

5.3. Comparative Analysis of SRAM versus ReRAM Schemes

SRAM PUFs are widely available, cheap, easy to use, and fast [43]. This is a perfect
technology to use to implement the methods presented in this paper, namely, key recovery,
content delivery, and digital file protection. SRAM PUFs are a perfect fit for a range
of applications that are not directly exposed to side-channel attacks, and applications
where the risk of the device being infiltrated by an opponent, is low. Examples of areas
of application include the protections of the IoTs at home, in the office, and in other areas
that are relatively safe. One of the tradeoffs of using SRAM PUFs is the additional cost of
enrollment that is needed to operate at low BER. The repetitive power off/on cycles are
time-consuming. A remedy for this is to use powerful error-correcting schemes and to
accept higher BERs. The ReRAM technology is not yet as pervasive as SRAMs; however, its
potential to design tamper-resistant solutions is observable, particularly in the pre-forming

Appl. Sci. 2022, 12, 1785 16 of 24

range. A comparison between the two technologies, based on the analysis presented in this
section, is summarized in Table 2.

• Entropy: number of cells or pairs: The entropy of SRAM-based cryptosystems is pro-
portional to the size of the array; however, the cost of enrollment also increases at
the same rate. The differential protocol comparing the resistance value between the
cells belonging to small 4 Kb ReRAM arrays involves 16 million possible pairs. With
8 different levels of possible currents, as tested in this study, the number of possible
pairs reach 126 M. This number is scaled linearly by increasing the number of levels of
current and with the square of the size of the array.

• Bit error rates of the responses: The BERs of SRAM PUFs are reduced by increasing
the number of power off/on cycles at different temperatures. As shown in Figure 10,
BERs in the 2 10−6 range is possible at a cost of enrollment cycles lasting multiple
hours, which lacks practicality. Conversely, the way to reduce the BERs of two ReRAM
arrays, driven by the differential protocol, is to increase the size of the buffer, which
does not require longer enrollment times. Considering the difficulty in quantifying
extremely low BERs, an extrapolation of the data reported in Figure 12, points to BERs
in the 1 10−8 range, with buffer sizes large enough and with the appropriate screening
of unstable cells.

• Enrollment cycles: One of the values of the differential protocol is to cut the enrollment
time. There is no need to test the pairs of ReRAM cells upfront during enrollment,
testing each array thoroughly is enough to generate the initial response from a look-up
table. In the analysis performed in this study, eight thousand cells were tested during
the enrollment of 15 min, rather than the 128 million possible pairs. The measurement
of the resistance of a cell is analog; therefore, unlike reading an SRAM cell, there is no
need to repeat the measurements to quantify the proportion of “0” or “1”.

• Response cycles: Generating responses from the SRAM PUF is extremely fast after
powering on the device. Minimizing latencies of the response generation of pre-formed
ReRAM PUF has been a challenging task due to the high resistance values that could
reach 10 MΩ. In the differential protocol, there is no need to measure these values,
the only information needed is to find which cell has the higher resistance value of
the two. This allows for an optimization of the circuitry. In this study, we found that
10 ms are enough to read 256-bit long streams. Further reductions in latencies have a
negative impact on the BERs, as the measurement becomes noisy.

• Crypto-analysis: One possible attack, which is a major problem for certain applications,
is when the terminal device is under the control of the opponent for even a short period
of time. In this instance, it is possible to read the SRAM in a matter of seconds after
power off/on cycles. The bulk of the information needed for key generation can be
recovered after 100 cycles, which takes about 5 min. Pairs of ReRAM cells are more
difficult to attack. The two 4 Kb ReRAM arrays are tested separately, upfront, during
quick enrollment cycles. The circuitry for the ReRAM PUFs is such that when the two
arrays are mounted on the custom board, the user only has access to differential reads,
without having access to the individual devices. Therefore, a crypto-analysis requires
that 128 million pairs be read, which takes about 4.4 h. As shown in Figure 13, two
512 Kbit arrays take 9 years to be differentially read.

Pre-formed ReRAMs have additional physical properties that also enhance tamper
resistance:

• Ability to sense attacks: The design of sensing elements inserted in the ReRAM arrays
operating in the pre-forming range has been reported [15]. An opponent exploring
the ReRAM arrays without knowledge of the vulnerable cell population has a high
probability of damaging these cells. The cryptosystems developed in this study avoid
this population; therefore, it is possible to monitor the potential infiltration of a crypto-
analyst and to detect an attack.

Appl. Sci. 2022, 12, 1785 17 of 24

• Self-destruct mode at low power: ReRAMs are designed to operate in the set/reset
mode after the forming operation. The forming operation in a ReRAM is a non-
reversible process that usually starts with voltage stress in the 1.5-volt range. In case
of an attack, the user can trigger a self-destruct mode of the ReRAM cells by initiating
the forming cycles. Only partial cycles are needed, as the objective is to form enough
cells to make the PUF useless, for example, half of the cell population.

• Radiation hardness: SRAMs are vulnerable to ionizing radiation; however, in this
particular application there is a mitigation process of performing power off/on cycles
before each response generation. The likelihood of several cells being impacted by
radiation just before response generation cycles is small; therefore, the impact on
the BER is anticipated to be limited. The ReRAM technology is known for being
rad-hard [44]. The 4 Kb arrays in this study were manufactured with the conductive
bridge RAM (CBRAM) technology that has been tested as more stable under ionizing
radiation than the more traditional ReRAM technology that can be impacted by
migrations of oxygen vacancies.

Table 2. Comparison between SRAM and pre-formed ReRAM based key generation protocols. The
enrollment cycles of the SRAM are very slow. The cell pairing scheme driving the ReRAMs at different
currents increases entropy and enhances tamper resistance.

Factor 256 Kb SRAM 2 × 4 Kb ReRAM

Commercial availability Broad Limited

Entropy: number of
cells/pairs 256 k cells 128 M pairs

BER responses 2 × 10−6 1 × 10−8

Latencies: enrollment cycle 7 h 15 min

Latencies: responses/256 bits 10 µs 10 ms

Crypto-analysis 5 min 4.4 h

Sense attack No Yes

Self-destroy No With 1.5 V

Radiation hardness Limited Yes

The SRAM technology for the design of outstanding PUF-based cryptosystems has
been demonstrated by industrial suppliers and academic institutions. It is not the ob-
jective of this analysis to criticize SRAMs in favor of largely unproven technology. The
authors acknowledge that it will take years of research before ReRAM technology reaches
similar levels.

6. Characterizing the Key Recovery from ReRAM PUFs
6.1. Rates of Erratic Keys Recovered from ReRAM PUFs

One of the explanations for the low BERs reported in Section 5 is the enrollment cycles
which populated the look-up tables with quality information on the PUFs. The PUFs were
subjected to 80 successive reads in order to identify, then minimize, the impact of the
noisy reading cycles. This resulted in a reduction of the differences between the responses
generated from the PUFs and the original responses that were stored in the look-up tables.
The key recovery protocols are much more challenging. They can face higher BERs as
the initial responses are the result of a single read, which could be noisy. Therefore, we
conducted a new analysis to quantify the BERs relevant to the key recovery protocols. See
Figure 14, in which the PUFs are used twice.

This figure shows examples of 44 key recovery cycles; the left column displays the
keys generated during the first read from the PUFs and the right column shows the
keys generated from the same PUFs during the recovery cycles. The numbers of errors
between the two are shown in the last column. As was performed in Section 5, two pre-

Appl. Sci. 2022, 12, 1785 18 of 24

formed ReRAM chips were used to generate 256-bit long keys using the differential pairing
protocol. The resultant BERs are higher than those reported in Section 5; however, they are
still relatively low, and are well within the RBC-light capabilities.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 25

Therefore, we conducted a new analysis to quantify the BERs relevant to the key recovery
protocols. See Figure 14, in which the PUFs are used twice.

This figure shows examples of 44 key recovery cycles; the left column displays the
keys generated during the first read from the PUFs and the right column shows the keys
generated from the same PUFs during the recovery cycles. The numbers of errors between
the two are shown in the last column. As was performed in Section 5, two pre-formed
ReRAM chips were used to generate 256-bit long keys using the differential pairing pro-
tocol. The resultant BERs are higher than those reported in Section 5; however, they are
still relatively low, and are well within the RBC-light capabilities.

Figure 14. Forty-four 256-bit long key generation cycles. The keys on the left were initially generated
from the ReRAM PUFs. The keys on the right were generated from the same addresses during re-
covery cycles. The number of mismatching bits between keys is counted in the right column.

To quantify the BERs, we performed 5000 successive cycles similar to that presented
in Figure 14. The results are summarized in Figure 15, which shows on a log scale the
probability of the occurrence of erratic keys as a function of the numbers of errors for 256-
bit long responses. The average BERs observed in this experiment were 6.148 10−4. These
BERs created 787 bit-errors out of the 5000 pairs of 256-bit long keys. Such error rates are
even lower than those given as examples in Section 3.3, in which the use of the RBC-light
is suggested. The distribution of erratic keys observed here is well described by a Poisson
distribution having a parameter λ equal to the average number of erratic bits per 256-bit
long key:

λ = 256 × BER = 256 × 6.148 10−4 = 0.1574 (5)

• 4290/5002 keys (85.8%) have zero errors versus a Poisson distribution at 85.4%
• 643/5000 keys (12.9%) have one error versus a Poisson distribution at 13.4%
• 58/5000 keys (1.2%) have two errors versus a Poisson distribution at 1.06%

Figure 14. Forty-four 256-bit long key generation cycles. The keys on the left were initially generated
from the ReRAM PUFs. The keys on the right were generated from the same addresses during
recovery cycles. The number of mismatching bits between keys is counted in the right column.

To quantify the BERs, we performed 5000 successive cycles similar to that presented
in Figure 14. The results are summarized in Figure 15, which shows on a log scale the
probability of the occurrence of erratic keys as a function of the numbers of errors for 256-bit
long responses. The average BERs observed in this experiment were 6.148 10−4. These
BERs created 787 bit-errors out of the 5000 pairs of 256-bit long keys. Such error rates are
even lower than those given as examples in Section 3.3, in which the use of the RBC-light is
suggested. The distribution of erratic keys observed here is well described by a Poisson
distribution having a parameter λ equal to the average number of erratic bits per 256-bit
long key:

λ = 256 × BER = 256 × 6.148 × 10−4 = 0.1574 (5)

• 4290/5002 keys (85.8%) have zero errors versus a Poisson distribution at 85.4%
• 643/5000 keys (12.9%) have one error versus a Poisson distribution at 13.4%
• 58/5000 keys (1.2%) have two errors versus a Poisson distribution at 1.06%
• 8/5000 keys (0.16%) have three errors versus a Poisson distribution at 0.06%
• 1/5000 keys (0.02%) have four errors versus a Poisson distribution at 0.002%

The RBC-light that searches for erratic keys with a Hamming distance of no more
than one is expected to find the matching keys in 98.5% of cases. The need to generate a
second response occurs in only 1.5% of the cases, and a third response in 0.02% of cases.
False reject rates (FRR) of the key recovery will occur if the latencies of the RBC are too
long due to an excessive number of iterations, and lengthy PUF response generation cycles.

Appl. Sci. 2022, 12, 1785 19 of 24

Further optimization of the BERs can be achieved by increasing the enrollment cycles and
identifying more cells that are unstable. Another opportunity for optimization is to impose
higher differences in resistance between the selected pairs of cells.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 25

• 8/5000 keys (0.16%) have three errors versus a Poisson distribution at 0.06%
• 1/5000 keys (0.02%) have four errors versus a Poisson distribution at 0.002%

Figure 15. Plotting the occurrence of erratic 256-bit long keys generated from the ReRAM PUFs. Out
of 5000 key recovery cycles, 4290 keys had zero errors, 643 keys had one error, 58 had two errors,
eight had three errors, and one key had four errors.

The RBC-light that searches for erratic keys with a Hamming distance of no more
than one is expected to find the matching keys in 98.5% of cases. The need to generate a
second response occurs in only 1.5% of the cases, and a third response in 0.02% of cases.
False reject rates (FRR) of the key recovery will occur if the latencies of the RBC are too
long due to an excessive number of iterations, and lengthy PUF response generation cy-
cles. Further optimization of the BERs can be achieved by increasing the enrollment cycles
and identifying more cells that are unstable. Another opportunity for optimization is to
impose higher differences in resistance between the selected pairs of cells.

6.2. Latencies for the Key Recovery Protocols with ReRAM PUFs
As part of the experiment presented above, we completed the full key recovery pro-

tocol, including the RBC-light. When the Hamming distance exceeded one, an additional
key generation cycle from the PUF was performed to enable the recovery of the initial 256-
bit long keys. A total of 5000 key recovery cycles were performed to quantify latencies.
The results are as follows, as shown in Figure 16:
• The average latency to recover 4290 keys without error is 2.11 s, which is mainly due

to the time it takes to read the 256 addresses from the pre-formed PUFs.
• The average latency to recover 643 keys with one error is 2.56 s. This includes an

additional 40 ms for the RBC-light.
• The average latency to recover 58 keys with two errors is 7.3 s. The additional delays

are due to the need to read the PUFs several times.
• The average latency to recover 8 keys with three errors rose to 10.6 s for the same

reason.
• The average latency to recover the last key with four errors was more difficult and

took 35.1 s. The difficulty here was the necessity to handle several cells that had re-
sponses that always differed from the initial response. We suspect that the initial read
was noisy. This type of problem can be resolved by reading the key, multiple times,

Figure 15. Plotting the occurrence of erratic 256-bit long keys generated from the ReRAM PUFs. Out
of 5000 key recovery cycles, 4290 keys had zero errors, 643 keys had one error, 58 had two errors,
eight had three errors, and one key had four errors.

6.2. Latencies for the Key Recovery Protocols with ReRAM PUFs

As part of the experiment presented above, we completed the full key recovery
protocol, including the RBC-light. When the Hamming distance exceeded one, an additional
key generation cycle from the PUF was performed to enable the recovery of the initial
256-bit long keys. A total of 5000 key recovery cycles were performed to quantify latencies.
The results are as follows, as shown in Figure 16:

• The average latency to recover 4290 keys without error is 2.11 s, which is mainly due
to the time it takes to read the 256 addresses from the pre-formed PUFs.

• The average latency to recover 643 keys with one error is 2.56 s. This includes an
additional 40 ms for the RBC-light.

• The average latency to recover 58 keys with two errors is 7.3 s. The additional delays
are due to the need to read the PUFs several times.

• The average latency to recover 8 keys with three errors rose to 10.6 s for the same
reason.

• The average latency to recover the last key with four errors was more difficult and took
35.1 s. The difficulty here was the necessity to handle several cells that had responses
that always differed from the initial response. We suspect that the initial read was
noisy. This type of problem can be resolved by reading the key, multiple times, during
the initial cycle and erasing the bad ones. However, in most use cases, a latency of 35 s
every 5000 cycles is perfectly acceptable.

Despite the fact that the hardware that we designed for this study is far from being
optimized in terms of stability, noise, and latency, the overall performance of the key
recovery schemes is in line with the study objectives. With this protocol, 100% of the
5000 keys were recovered, with an average latency of 2.25 s. Considering that the RBC-
light, with a Hamming distance of one, takes less than 40 ms, the bulk of the delays were
due to the response generated by the PUF, which takes about 2.0 s.

Appl. Sci. 2022, 12, 1785 20 of 24

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 25

during the initial cycle and erasing the bad ones. However, in most use cases, a la-
tency of 35 s every 5000 cycles is perfectly acceptable.

Figure 16. Plotting the latencies for key recovery in seconds from the ReRAM PUFs. When the
number of erratic bits is zero or one, the RBC-light can find the matching key in one cycle, within 3
s. Multiple cycles of key generation from the PUF are needed at higher error rates.

Despite the fact that the hardware that we designed for this study is far from being
optimized in terms of stability, noise, and latency, the overall performance of the key re-
covery schemes is in line with the study objectives. With this protocol, 100% of the 5000
keys were recovered, with an average latency of 2.25 s. Considering that the RBC-light,
with a Hamming distance of one, takes less than 40 ms, the bulk of the delays were due to
the response generated by the PUF, which takes about 2.0 s.

6.3. Software and Security Considerations
The development of the protocols presented in this section was mainly based on ge-

neric software, that can eventually be implemented in hardware with secure components,
as follows:
• The XOR functions concatenated the input parameters, such as random numbers,

with passwords for multi-factor access control.
• The hash function SHA-3 (512 bit), with its one-wayness, is at the core of several lay-

ers of protection, including:
• To convert the XORed input parameters into the message digest MD that feeds

the XOF and selects the addresses of the PUF used for response generation. MD
is also used to protect IDAccess after XORing operations.

• As part of the RBC, the hashing of the responses is used to uncover the original
responses.

• The XOF SHAKE converted the MD into the set of addresses pointing to the PUF.
• The session keys were encrypted using AES-256, and the keys were generated from

the original responses of the PUF. They were decrypted with the keys retrieved from
the RBC-light, and with the fresh responses from the same PUF after RBC correction.

• The session keys generated from the pre-formed ReRAM PUFs were tested success-
fully as seed data to generate private and public key pairs for elliptic curve

Figure 16. Plotting the latencies for key recovery in seconds from the ReRAM PUFs. When the
number of erratic bits is zero or one, the RBC-light can find the matching key in one cycle, within 3 s.
Multiple cycles of key generation from the PUF are needed at higher error rates.

6.3. Software and Security Considerations

The development of the protocols presented in this section was mainly based on
generic software, that can eventually be implemented in hardware with secure components,
as follows:

• The XOR functions concatenated the input parameters, such as random numbers, with
passwords for multi-factor access control.

• The hash function SHA-3 (512 bit), with its one-wayness, is at the core of several layers
of protection, including:

• To convert the XORed input parameters into the message digest MD that feeds
the XOF and selects the addresses of the PUF used for response generation. MD
is also used to protect IDAccess after XORing operations.

• As part of the RBC, the hashing of the responses is used to uncover the original
responses.

• The XOF SHAKE converted the MD into the set of addresses pointing to the PUF.
• The session keys were encrypted using AES-256, and the keys were generated from

the original responses of the PUF. They were decrypted with the keys retrieved from
the RBC-light, and with the fresh responses from the same PUF after RBC correction.

• The session keys generated from the pre-formed ReRAM PUFs were tested successfully
as seed data to generate private and public key pairs for elliptic curve cryptography,
Dilithium learning with error cryptography [37], and Saber learning with rounding
cryptography [39].

The objective of this research was not to develop a final product, which has to mitigate
a potential list of attacks. For example, all custom software, including the RBC, was not
designed to prevent side-channel analysis. The generic software modules, i.e., XOR, SHA-3,
SHAKE, and AES was written in C and downloaded in the 200 MHz RISC microcontroller,
rather than being executed through a secure crypto-processor. The aim was to focus on
the development of an efficient key recovery scheme with acceptable performance, not to
tackle and solve all security issues.

Appl. Sci. 2022, 12, 1785 21 of 24

7. Summary and Future Research

The analysis reported in this paper show that the proposed ReRAM based solutions
outperform SRAM PUF-based schemes in terms of BERs and tamper resistance. Bit error
rates below the 10−3 range were demonstrated in the keys generated from ReRAMs op-
erating in the pre-forming range with the differential cell pairing protocol. Unlike with
SRAMs, such low BERs do not necessitate lengthy enrollments to remove the unstable cells.
The differential protocol keeps only those pairs of cells with resistances further apart from
each other. The BERs are reduced when the proportion of pairs that are masked by the
protocol is large enough. Low BERs enable the use of a small search engine, the RBC-light,
as a replacement for power-consuming error-correcting schemes, without fuzzy extraction,
and without data helpers. The combination of tamper resistance, low BERs, and low power
correcting methods facilitated the development of an end-to-end cryptographic system to
deliver and protect digital files.

Future work: Unlike SRAM PUF based solutions, which are commercially available,
and which have solid performances, the deployment of schemes using pre-formed ReRAMs
requires additional research, that is not underestimated by the authors. We intend to
perform exhaustive characterizations of BERs of the ReRAMs, with additional enrollment
cycles, extended temperature cycles in the −40 ◦C to +140 ◦C range, increased buffer sizes
of the number of pairs, and accelerated aging cycles. As the expected BERs will be in
the 10−6 to 10−10 range, the experiments will need to run for months in order to produce
statistically valid results. The cryptographic protocols and the software driving the schemes
require further optimization to enhance security and mitigate various cyber-attacks. We
are also aware of the need to involve independent third-party investigators to identify
potential weaknesses in the proposed methods. The methods presented in this paper could
be considered for the following applications:

• Per paid content delivery. A service provider can deliver several encrypted files con-
taining information such as movies, music, apps, maps, and operating systems. The
user obtains access to the files after paying a fee.

• Protected user manuals. Staged access to a prepared set of instructions for a particular
task, which evolves over time, due to changes in conditions. The users receive, as
needed, access codes to open a particular portion of a user manual. An example of
such an application would be pilots flying a plane.

• Cooperative users. The server concurrently sends to user 2 the information needed by
user 1 to retrieve a sub-key, and to user 1 the information needed by user 2 to retrieve
the complementary sub-key. The full key is generated by knowledge of both sub-keys.

• Securing interconnected IoTs. Nodes of IoTs such as controlling and metering elements
in a grid, home hubs, smart sensors, contain information that is stored locally and
which needs to be protected constantly.

• Authentication of the server. When operating in a zero-trust environment, the server
sends users information previously used to encrypt and store a session key.

Author Contributions: Conceptualization, and methodology, B.F.C. and S.J.; software, S.J.; validation,
formal analysis, and investigation, B.F.C. and S.J.; resources, B.F.C.; data curation, B.F.C. and S.J.;
writing—original draft preparation, B.F.C. and S.J.; writing—review and editing, B.F.C. and S.J.;
visualization, supervision, project administration, and funding acquisition, B.F.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the United States Air Force Research Laboratory (AFRL) of
Rome, New York, contract number 19-0437 of the Broad Agency Announcement number FA8750-19-
S-7003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Appl. Sci. 2022, 12, 1785 22 of 24

Acknowledgments: The authors thank their research partners at Northern Arizona University for
their support, in particular Ian Burke, Christopher Philabaum, Jack Garrard, Michael Partridge,
Morgan Riggs, and Julie Heynessens. In addition, the authors thank the members of AFRL, Donald
Telesca and Shelton Jacinto. Several members of Crossbar Incorporated are also recognized for
their support and guidance, in particular Jo. Sung-Hyun, Hagop Nazarian, Ashish Pancholy, and
Mehdi Asnaashari.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AESAFRL Advanced Encryption StandardUnited states Air Force Research Laboratory
BER Bit Error Rate
CBRAM Conductive Bridge Random Access Memory
CMOSCRP Complementary Metal Oxide SiliconChallenge Response Pair
ECC Error Correcting Code
DES Data Encryption System
DRAM Dynamic Random Access Memory
FRR False Reject Rate
FPGA Field Programable Gate Array
GPU Graphic Processing Unit
HPC High Performance Computing
IoTMD Internet of ThingsMessage Digest
MIPS Microprocessor without Interlocked Pipelined Stages
MRAM Metal Random Access Memory
MUX Multiplexer
NIST National Institute of Standard and Technology
PKI Public Key Infrastructure
PUFPW Physical Unclonable functionPassword
RBC Response Based Cryptography
ReRAM Resistive Random Access Memory
RO Ring Oscillator
RSA Rivest Shamir Adleman code
SHA Standard Hashing Algorithm
SRAM Static Random Access Memory
XOF Extended Output Function
XOR Exclusive “OR” Gate

References
1. Wu, P.; Nathan, R.; Tredennick, H. Secure Hardware Signature and Related Methods and Applications. U.S. Patent 10,891,366,

12 January 2021.
2. Kameo, N.; Anzai, F.; Nishimae, E. Information Distribution Device, Distribution Target Device, Information Distribution System,

Information Distribution Method, and Non-transitory Computer-Readable medium. U.S. Patent 11,128,480, 21 September 2021.
3. Karakoyunlu, D.; Poo, T.L. Tamper-Resistant Component Networks. U.S. Patent 11,151,290, 19 October 2021.
4. Wentz, C. Systems, Devices, and Methods for Recording a Digitally Signed Assertion Using an Authorization Token. U.S. Patent

11,153,098, 19 October 2021.
5. Herder, C.; Yu, M.; Koushanfar, F. Physical Unclonable Functions and Applications: A Tutorial. Proc. IEEE 2014, 102, 1126–1141.

[CrossRef]
6. Papakonstantinou, I.; Sklavos, N. Physical Unclonable Function Design Technologies: Advantages & Trade Offs. In Computer and

Network Security; Daimi, K., Ed.; Springer: New York, NY, USA, 2018; ISBN 978-3-319-58423-2.
7. Gao, Y.; Ranasinghe, D.; Al-Sarawi, S.; Kavehei, O.; Abbott, D. Emerging physical unclonable functions with nanotechnologies.

IEEE Access 2016, 4, 61–80. [CrossRef]
8. Jin, Y. Introduction to hardware security. Electronics 2015, 4, 763–784. [CrossRef]
9. Rahman, M.T.; Rahman, F.; Forte, D.; Tehranipoor, M. An aging-resistant ro-puf for reliable key generation. IEEE Trans. Emerg.

Top. Comput. 2016, 4, 2016. [CrossRef]
10. Habib, B.; Kaps, J.; Gaj, K. Efficient SR-Latch PUF. In Proceedings of the ISARC-2015, Bochum, Germany, 15–17 April 2015.
11. Holcomb, D.E.; Burleson, W.P.; Fu, K. Power-up SRAM state as an Identifying Fingerprint and Source of TRN. IEEE Trans. Comp.

2008, 57, 1198–1210.

http://doi.org/10.1109/JPROC.2014.2320516
http://doi.org/10.1109/ACCESS.2015.2503432
http://doi.org/10.3390/electronics4040763
http://doi.org/10.1109/TETC.2015.2474741

Appl. Sci. 2022, 12, 1785 23 of 24

12. Wang, W.; Guin, U.; Singh, A. Aging-Resilient SRAM-based True Random Number Generator for Lightweight Devices.
J. Electron. Test. 2020, 36, 301–311. [CrossRef]

13. Zhang, X.; Jiang, C.; Dai, G.; Zhong, L.; Fang, W.; Gu, K.; Xiao, G.; Ren, S.; Liu, X.; Zou, S. Improved performance of SRAM-based
true random number generator by leveraging irradiation exposure. Sensor 2020, 20, 6132. [CrossRef] [PubMed]

14. Chen, A. Comprehensive Assessment of RRAM-based PUF for Hardware Security Applications. In Proceedings of the 2015
IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; Available online: https:
//ieeexplore.ieee.org/abstract/document/7409672 (accessed on 24 January 2022).

15. Cambou, B.; Chen, Y.-C. Tamper Sensitive Ternary ReRAM-Based PUF. In Proceedings of the SAI Computing Conference, London,
UK, 16 July 2021.

16. Christensen, T.A.; Sheets, J.E., II. Implementing PUF Utilizing EDRAM Memory Cell Capacitance Variation. U.S. Patent 8,300,450
B2, 30 October 2012.

17. Plusquellic, J.; Bhunia, S. Systems and Methods for Generating PUF’s from Non-Volatile Cells. U.S. Patent WO 20160328578, 10
November 2016.

18. Wang, Y.; Malysa, G.; Wu, S.; Yu, W.-K.; Suh, G.; Kan, E. Flash Memory for Ubiquitous Hardware Security Functions: TRNGs and
Device Fingerprints. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 20–23 May
2012; pp. 33–47. [CrossRef]

19. Prabhu, P.; Akel, A.; Grupp, L.; Yu, W.-K.S.; Suh, G.E.; Kan, E.; Swanson, S. Extracting Device Fingerprints from Flash Memory
by Exploiting Physical Variations. In Proceedings of the 4th International Conference on Trust and Trustworthy Computing,
Pittsburg, PA, USA, 22–24 June 2011.

20. Vatajelu, E.I.; Di Natale, G.; Barbareschi, M.; Torres, L.; Indaco, M.; Prinetto, P. STT-MRAM-Based PUF Architecture exploiting
MTJ Fabrication-Induced Variability. ACM J. Emerg. Technol. Comput. Syst. 2017, 13, 1–21. [CrossRef]

21. Zhu, X.; Millendorf, S.; Guo, X.; Jacobson, D.; Lee, K.; Kang, S.; Nowak, M. Physically Unclonable Function Based on Programming
Voltage of Magneto-Resistive Random-Access Memory. U.S. Patent 9,343,135, 17 May 2016.

22. Cambou, B.; Orlowski, M. PUFs Designed with Ternary States; ACM: New York, NY, USA, 2016; ISBN 978-1-4503-3752-6/16/04.
23. Cambou, B.; Telesca, D. Ternary Computing to Strengthen Cybersecurity, Development of Ternary State based Public Key

Exchange. In SAI Computing Conference; IEEE: London, UK, 17 July 2018.
24. Delvaux, J.; Gu, D.; Schellekens, D.; Verbauwhede, I. Helper Data Algorithms for PUF-Based Key Generation: Overview and

Analysis. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2015, 34, 889–902. [CrossRef]
25. Taniguchi, M.; Shiozaki, M.; Kubo, H.; Fujino, T. A stable key generation from PUF responses with a Fuzzy Extractor for

cryptographic authentications. In Proceedings of the IEEE 2nd Global Conference on Consumer Electronics (GCCE), Tokyo,
Japan, 1–4 October 2013.

26. Kang, H.; Hori, Y.; Katashita, T.; Hagiwara, M.; Iwamura, K. Cryptographic key generation from PUF data using efficient fuzzy
extractors. In Proceedings of the 16th International Conference on Advanced Communication Technology, Pyeongchang, Korea,
16–19 February 2014.

27. Boehm, H. Error Correction Coding for Physical Unclonable Functions: Austrochip. In Proceedings of the Workshop in
Microelectronics, Vienna, Austria, 1 January 2010.

28. Chen, T.; Willems, F.; Maes, R.; Sluis, E.; Selimis, G. A robust SRAM-PUF key generation scheme based on polar codes. arXiv 2017,
arXiv:1701.07320.

29. Maes, R.; Tuyls, P.; Verbauwhede, I. A Soft Decision Helper Data Algorithm for SRAM PUFs. In Proceedings of the 2009 IEEE
International Symposium on Information Theory, Seoul, Korea, 28 June–3 July 2009.

30. Cambou, B.; Philabaum, C.; Booher, D.; Telesca, D. Response-Based Cryptographic Methods with Ternary Physical Unclonable
Functions. In Proceedings of the Future of Information and Communication Conference, San Francisco, CA, USA, 14–15 March
2019; Springer: Berlin/Heidelberg, Germany, 2019.

31. Cambou, B. Unequally powered Cryptography with PUFs for networks of IoTs. In Proceedings of the IEEE Spring Simulation
Conference, Tucson, AZ, USA, 29 April–2 May 2019.

32. Cambou, B.; Mohammadi, M.; Philabaum, C.; Booher, D. Statistical Analysis to Optimize the Generation of Cryptographic Keys
from PUFs. In Proceedings of the Science and Information Conference, London, UK, 16–17 July 2020; Springer: Berlin/Heidelberg,
Germany, 2020.

33. Lee, K.; Gowanlock, M.; Cambou, B. SABER-GPU: A Response-Based Cryptography Algorithm for SABER on the GPU. In
Proceedings of the 2021 IEEE 26th Pacific Rim International Symposium on Dependable Computing (PRDC), Perth, Australia,
1–4 December 2021.

34. Wright, J.; Fink, Z.; Gowanlock, M.; Philabaum, C.; Donnelly, B.; Cambou, B. A Symmetric Cipher RBC Engine Accelerated Using
GPGPU. In Proceedings of the IEEE virtual CNS conference, Virtual, 4–6 October 2021.

35. NIST-3rd Round PQC. 22 July 2020. Available online: https://csrc.nist.gov/News/2020/pqc-third-round-candidate-
announcement (accessed on 24 January 2022).

36. Nejatollahi, H.; Dutt, N.; Ray, S.; Regazzoni, F.; Banerjee, I.; Cammarota, R. Post-Quantum lattice-based cryptography implemen-
tations: A survey. ACM Comput. Surv. 2019, 51, 129. [CrossRef]

37. Ducas, L.; Kiltz, E.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehlé, D. CRYSTALS-Dilithium Algorithm Specifications
and Supporting Documentation. 2019. Available online: https://pq-crystals.org/dilithium (accessed on 1 January 2022).

http://doi.org/10.1007/s10836-020-05881-6
http://doi.org/10.3390/s20216132
http://www.ncbi.nlm.nih.gov/pubmed/33126596
https://ieeexplore.ieee.org/abstract/document/7409672
https://ieeexplore.ieee.org/abstract/document/7409672
http://doi.org/10.1109/SP.2012.12
http://doi.org/10.1145/2790302
http://doi.org/10.1109/TCAD.2014.2370531
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
http://doi.org/10.1145/3292548
https://pq-crystals.org/dilithium

Appl. Sci. 2022, 12, 1785 24 of 24

38. Nurshamimi, S.; Kamarulhaili, H. NTRU Public-Key cryptosystem and its variants: An overview. Int. J. Cryptol. Res. 2020, 10, 21.
39. D’Anvers, J.-P.; Karmakar, A.; Roy, S.; Vercauteren, F. Saber: Module-LWR based key exchange, CPA-secure encryption and

CCA-secure KEM. In International Conference on Cryptology in Africa; Cryptology ePrint Archive, Report 2018/230; Springer:
Berlin/Heidelberg, Germany, 2018; Available online: https://eprint.iacr.org/2018/230 (accessed on 15 December 2021).

40. Casanova, A.; Faugere, J.-C.; Macario-Rat, G.; Patarin, J.; Perret, L.; Ryckeghem, J. GeMSS: A Great Multivariate Short Signature;
NIST PQC project round 2; National Institute of Standards and Technology: Gaithersburg, MD, USA, 30 January 2019. Available
online: https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions (accessed on 24 January 2022).

41. Fouque, P.-A.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Prest, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhang, Z.
Falcon: Fast-Fourier Lattice-Based Compact Signatures over NTRU; NIST PQC project round 2, documentation; National Institute of
Standards and Technology: Gaithersburg, MD, USA, 2019.

42. Ding, J.; Chen, M.-S.; Petzoldt, A.; Schmidt, D.; Yang, B.-Y. Rainbow; NIST PQC project round 2, documentation; National Institute
of Standards and Technology: Gaithersburg, MD, USA, 2019.

43. Maes, R.; van der Leest, V. Countering the Effects of Silicon Aging on SRAM PUFs. In Proceedings of the 2014 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), Arlington, VA, USA, 6–7 May 2014.

44. Grossi, A.; Calligaro, C.; Perez, E.; Schmidt, J.; Teply, F.; Mausolf, T.; Zambelli, C.; Olivo, P.; Wenger, C. Radiation hard design
of HfO2 based 1T1R cells and memory arrays. In Proceedings of the 2015 International Conference on Memristive Systems
(MEMRISYS), Paphos, Cyprus, 8–10 November 2015.

https://eprint.iacr.org/2018/230
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions

	Introduction
	One Way Unclonable Functions with Ternary States
	One Way Unclonable Functions
	Random Number (T)
	Individual Digital Access Instructions (IDAccess):
	One-Way-Ness of the Function
	Collision Avoidance
	Un-Clonability

	One Way Unclonable Functions with PUFs
	Ring Oscillator PUFs
	Arbiter PUFs
	SRAM-Based PUFs
	ReRAM-Based PUFs

	Use of Ternary States to Protect the One-Way Unclonable Functions
	Error-Correcting Methods Versus Search Engines
	Error-Correcting Codes (ECC)
	Response-Based Cryptography (RBC)

	Session Key Recovery with Ternary PUFs
	Preparation Cycle—Session Key Encapsulation
	Session Key Recovery
	Light Search Engine Implementation

	Content Protection with Ternary Unclonable Functions
	Preparation Cycle—Encryption and Delivery of the Digital Files
	Decryption of the Digital Files by the Client Device
	Protection of Digital Files Stored by IoT Terminals

	Implementation with SRAM and ReRAM Devices
	Description and Analysis of the SRAM Implementation
	Description and Analysis of the ReRAM Implementation
	Comparative Analysis of SRAM versus ReRAM Schemes

	Characterizing the Key Recovery from ReRAM PUFs
	Rates of Erratic Keys Recovered from ReRAM PUFs
	Latencies for the Key Recovery Protocols with ReRAM PUFs
	Software and Security Considerations

	Summary and Future Research
	References

