
����������
�������

Citation: Wang, X.; Lyu, H.; Mao, T.;

He, W.; Chen, Q. Point Cloud

Segmentation from iPhone-Based

LiDAR Sensors Using the Tensor

Feature. Appl. Sci. 2022, 12, 1817.

https://doi.org/10.3390/

app12041817

Academic Editor: Nunzio Cennamo

Received: 14 January 2022

Accepted: 7 February 2022

Published: 10 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Point Cloud Segmentation from iPhone-Based LiDAR Sensors
Using the Tensor Feature
Xuan Wang 1, Haiyang Lyu 2, Tianyi Mao 1,2, Weiji He 1,* and Qian Chen 1

1 Jiangsu Key Laboratory of Spectral Imaging & Intelligence Sense (SIIS), Nanjing University of Science and
Technology, Nanjing 210094, China; hengwan210984@njust.edu.cn (X.W.); maoty@njupt.edu.cn (T.M.);
chenqian@njust.edu.cn (Q.C.)

2 Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province,
Nanjing University of Posts and Telecommunications, Nanjing 210023, China; hlyu@njupt.edu.cn

* Correspondence: hewj@njust.edu.cn; Tel.: +86-025-85866638

Featured Application: Point cloud segmentation, geometric feature extraction.

Abstract: With widely used LiDAR sensors included in consumer electronic devices, it is increasingly
convenient to acquire point cloud data, but it is also difficult to segment the point cloud data obtained
from these unprofessional LiDAR devices, due to their low accuracy and high noise. To address the
issue, a point cloud segmentation method using the tensor feature is proposed. The normal vectors
of the point cloud are computed based on initial tensor encoding, which are further encoded into the
tensor of each point. Using the tensor from a nearby point, the tensor of the center point is aggregated
in all dimensions from its neighborhood. Then, the tensor feature in the point is decomposed and
different dimensional shape features are detected, and the point cloud dataset is segmented based on
the clustering of the tensor feature. Using the point cloud dataset acquired from the iPhone-based
LiDAR sensor, experiments were conducted, and results show that both normal vectors and tensors
are computed, then the dataset is successfully segmented.

Keywords: point cloud segmentation; iPhone LiDAR sensor; tensor feature decomposition

1. Introduction

The point cloud is a universal spatial information acquisition format and plays an
important role in indoor and outdoor environment understanding [1]. In conventional
point processing methods, the point cloud is usually defined as a spatial location, or as
having textural information, and geometric features are computed from the unstructured
point cloud; then, the data are segmented into different geometric or semantic structures for
further processing, such as in object detection, classification, and scene understanding [2,3].

In recent years, with different kinds of Light Detection And Ranging (LiDAR) sensors
included in consumer electronic devices, such as the iPhone or Kinect, it has become in-
creasingly convenient to acquire point cloud data. However, it also raised many challenges
for data processing, due to the low accuracy and high noise of the point cloud data col-
lected by these unprofessional LiDAR devices. To address these issues, some processing
techniques are applied [4–8], such as point cloud filter, denoising, normal computation, and
resampling. Then features are extracted from the point cloud, and the data are segmented.
To achieve this goal, many kinds of point cloud segmentation methods were proposed that
extract the feature in different ways, including deep learning-based approaches.

To deal with these kinds of problems in a universal framework, this work proposes
a tensor feature-based point cloud segmentation method, and the point cloud data in an
actual scene is obtained from the iPhone LiDAR sensor. The contributions are as follows:
(1) we conduct the theoretical derivation of the N-d tensor voting, which helps the high-
dimensional normal vector computation and structure decomposition, and design the

Appl. Sci. 2022, 12, 1817. https://doi.org/10.3390/app12041817 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12041817
https://doi.org/10.3390/app12041817
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12041817
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12041817?type=check_update&version=2

Appl. Sci. 2022, 12, 1817 2 of 19

related algorithms (2) we compute the normal vectors from the noisy point cloud based
on the two-step procedure of tensor encoding and aggregating; (3) we construct the tensor
feature decomposing and clustering framework to segment the point cloud from the noisy
scenes acquired by the iPhone LiDAR sensor, and make a comparison between several
related methods.

The remainder of this paper is structured as follows. The next section gives an
overview of works related to this paper. Section 3 provides a detailed description of the
point cloud segmentation method based on the tensor feature, including normal vector
computing, tensor aggregation, tensor feature decomposition, and point cloud clustering.
Experiments are conducted and the results are discussed in Section 4, followed by the
conclusions in Section 5.

2. Related Works

Based on the way features are computed, point cloud segmentation methods can be
categorized into two types:

(1) Point cloud segmentation based on the geometric feature extraction.

The geometric features of the point cloud can be computed directly from the unstruc-
tured, scattered data, using computation geometric theory, and geometric features [2,3,9],
such as line features which represent the geometric frame line of the object structure, and
flat features, which may be part of the continuous flat surfaces, are usually extracted. Since
the edge is one of the most salient geometric features of the point cloud, different edge
structures are usually computed. Then, the closed geometric features represented by the
edges are detected, and the point cloud dataset is segmented based on the boundary of
each segment [2,9,10]. It is simple and convenient for the computer to implement, but the
data are usually over-segmented. Meanwhile, in regional growth-based methods [11,12],
point cloud segmentation is started with a seed, which can be computed with the minimum
curvature. Then the process is iteratively computed based on the curvature threshold val-
ues, and different point segments are generated. Compared with the regional growth-based
method, seeds points are not needed in feature clustering-based methods, and the point
cloud data are usually segmented based on the clustering of point features, such as the
curvature, angle difference, and discreteness. No structures are predefined, and the point
cloud dataset is just segmented based on the closeness of features, and the cluster methods
can be the K-means cluster, fuzzy cluster, and mean shift cluster [13–15]. However, in the
incomplete sample scene, a single object can be segmented into different groups. However,
in geometric model fitting-based methods, the predefined geometric models, such as the
box, sphere, and cylinder, are applied to the point cloud. Hough Transformation [16],
Random Sample Consensus (referred to as RANSAC) [17], or KD-tree-based space divi-
sion [18] are usually used to obtain the optimal fitting segmentation result. In addition,
a more complex model fitting process is needed for the continuous smooth geometric
structures. Hence, in the principal structure-based methods, the geometric features are
computed using the neighborhood, based on Principal Component Analysis (PCA), and
the geometric structures are represented by the eigenvalues [19]. Then, different kinds
of structures are split into different categories by a supervised or unsupervised method,
such as Support Vector Machine (SVM) [20]. Other kinds of geometric feature computation
methods, including the tensor voting algorithm [21–23], where the geometric information
is computed based on the tensor decomposition from the scattered point, share a similar
feature computation principle with the point’s neighborhood. Geometric features are
computed based on the spatial relations between the point and its neighborhood, without
manual interactions of training operations. Due to the intuitive and direct representation
of the geometric structures in the point cloud, the geometric feature-based point cloud
segmentation method has been widely used for years. However, the computation result
could be unstable and misjudged in situations where there are many noisy point samplings.

(2) Point cloud segmentation based on the deep-learning neural network

Appl. Sci. 2022, 12, 1817 3 of 19

With the rapid development of graphics processing unit (GPU) parallel computing,
deep-learning-based point cloud segmentation methods have been widely used and applied
in many kinds of research. The point cloud dataset is separated into training, validation,
and experimental datasets [4,5]. To deal with point cloud segmentation based on the 3D
convolution neural network (CNN), the intuitive method is used to transform the 3D
scattered point cloud into 2D images. Hence, in the multi-view CNN (MVCNN) [24]-based
point cloud segmentation method, the point cloud in the training set is projected onto
the 2D planes in a surrounding circle, then the neural network is trained and applied
to semantic segmentation work. Though applied in 3D, the work is actually done with
2D processing. Some other similar works, such as group-view CNN (GVCNN) [25] and
SqueezeSeg [26], actually use a similar technique. Another similar CNN-based method is
3D voxel-based point cloud segmentation [27], where the point cloud data are converted
to spatially regularized voxels, then voxels are taken as 3D cubes and the 3D CNN-based
deep-learning neural network is applied. These methods are adapted from the CNN of
image processing, not directly designed for the scattered points; moreover, in the training
dataset and validation dataset, the point cloud is labeled manually, and large amounts of the
dataset are processed and input into the training program, which takes a long time to obtain
the desired accuracy. In the first mentioned cloud segmentation method, PointNet [28]
just takes the points as the input, and extracts the features of the data based on multi-
layer perceptron (MLP), which can deal with the unstructured point cloud. Improvements
have been made by PointNet++ [29] and other similar methods, with the neighborhood
information accounted for. Another kind of point cloud segmentation method is the graph
convolution-based method, which combines convolution with the graph structure. In the
superpoints graph (SPG) [30], the point clouds are segmented and used as the super points
of the graph, then split into each semantic group based on the graph convolution. However,
the point data are still unstructured, and it is difficult to compute the convolution. To
address the issue, PointCNN [31] applies the x transformation to the point cloud, and
some other similar methods are proposed. These methods focus on both the segmentation
and semantic labeling of the point cloud, and take the neighborhood and context into
account, such as the scale. Some other improvements consider the attention mechanism of
the neural network, such as in RandLA [32], or the feature encoding rules [33–35]. With
the automatic fitting of the feature extracting and representing model, the point cloud
can be quickly separated into different segments, even with the labels of each category.
Nevertheless, the deep-learning neural network-based point cloud segmentation method
is actually a statistical method, whose accuracy is limited by the training dataset and the
result is affected by the pre-trained parameters. Moreover, if the kind of features that are
not included in the training dataset or there are noise points in the input dataset, the result
will become unstable.

To deal with the actual noisy dataset and acquire a stable geometric feature description
from the input data, a point cloud segmentation method using the tensor feature is proposed
in this paper, and the point cloud accessed on the iPhone-based LiDAR sensor is used. The
proposed method belongs to geometric feature extraction-based point cloud segmentation,
and several similar kinds of methods are experimented with and compared.

3. Methodology

Suppose the point p in the LiDAR point cloud consists of the coordinate, which can be
shown as p(x,y,z). Based on tensor feature decomposition, the point cloud segmentation
method assigns a label to each point p in difference subsets, and even gives them different
geometric or semantic meanings. In this paper, the point cloud segmentation procedure is
composed of the following steps:

(1) normal vector computation based on the initial tensor encoding.
(2) tensor aggregation from the tensor encoded with normal information.
(3) tensor feature decomposition and shape classification by tensor analysis.
(4) point cloud segmentation according to the tensor clustering.

Appl. Sci. 2022, 12, 1817 4 of 19

The point cloud is collected from the LiDAR sensor and tensor features are encoded
and assembled based on the tensor from the normal vector, then the point cloud dataset is
segmented by the tensor feature clustering process, as shown in Figure 1.

Figure 1. The workflow of the point cloud segmentation.

3.1. Normal Vector Computation Based on Initial Tensor Encoding

The normal vector of a point is the direction that is orthogonal to the direction of
the structure. Suppose a d-dimensional geometric structure G, which is embedded in
the N-dimensional space S with N basis vectors

(→
e 1,
→
e 2, · · · ,

→
e N

)
. As depicted in the

manifold theory, G is considered to be a manifold structure, with a d-dimensional normal
subspace Sd and (N-d)-dimensional tangent subspace SN-d, while the normal vector is
considered to the basis vector

(→
e 1,
→
e 2, · · · ,

→
e d

)
of the normal subspace Sd, as shown in

Equation (1). All kinds of structures of the point p of in G are encoded by the tensor of the
normal subspace, ranging from 1-dimensional and 2-dimensional, to d-dimensional. In
the 1-dimensional structure, the structure of G is considered to be a flat and continuous
surface, and the normal space vector is considered to be a stick-shaped tensor. However, in
the N-dimensional structure, the structure of G is considered to be a ball.

S = Sd + SN−d, s.t., Sd =
d

∑
n=1

→
e n
→
e

T
n , SN−d =

N

∑
n=d+1

→
e n
→
e

T
n (1)

However, there is no normal information explicitly represented in the original point
cloud, and the normal vector needs to be encoded from the ball tensor, where the dimension
d = N. The initial tensor encoding is started from point p and its neighborhood Ω, which is
consisted of k point except p:

(1) arbitrarily pick up a point pi from the neighborhood Ω, and compute the vector
→
v i

from pi to p, as shown in Equation (2), then normalize the vector
→
v i as v̂i.

→
v i = p− pi, pi ∈ Ω (2)

(2) compute the tensor Ti of tangent subspace SN-d using the Kronecker delta of v̂i in
Equation (2), and obtain the normal subspace Sd, based on Equation (1).

Ti = I − kron(v̂i, v̂T
i) (3)

As shown in Equation (3), the N-dimensional space S can be represented by the identity
matrix I, since there is no preferred basis vector in the N-dimensional space.

(3) gather the initial tensor from the neighborhood Ω, using the weight function w based

on the vector
→
v i, as shown in Equation (4). The weight w is a Gaussian function

w(s) = e−(s
σ)2

.

T =
i=k

∑
i=1

w
(∥∥∥→v i

∥∥∥)Ti (4)

(4) calculate eigenvectors
(→

u 1,
→
u 2,, · · · ,

→
u N

)
of the tensor T and choose the vector

→
u 1

(as shown in Figure 2) with the largest eigenvalues as the normal vector of point p.

Appl. Sci. 2022, 12, 1817 5 of 19

Here p can be treated as a point in the surface, and
→
u 1 is the 1-dimensional stick

structure.

Figure 2. The normal vector computation based on the initial tensor encoding.

3.2. Tensor Aggregation Based on Normal Tensor Assembling

Since the geometric structure of the point p is unknown and the dimensional infor-
mation is encoded in the tensor of each point, the tensor information at point p needs
to be aggregated based on the normal tensor from its neighborhood, then the geometric
information can be further judged by 1-dimensional, 2-dimensional, and N-dimensional
structures, which will be discussed in Section 3.3.

(1) tensor representation in each dimension using normal information

Using the normal vector computed in Section 3.1, the tensor field of each point p can
be re-encoded based on the normal vector

→
u 1, as shown in Equation (5).

Tnew = kron
(
→
u 1,
→
u

T
1

)
(5)

Then the tensor Tnew is decomposed with eigenvectors
(→

µ 1,
→
µ 2, · · · ,

→
µ N

)
and eigen-

values (ς1, ς2, · · · , ςN), where ς1 ≥ ς2 ≥ · · · ≥ ςN . The d-dimensional geometric
structure Dd is assembled by the tensor of each eigenvector along with its dimensional
saliency s, which is shown in Equation (6).

Dd = ∑d
i=1 si · kron

(
→
µ i,
→
µ

T
i

)
(6)

In Equation (6), the dimension saliency si is computed by eigenvalues, as shown in
Equation (7).

si =

{
ςi− ςi+1

ςN

, i < N
i = N

(7)

(2) geometric structure propagation based on tensor assembling

Suppose there is a point pk in the neighborhood of point p, and the d-dimensional
geometric structure Dd of the point p is going to be propagated to point pk, as depicted in
Figure 3, where N = 2.

Appl. Sci. 2022, 12, 1817 6 of 19

Figure 3. The propagation procedure of the tensor field.

As seen in the figure, the space S at p is decomposed into the normal vector vn and
tangent vector vt, and the structure that was encoded by the normal vector is going to
be propagated from p to pk, along a curved path c. Since the normal vector is always
orthogonal to the surface, both the normal vector vn at p and that propagated to pk (shown
as vk in Figure 3) share the same curvature, and intersect at the virtual center point o. The
angle θ is the direction difference between the tangent vector vt and the directly connected
vector v that starts from point p to pk, and can be computed based on Equation (8).

θ = acos
(

dot
(

vk

‖vk‖
, vt

))
(8)

Hence, other angle relations can be calculated using trigonometric function conversion
formula. The normal vnk vector at point pk can be computed based on Equation (9).

vnk = vn cos(2θ)− vt sin(2θ) (9)

Using Equations (8) and (9), the tensor information propagated from point p to pk, as
shown in Equation (10).

Td
p−>pk

= ω(r, θ) · kron
(

vnk, vT
nk

)
(10)

ω(r, θ) = e(
r
σ)2

(cos(θ))4 is the decaying function of the tensor information, and r is
the distance between the two points which can be computed by ‖v‖.
(3) tensor aggregation of each dimensional structure from neighborhood

In the d-dimensional space Sd (as shown in Equation (1)), each dimensional geometric
structure Dd, which is encoded by the base normal vector, should be projected to vk based
on the geometric angle relations. However, the process can be simplified based on the
work of King [10], if the 1-dimensional basis normal vector

→
v n,1 is chosen to be vn, which

is the projection of vk to Sd (i.e., Sdvk). In this case, the other dimensional basis vector
will be orthogonal to vk, and the angle θ will become 0, except that in 1-dimensional

Appl. Sci. 2022, 12, 1817 7 of 19

structures. Therefore, the tensor of Td of geometric structure Dd, can be computed based on
Equation (11).

T i
p = Td=1

p−>pk
+ Td>2

p−>pk
(11)

θ will become 0 in Td>2
p−pk

, and can be computed based on Equations (12) and (13).

Td=1
p−>pk

= ω(r, θ) · kron(vnk, vT
nk) (12)

Td>2
p−>pk

= ω(r, 0) ·
(

Sd− kron
(

vn, vT
n

))
(13)

There are many structures encoded in tensor Tnew, and each structure T i
p can be

computed based on Equation (12) with its structure saliency si based on Equation (7). The
aggregated tensor Tagg

p from the point p in each dimensional i is shown in Equation (14).

Tagg
p = ∑N

i=1 si·T i
p (14)

Each of the points p in the neighborhood has a propagated tensor Tagg , and the
tensor aggregation result Tagg(pk) of the point pk by its neighborhood Ω is shown in
Equation (15).

Tagg(pk) = ∑
p∈Ω

Tagg
p (15)

3.3. Tensor Feature Decomposition and Shape Classification Based on Tensor Analyzing

As represented in Section 3.2, there are many kinds of geometric structures encoded
in the tensor of each point, ranging from 1-dimensional, 2-dimensional, to N-dimensional
structures. Through the eigenvalue decomposition, eigenvalues and eigenvectors are
computed as follows:

(1) eigenvalues (γ1, γ2, · · · , γN) with descending order, i.e., referred to as the intensity
of each eigenvector;

(2) eigenvectors
(→

κ 1,
→
κ 2, · · · ,

→
κ N

)
, i.e., referred to as the dimension of the normal space,

which is orthogonal to the manifold structures of G.

According to Equation (7), the d-dimensional geometric structure can be computed by
the eigenvalues, along with the related eigenvectors. For example, as depicted in Figure 4,
in the space S (N = 3):

(1) the geometric structure with the 1-dimensional stick-shaped normal space, where

there is just one normal vector (
→
κ 1), tends to be the “surface”, and the geometric

structure saliency s1 = γ1− γ2;
(2) the geometric structure with 2-dimensional surface-shaped normal space, where there

are two normal vectors (
→
κ 1,
→
κ 2), tends to be the “line” and the geometric structure

saliency s2 = γ2− γ3;
(3) the geometric structure with 3-dimensional ball-shaped normal space, where there are

three normal vectors (
→
κ 1,
→
κ 2,
→
κ 3), tends to be the “point” and the geometric structure

saliency s3 = γ3.

Using the above method, each point p is labeled with a shape descriptor p(s1, s2, · · · , sN),
ranging from dimension 1 to dimension N. In addition, the normal vector can be further
refined by using

→
κ 1, under the assumption that objects captured by the LiDAR point cloud

have continuous surfaces, and the vector
→
κ 1 is the main vector that can be encoded into

the 1-dimensional normal space.

Appl. Sci. 2022, 12, 1817 8 of 19

Figure 4. Shape representation based on the tensor features.

3.4. Point Cloud Segmentation Based on Tensor Clustering

With the shape descriptor and refined normal vector computed as in Section 3.3, the
point cloud data can be further processed in the following three aspects:

(1) point feature filtering based on the ball tensor detecting

Since the 3D indoor/outdoor scene scanned by the LiDAR sensor is composed of
objects with continuous surfaces, the point with a high geometric structure saliency of sN
(N = 3, in 3-dimensional space), which is presented as the ball tensor and turns out to be the
scattered point, can be taken as noise point data. To deal with such cases, a threshold value
ηpoint to remove of the scattered noisy point cloud data, can be interactively set through a
trivial operation, as shown in Equation (16).

Ppoint = {p|sN ∈ p(s1, s2, · · · , sN) & sN > ηnoise } (16)

(2) line feature extraction based on the line tensor classifying

Due to the noise and untrusted sampling of the point cloud, the saliency of the line
geometric feature is affected to some extent. To extract the line feature, a threshold value
ηline is applied to each point, and points with saliency higher than ηline are selected, as
shown in Equation (17). The extracted points are actually in the buffer of the line feature,
so the point in the extracted line feature is further simplified to become the line feature.

Pline = {p|s2 ∈ p(s1, s2, · · · , sN) & s2 > ηline & Simpli f ying} (17)

(3) surface feature segmentation based on the surface tensor clustering

Based on the regional growth method, the surface feature is segmented using the
surface saliency s1 and the refined normal vectors

→
κ 1 of each point. The detailed operations

are as follows:

(1) sort the surface saliency s1 in descending order, and take the point with the largest
saliency as the seed point p;

(2) initialize the cluster set C and seed set E, push p into E, and search the neighborhood
Ω points of p using the searching radius r;

(3) for each of the point pi in the Ω, compute the angle difference θ
(

κ
p
1 , κ

pi
1

)
between the

normal vector of p and pi. Push pi to C if θ(p, pi) < θsur f ace, in addition, push pi to Q
if spi

1 < ηsur f ace;
(4) delete the current seed point p from Q, and repeat step 3 until there is no seed point

in Q.

Appl. Sci. 2022, 12, 1817 9 of 19

The point cloud segmentation result is the line feature and segmented surface features,
while the point feature is filtered from the original point cloud data.

3.5. The Algorithm of the Point Cloud Segmentation Workflow

Based on the processing stages of tensor features, the algorithm of the point cloud seg-
mentation workflow is composed of three main steps, including normal vector computation,
tensor aggregation, and point segmentation, which are depicted in Algorithm 1.

Algorithm 1 The algorithm of the point cloud segmentation workflow

Point cloud Segmentation based on the Tensor Feature PSTF(P, r)
INPUT: point cloud P, the searching distance for the neighborhood r, segmentation thresholds
{ηpoint ,ηline,ηsur f ace,θsur f ace}
OUTPUT: segmented point cloud sets PSeg
//Stage 1: Normal vector computation based on initial tensor encoding
FOREACH p in P

Ω{pi|‖p− pi‖ ≤ r } = GetNeighborhood(p, r);//get the neighborhood of p
[
→
v i, v̂i]= ComputeVoteVector(p,pi∈ Ω);//based on Equation (2)

T = VoteEncodingByNeighborhood(p, pi∈ Ω, v̂i ∈ Ω);//based on Equations (3) and (4)
→
u 1 = GetOneDimStickVector(T);//based on Equation (1)

END
//Stage 2: Tensor aggregation based on normal tensor assembling
FOREACH p in P

Tnew = ReEncoding(
→
u 1);//based on Equation (5)

[
→
µ , ς] = EigenDecomposition(Tnew);//get the decomposed eigenvectors and eigenvalues

from the re-encoded tensor
Ω{pk|‖p− pk‖ ≤ r } = GetNeighborhood(p, r);//get the neighborhood of p
FOREACH d in N//structures in each dimension for point p

Dd = ComputeStructureTensor(
→
µ);//based on Equation (6)

si = ComouteSturctureSaliency(ς);//based on Equation (7)
[vn, vt, vk] = ComputeVector(p, pk∈ Ω);//compute vectors for the voting
θ = ComputeAngleDifference(vt, vk);//based on Equation (8)
vnk = ComputePropergatedVector(vn, vt, θ);//based on Equation (9)
Td

p−>pk
= ComputeTensorFeature(vnk);//based on Equation (10)

T i=d
p = ComputeDDimensionalTensor(Td=1

p−>pk
, Td≥2

p−>pk
, pk∈ Ω);//based on

Equations (11)–(13).
END
Tagg

p = AggregateTensor(si, T i
p);//based on Equation (14)

Tagg(pk ∈ Ω) = PropagateTensor(Tagg
p);//based on Equation (15)

END
//Stage 3: Tensor feature decomposition based on tensor analyzing
[
→
κ , γ] = EigenDecomposition(Tagg);//get the decomposed eigenvectors and eigenvalues from the

aggregated tensor
[s1,s2, . . . ,sn] = ComputeGeometricDescriptor(γ);//geometric structure decomposition
//Stage 4: Point cloud segmentation based on tensor clustering
Ppoint = PointFeatureFiltering(s,ηpoint);//based on Equation (16)
Ppoint = LineFeatureExtration(s,ηline);//based on Equation (17)
Psurface = SurfaceFeatureFiltering(s,ηsur f ace,θsur f ace);//get the surface feature
RETURN PSeg{Ppoint, Pline, Psurface}

4. Experiments and Discussions

This section focuses on the experiments with point cloud segmentation based on the
method described in Section 3. There are two different experiments conducted based on
the dataset acquired from the LiDAR sensor: the first experiment is to illustrate the detailed
steps and information of the proposed method, while the second experiment is to validate
the capability of the proposed method. In the first experiment, the point clouds are acquired
from the iPhone-based LiDAR sensor, then normal vectors are computed based on the

Appl. Sci. 2022, 12, 1817 10 of 19

initially encoded tensor. The tensor at each point is re-encoded using normal information
and aggregated from its neighborhood, followed by tensor feature decomposition and
shape classification operations. Finally, the point cloud segmentation method is conducted
using the clustering process, along with comparisons and a discussion.

4.1. Datasets from the iPhone-Based LiDAR Sensor

In this paper, point cloud data are obtained from the LiDAR sensor included with the
iPhone 12 Pro Max, which is a kind of consumer electronic device, as depicted in Figure 5.
The LiDAR sensor is a solid-state device with a range of 5 m and low resolutions, and the
point cloud data are obtained based on TOF (Time of Flight) technology.

Figure 5. The LiDAR sensor included in the iPhone.

In the first experiment, the dataset is in a small scene consisting of three cubes on the
ground with an area of 1.49 m2, and the point number is 15,599, as depicted in Figure 6.
In addition, the dataset is affected by the noisy point cloud samplings by the LiDAR sensor.
Hence, as the data quality index, the standard deviation (std.) is computed based on the
distribution of the point cloud on a flat plane, which is acquired from the datasets with a
flat area. In the dataset, the mean square error is 0.0018 m.

Figure 6. The dataset acquired by the LiDAR sensor.

4.2. Normal Vector Computation and Refinement Based on the Tensor Feature Encoding

There are two steps for the normal vector computation, after setting the searching
distance r at 0.3 m. First, normal vectors are computed from the scatted points using the
initial tensor encoding, and the eigenvectors with the largest eigenvalues are used as the
normal vector; secondly, the initially computed normal vectors are re-encoded into the
tensor, and the normal vectors are re-computed and refined in a similar way to the first step.

As depicted in Figure 7, the normal vectors are computed using the parameter σ = 0.1.
Although it is a flat area the normal vectors are in a specific direction, there are many normal
vectors with chaotic normal directions, which are caused by the noisy data samplings,

Appl. Sci. 2022, 12, 1817 11 of 19

as shown in Figure 7, enlarged view a. Hence, a refinement process is conducted, and
the normal vectors are re-computed and refined. In the refined result, the direction of
the normal vector becomes more regularized in the flat plane, compared with the first
computed result.

Figure 7. The normal vectors computed using tensor feature encoding.

4.3. Shape Description Using the Tensor Analyzing

The tensor at the point p is aggregated from its neighborhood with the normal infor-
mation encoded, and the geometric structures in each dimension are propagated to p. After
the tensor aggregation process, the tensor at each point is decomposed into 1-dimensional,
2-dimensional, and 3-dimensional geometric features, as depicted in Figure 8.

Figure 8. The saliency of the different geometric structures in the dataset. (a) The saliency of surface;
(b) The saliency of line; (c) The saliency of point.

As seen in Figure 8, there are three types of geometric features in the dataset and
each has related saliency figure. The saliency of points in Figure 8a are higher between
the single objects, which can be taken as the noisy point samplings and filtered out from
the dataset. However, the saliency of line in Figure 8b describes the framework of the
geometric objects, which is higher than that of other points. In Figure 8c, the saliency of the
surface is obviously higher on the ground, while not higher than that in the single objects,
and this might be caused by the size of the neighborhood, since a larger neighborhood is
set for noisy data samplings.

The line features of the dataset are extracted using the line saliency threshold value,
then the line features are further shrunk to a single line, as depicted in Figure 9. The
threshold value for the dataset is ηline = 500, and the line features are extracted with a value
higher than the threshold value.

Appl. Sci. 2022, 12, 1817 12 of 19

Figure 9. The line feature extraction result based on the tensor feature.

4.4. Point Cloud Segmentation Based on the Tensor Clustering

To remove the noisy point in the point cloud, the point with a point saliency higher
than the threshold value ηpoint = 100 is taken as the noise and is further removed from the
dataset. Moreover, the point cloud datasets are segmented based on tensor clustering, using
the regional growth of the surface saliency ηsur f ace = 110 and the related normal vectors.
In the noisy point cloud datasets, a high angle threshold value is needed. Here, the angle
threshold value for the normal vectors is set to θsur f ace= 10◦, and any normal vector with
an angle difference higher than that threshold value is considered to be a different surface.
To verify the segmentation result of the proposed method, a comparison is made between
the different geometric feature-based point cloud segmentation methods, as depicted in
Figure 10, and the ground truth segmentation with ten parts is shown in Figure 10a.

Figure 10. The comparison of different point cloud segmentation methods. (a) Ground truth segmen-
tation of the dataset; (b) Segmentation result by Dewez [18]; (c) Segmentation result by Demantké [19]
and Yang [20]; (d) Segmentation result by Park [9], Schuster [21], and Tang [22]; (e) Segmentation
result by the proposed method.

Since the PCA method and the optimal searching distance are both applied in
Demantké [19] and Yang [20], they are put into the same method group; moreover, a
similar strategy to compute the tensor is applied in Park [9], Schuster [21], and Tang [22],

Appl. Sci. 2022, 12, 1817 13 of 19

and these three methods are also put into the same method group. Hence, as seen in
Figure 10, KD-tree-based space division by Dewez [18], the PCA method by Demantké [19]
and Yang [20], tensor voting by Park [9], Schuster [21], and Tang [22], and the proposed
method are all experimented with, and the results of the point cloud in the dataset are
compared. In Figure 10b, the dataset is segmented into 16 parts, using the automatically
computed parameters {Max angle: 5◦, Max relative distance: 1.0 m, Max distance: 0.1
m, Min points per facet: 10, Max edge length 0.00} by the algorithm. Since the searching
distance r of the methods by Demantké [19] and Yang [20], Park [9], Schuster [21], and
Tang [22] can be adaptively selected, set r ∈ [0.1, 0.3] m. As a result, the point cloud in
Figure 10c is segmented into 12 parts, and in Figure 10d, the number of the segments is
also 12 parts. However, in Figure 10e, the point cloud conducted by the proposed method
is segmented into 17 parts. In the comparison, the point cloud segmented by the pro-
posed method outperforms others, where the ground and different objects are successfully
segmented, although the results are a little over-segmented due to the noisy point cloud
samplings. Moreover, in the point cloud segmentation procedure, the noisy point cloud
samplings acquired from the iPhone LiDAR sensor are successfully segmented into dif-
ferent parts. With the line saliency, the line features are extracted, and different surface
segments are generated based on the surface saliency, after the denoising process based on
the point saliency.

Fscore = 2× precision ∗ recall
precision + recall

(18)

As a quantified measure, Fscore is a widely used accuracy index to measure the perfor-
mance of the algorithm, as shown in Equation (18); hence, it is applied here to evaluate the
accuracy of point segmentation results with different methods. Here, the precision of Fscore is
computed based on points in each segmented result and the number of points which truly
belong to the related plane, and the recall is computed based on points in each segmented
result and the number of the points in the related ground truth segments. To compute the
detailed accuracy description, the precision, recall, and Fscore of each segmentation result are
computed based on the ground truth segmentation in Figure 11a.

The Fscore for each part of the segmentation result is illustrated in Figure 11. As seen in
the figure, the lighter (yellower) the color, the higher the Fscore, while the darker (redder)
the color, the lower the Fscore. The ground part of the segmentation result in Figure 11a
is lighter than that of the result in Figure 11b,c, but in other parts, the situation becomes
complex: some parts of the image are darker in one method than in the same part of
another, while in other parts this is not the case. However, compared with Figure 11d, the
results become definite and clear: most of the parts are lighter than others and the results
outperform others.

The statistics of precision, recall, Fscore of each part in the segmentation result is fur-
ther conducted, and the average values are computed and illustrated in Table 1. Due
to the diverse number of the segmentation results, the average values are calculated for
each method.

As seen in Table 1, the average precision of the proposed method is 0.8230, which is a
little lower than that of Park [9], Schuster [21], and Tang [22] with an average precision of
0.8133. However, the average recall of the proposed method is 0.4250, which is the highest
in the comparison, and that of the Park [9], Schuster [21], and Tang [22] is 0.0987. Hence,
the average Fscores for the proposed method by Dewez [18], Demantké [19] and Yang [20],
Park [9], Schuster [21], and Tang [22], are 0.4828, 0.2963, 0.2579, and 0.1359, respectively.
From the statistics, the proposed method overall performs better than the other methods,
which is consistent with the result in Figure 11.

Appl. Sci. 2022, 12, 1817 14 of 19

Figure 11. The Fscore of each part in comparison with different segmentation methods. (a) The Fscore of
the segmentation result by Dewez [18]; (b) The Fscore of the segmentation result by Demantké [19] and
Yang [20]; (c) The Fscore of the segmentation result by Park [9], Schuster [21], and Tang [22]; (d) The
Fscore of the segmentation result by the proposed method.

Table 1. The Fscore computation results.

Different Methods Average Precision Average Recall Average Fscore

Dewez [18] 0.6797 0.3104 0.2963
Demantké [19] and Yang [20] 0.8133 0.2414 0.2579

Park [9], Schuster [21]
and Tang [22] 0.8779 0.0987 0.1359

The proposed method 0.8230 0.4250 0.4828

4.5. Point Cloud Segmentation for the Dataset in the Large Area

Since the main purpose of the method is to segment the point cloud into different plane
structures, to verify the capability of the proposed point cloud segmentation method, the
other dataset is obtained from the iPhone-based LiDAR sensor, in an area of 22.78 m2, with
141,837 points, as depicted in Figure 12a. It is a stairway scene, and is divided into 31 parts
in ground truth segmentation, as depicted in Figure 12b. The point cloud segmentation
results of different methods are depicted from Figure 12c–f. In Figure 12c, the dataset is
segmented into 295 parts, using the automatically computed parameter {Max angle: 10◦,
Max relative distance: 2.0 m, Max distance: 0.1 m, Min points per facet: 10, Max edge length
0.07} by the algorithm. To obtain the optimal searching distance, set r ∈ [0.1, 0.3] m for the
methods by Demantké [19] and Yang [20], and Park [9], Schuster [21] and Tang [22]. Hence,
the point cloud in Figure 12d is segmented into 263 parts, and in Figure 12e, the number
of the segmented parts is 306 parts. With the neighborhood searching distance r = 0.3m,
the tensor feature for the point cloud dataset is computed, re-encoded, aggregated, and
decomposed, based on the proposed method. In addition, there is no shortcut to obtaining
the optimal values for ηpoint,ηline,ηsur f ace, while these values are suggested to be 80% of
the maximum saliency in each related dimension. Using the segmentation thresholds

Appl. Sci. 2022, 12, 1817 15 of 19

{ηpoint = 30,ηline = 35,ηsur f ace = 200,θsur f ace = 10◦}, the point cloud dataset is segmented
into 111 parts, as depicted in Figure 12f.

Figure 12. The comparison of different point cloud segmentation methods. (a) The dataset with tex-
ture information; (b) Ground truth segmentation of the dataset; (c) Segmentation result by Dewez [18];
(d) Segmentation result by Demantké [19] and Yang [20]; (e) Segmentation result by Park [9], Schus-
ter [21], and Tang [22]; (f) Segmentation result by the proposed method.

As seen in Figure 12, the point cloud dataset is segmented into different parts, and
the segmented parts with the point number lower than 20 are not labeled. In the results
presented in Figure 12c,e, the points on the left are segmented, and there is a large area
that is successfully segmented (labeled in brown and blue in each picture), while on the
right side, some are over-segmented, and some are not. In Figure 12d, the left side of
the dataset is over-segmented and labeled in different colors, while the right side seems
to be under-segmented with few colored labels. In Figure 12f, the point cloud dataset is
successfully segmented, although some parts are not properly segmented. To visualize
the segmentation performance, each part of the segmentation result based on different
methods is labeled in a graded color according to the Fscore, as depicted in Figure 13.

Appl. Sci. 2022, 12, 1817 16 of 19

Figure 13. The Fscore of each part in comparison with different segmentation methods. (a) The Fscore of
the segmentation result by Dewez [18]; (b) The Fscore of the segmentation result by Demantké [19] and
Yang [20]; (c) The Fscore of the segmentation result by Park [9], Schuster [21], and Tang [22]; (d) The
Fscore of the segmentation result by the proposed method.

As seen in Figure 13, the lighter (yellower) the color, the higher the Fscore, and vice
versa. There is a part in the left side of Figure 13a with the lightest color than that in the
other results, and the right side of Figure 13b is with the darkest color in all the results. The
result in Figure 13c seems good when compared with the results in Figure 13b; however,
the point cloud dataset is well segmented both in the left and the right side of Figure 13d,
which shows the best performance among the results.

The statistics of average precision, average recall, average Fscore of each part in the
segmentation result are further computed, and the result is illustrated in Table 2.

Table 2. Statistics of point cloud segmentation result for dataset 2.

Different Methods Average Precision Average Recall Average Fscore

Dewez [18] 0.7012 0.0654 0.0969
Demantké [19] and Yang [20] 0.9467 0.0177 0.0245

Park [9], Schuster [21]
and Tang [22] 0.9527 0.0369 0.0515

The proposed method 0.8865 0.1041 0.1470

As seen in Table 2, the average precision of Park [9], Schuster [21], and Tang [22] is
0.9527, which holds a higher value than others, and it also performs well in the result of
Demantké [19] and Yang [20]. However, the average recalls of these two methods are 0.0369
and 0.0177, respectively. The average recall for the result of Dewez [18] is 0.0654, which
is higher than that of Park [9], Schuster [21], and Tang [22], and lower than that of the
proposed method. The average precision, average recall, and average Fscore for the result of
the proposed method are 0.8865, 0.1041, and 0.1470, which outperforms the result of other

Appl. Sci. 2022, 12, 1817 17 of 19

methods, overall, and it is consistent with the result in Figure 13. From the comparison, the
proposed methods perform better than other methods.

5. Conclusions

Point cloud segmentation is the fundamental procedure for advanced point cloud
applications, such as indoor/outdoor scene understanding; however, work has become
more difficult in noisy sampling situations, where point cloud data are acquired by con-
sumer electronic devices. To obtain geometric features from a noisy point cloud, a tensor
feature-based point cloud segmentation method is proposed, and experiments are con-
ducted. The pipeline for point cloud segmentation is constructed from the following steps:
normal vector computation, tensor aggregation, tensor feature decomposition, and point
cloud clustering are conducted, based on the tensor features. To obtain normal information,
geometric features in the unstructured, scattered data are first encoded as a ball tensor,
then a new tensor is generated using normal vectors and further decomposed into different
geometric structures. A point cloud with different geometric structures is clustered based
on the regional growth method. The normal vectors, line features, and surface features
are computed and extracted from the point cloud acquired from the iPhone-based LiDAR
sensor. In addition, no pre-training procedure is needed for the point cloud segmenta-
tion framework, since the features are directly computed from the data based on tensor
computation. Experiment results show that normal vectors can be computed based on
initial tensor encoding, and be further refined by the normal information-encoded tensor.
Moreover, scattered points are filtered out, line features are extracted and represented,
and surface features are successfully segmented. The proposed point cloud segmentation
method can be applied to data acquired with low accuracy and high noise.

Future research can use the parallel computing technique to segment a point cloud
in real time, which is a desperate need when dealing with vast amounts of data, such
as automatic driving. Another aspect that needs to be further explored is improving
segmentation completeness and accuracy of every object in more complex scenes.

Author Contributions: X.W. performed the theory analysis, methodology, and contributed to drafting
the manuscript. H.L. analyzed the data, design, and coding. T.M. collected the data, and performed
the experiments. W.H. performed the literature reviews, improved the writing. Q.C. revised the
paper, provided the background knowledge and funding. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC)
(No. 61875088, No. 62005128).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The data can
be found here: https://doi.org/10.6084/m9.figshare.19146365.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zheng, B.; Zhao, Y.; Yu, J.C.; Ikeuchi, K.; Zhu, S.C. Beyond Point Clouds: Scene Understanding by Reasoning Geometry and

Physics. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June
2013; pp. 3127–3134.

2. Nguyen, A.; Le, B. 3d Point Cloud Segmentation: A Survey. In Proceedings of the 6th IEEE Conference on Robotics, Automation
and Mechatronics (RAM), Manila, Philippines, 12–15 November 2013; pp. 225–230.

3. Grilli, E.; Menna, F.; Remondino, F. A review of point clouds segmentation and classification algorithms. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2017, 42, 339–344. [CrossRef]

4. Zhang, J.; Zhao, X.; Chen, Z.; Lu, Z. A Review of Deep Learning-Based Semantic Segmentation for Point Cloud. IEEE Access 2019,
7, 179118–179133. [CrossRef]

5. Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3d Point Clouds: A Survey. IEEE Trans. Pattern
Anal. Mach. Intell. 2020, 43, 4338–4364. [CrossRef] [PubMed]

https://doi.org/10.6084/m9.figshare.19146365
http://doi.org/10.5194/isprs-archives-XLII-2-W3-339-2017
http://doi.org/10.1109/ACCESS.2019.2958671
http://doi.org/10.1109/TPAMI.2020.3005434
http://www.ncbi.nlm.nih.gov/pubmed/32750799

Appl. Sci. 2022, 12, 1817 18 of 19

6. Zheng, Y.; Li, G.; Wu, S.; Liu, Y.; Gao, Y. Guided point cloud denoising via sharp feature skeletons. Vis. Comput. 2017, 33, 857–867.
[CrossRef]

7. Wei, M.; Liang, L.; Pang, W.M.; Wang, J.; Li, W.; Wu, H. Tensor voting guided mesh denoising. IEEE Trans. Autom. Sci. Eng. 2016,
14, 931–945. [CrossRef]

8. Sun, L.; Deng, Z. A Fast and Robust Rotation Search and Point Cloud Registration Method for 2D Stitching and 3D Object
Localization. Appl. Sci. 2021, 11, 9775. [CrossRef]

9. Park, M.K.; Lee, S.J.; Lee, K.H. Multi-scale tensor voting for feature extraction from unstructured point clouds. Graph. Model.
2012, 74, 197–208. [CrossRef]

10. King, B.J. Range Data Analysis by Free-Space Modeling and Tensor Voting; Rensselaer Polytechnic Institute: Troy, NY, USA, 2008.
11. Vo, A.-V.; Truong-Hong, L.; Laefer, D.F.; Bertolotto, M. Octree-based region growing for point cloud segmentation. ISPRS J.

Photogramm. Remote Sens. 2015, 104, 88–100. [CrossRef]
12. Xu, Y.; Yao, W.; Hoegner, L.; Stilla, U. Segmentation of building roofs from airborne LiDAR point clouds using robust voxel-based

region growing. Remote Sens. Lett. 2017, 8, 1062–1071. [CrossRef]
13. Ni, H.; Lin, X.; Zhang, J. Classification of ALS Point Cloud with Improved Point Cloud Segmentation and Random Forests.

Remote Sens. 2017, 9, 288. [CrossRef]
14. Ying, S.; Xu, G.; Li, C.; Mao, Z. Point Cluster Analysis Using a 3D Voronoi Diagram with Applications in Point Cloud Segmentation.

ISPRS Int. J. Geo-Inf. 2015, 4, 1480–1499. [CrossRef]
15. Zhan, Q.; Yu, L.; Liang, Y. A Point Cloud Segmentation Method Based on Vector Estimation and Color Clustering. In Proceedings

of the 2nd International Conference on Information Science and Engineering, Hangzhou, China, 4–6 December 2010; pp. 3463–3466.
[CrossRef]

16. Hulik, R.; Spanel, M.; Smrz, P.; Materna, Z. Continuous plane detection in point-cloud data based on 3D Hough Transform. J. Vis.
Commun. Image Represent. 2014, 25, 86–97. [CrossRef]

17. Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for Point-Cloud Shape Detection. In Computer Graphics Forum; Blackwell
Publishing Ltd.: Oxford, UK, 2007; Volume 26, pp. 214–226.

18. Dewez TJ, B.; Girardeau-Montaut, D.; Allanic, C.; Rohmer, J. Facets: A Cloudcompare Plugin to Extract Geological Planes from
Unstructed 3D Point Clouds. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing & Spatial
Information Sciences, Prague, Czech Republic, 12–19 June 2016; pp. 799–804.

19. Demantké, J.; Mallet, C.; David, N.; Vallet, B. Dimensionality Based Scale Selection in 3D Lidar Point Clouds. In Proceedings of
the ISPRS Workshop on Laser Scanning, Calgary, AB, Canada, 29–31 August 2011; pp. 29–31.

20. Yang, B.; Dong, Z. A shape-based segmentation method for mobile laser scanning point clouds. ISPRS J. Photogramm. Remote Sens.
2013, 81, 19–30. [CrossRef]

21. Schuster, H.F. Segmentation of LiDAR data using the tensor voting framework. International Archives of Photogrammetry.
Remote Sens. Spat. Inf. Sci. 2004, 35, 1073–1078.

22. Tang, C.-K.; Medioni, G. Curvature-augmented tensor voting for shape inference from noisy 3D data. IEEE Trans. Pattern Anal.
Mach. Intell. 2002, 24, 858–864. [CrossRef]

23. Zhan, Q.; Liang, Y.; Xiao, Y. Color-based segmentation of point clouds. Laser Scan. 2009, 38, 155–161.
24. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-View Convolutional Neural Networks for 3d Shape Recognition.

In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 945–953.
25. Feng, Y.; Zhang, Z.; Zhao, X.; Ji, R.; Gao, Y. GVCNN: Group-View Convolutional Neural Networks for 3d Shape Recognition.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 264–272.

26. Wu, B.; Wan, A.; Yue, X.; Keutzer, K. SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object
Segmentation from 3D LiDAR Point Cloud. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 1887–1893. [CrossRef]

27. Xu, Y.; Hoegner, L.; Tuttas, S.; Stilla, U. VOXEL and graph-based point cloud segmentation of 3d scenes using perceptual grouping
laws. In Proceedings of the ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, Hannover,
Germany, 6–9 June 2017; Volume 4, pp. 43–50.

28. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3d Classification and Segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

29. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017;
pp. 5105–5114.

30. Landrieu, L.; Simonovsky, M. Large-Scale Point Cloud Semantic Segmentation with Superpoint Graphs. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4558–4567.

31. Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. Pointcnn: Convolution on x-transformed points. Adv. Neural Inf. Processing Syst.
2018, 31, 820–830.

32. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Markham, A. RandLA-net: Efficient Semantic Segmentation of Large-Scale
Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
14–19 June 2020; pp. 11108–11117.

http://doi.org/10.1007/s00371-017-1391-8
http://doi.org/10.1109/TASE.2016.2553449
http://doi.org/10.3390/app11209775
http://doi.org/10.1016/j.gmod.2012.04.008
http://doi.org/10.1016/j.isprsjprs.2015.01.011
http://doi.org/10.1080/2150704X.2017.1349961
http://doi.org/10.3390/rs9030288
http://doi.org/10.3390/ijgi4031480
http://doi.org/10.1109/icise.2010.5691038
http://doi.org/10.1016/j.jvcir.2013.04.001
http://doi.org/10.1016/j.isprsjprs.2013.04.002
http://doi.org/10.1109/TPAMI.2002.1008395
http://doi.org/10.1109/icra.2018.8462926

Appl. Sci. 2022, 12, 1817 19 of 19

33. Te, G.; Hu, W.; Zheng, A.; Guo, Z. RGCNN: Regularized Graph CNN for Point Cloud Segmentation. In Proceedings of the 26th
ACM International Conference on Multimedia, Seoul, Korea, 22–26 October 2018; pp. 746–754.

34. Wu, W.; Qi, Z.; Fuxin, L. Pointconv: Deep Convolutional Networks on 3d Point Clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9621–9630.

35. Wang, L.; Huang, Y.; Hou, Y.; Zhang, S.; Shan, J. Graph Attention Convolution for Point Cloud Semantic Segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 10296–10305.

	Introduction
	Related Works
	Methodology
	Normal Vector Computation Based on Initial Tensor Encoding
	Tensor Aggregation Based on Normal Tensor Assembling
	Tensor Feature Decomposition and Shape Classification Based on Tensor Analyzing
	Point Cloud Segmentation Based on Tensor Clustering
	The Algorithm of the Point Cloud Segmentation Workflow

	Experiments and Discussions
	Datasets from the iPhone-Based LiDAR Sensor
	Normal Vector Computation and Refinement Based on the Tensor Feature Encoding
	Shape Description Using the Tensor Analyzing
	Point Cloud Segmentation Based on the Tensor Clustering
	Point Cloud Segmentation for the Dataset in the Large Area

	Conclusions
	References

