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Abstract: Correctly measuring the importance of nodes in a complex network is critical for studying
the robustness of the network, and designing a network security policy based on these highly impor-
tant nodes can effectively improve security aspects of the network, such as the security of important
data nodes on the Internet or the hardening of critical traffic hubs. Currently included are degree cen-
trality, closeness centrality, clustering coefficient, and H-index. Although these indicators can identify
important nodes to some extent, they are influenced by a single evaluation perspective and have
limitations, so most of the existing evaluation methods cannot fully reflect the node importance infor-
mation. In this paper, we propose a multi-attribute critic network decision indicator (MCNDI) based
on the CRITIC method, considering the H-index, closeness centrality, k-shell indicator, and network
constraint coefficient. This method integrates the information of network attributes from multiple
perspectives and provides a more comprehensive measure of node importance. An experimental
analysis of the Chesapeake Bay network and the contiguous USA network shows that MCNDI has
better ranking monotonicity, more stable metric results, and is highly adaptable to network topology.
Additionally, deliberate attack simulations on real networks showed that the method exhibits high
convergence speed in attacks on USAir97 networks and technology routes networks.

Keywords: complex networks; node importance metric; multi-attribute integrated measurement;
CRITIC method

1. Introduction

Complex network systems are widely distributed in the real world. With the discovery
of scale-free distributions [1], small worlds [2], and community-based properties possessed
by complex networks, complex network science has gained wide attention in computer
science, biological science, transportation planning, social science [3–6], and other fields.
The node importance metric is one of the key research directions. The most important
nodes can help us effectively defend against malicious network attacks [7], identify key
genetic information [8], protect important transportation hubs [9], and strengthen the
control of social opinion dissemination [10].

The importance of nodes in complex networks varies significantly depending on
network topology and size. Current methods of node importance ranking include two main
types: social network analysis methods and system science analysis methods [11]. In the
social network analysis method, the main idea is that the importance of nodes is equal to
the salience; the method does not destroy the connectivity of the network in the analysis
process in order to ensure the topological integrity of the network. This is generally
achieved through the use of a centrality indicator to measure the importance of nodes;
the indicators that have been proposed include degree centrality, closeness centrality,
betweenness centrality, clustering coefficient, Hirsch’s index, and k-shell indicator [12–17].
The main idea of the system science analysis method is that damage equals importance.
Hence, after removing nodes from the network, the change of network properties is
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analyzed to determine the importance of the removed nodes; common indicators include
the shortest path, network efficiency and maximum connectivity subgraph [18–20].

Since the system science analysis method would destroy the topology of the network,
causing changes in the connectivity state between nodes and the loss of information about
the nodes themselves, we adopt the social network analysis method to study the node
importance metric problem. Usually, most of these indicators measure the importance
of nodes from a certain perspective, but since networks have multiple morphological
characteristics, using a single indicator to assess the importance of nodes is often incomplete:
local indicators such as degree centrality and clustering coefficient can be calculated only
based on the local structure near the nodes, but they cannot evaluate the importance of
nodes globally. The k-shell indicator considers the global hierarchical structure of the
network, but a large number of nodes are distributed in the same layer, so they cannot
effectively measure the importance of nodes in the same layer. At the same time, because
of different evaluation perspectives, different centralities may produce different metric
results or even conflict, causing difficulties in node ranking decisions.

In order to assess the importance of nodes more rationally, two main research ideas
are currently being investigated [21]. One is to combine the structural characteristics of
the network and propose more reasonable evaluation indicators. Zhang [22] proposed an
integral formula based on closeness centrality and betweenness centrality; Jang [23] used
a linear weighting approach to combine degree centers and proximity centers; Hui [24]
improved upon the structural hole method by considering the next nearest neighbor nodes.
The above methods usually result in an optimized indicator that evaluates better, but
the methods are hardly universal in terms of how to integrate the relevant indicators. In
the second approach, multiple indicators are used to evaluate the same object, and the
individual evaluation results of each indicator are combined with the information inherent
in the data. This class of ideas introduces the multi-attribute decision-making (MADM)
method to identify the importance of nodes. The main idea of MADM is to rank the options
to be selected based on subjective or objective preferences. In [25], Hui used the TOPSIS
method to combine multiple metrics to evaluate the importance of nodes comprehensively.
Wang proposed improvements in [26] to optimize the assignment matrix. Chen [21]
proposed a comprehensive evaluation system based on node entropy.

In this paper, we introduce the CRITIC method proposed by Diakoulak [27] into
the node importance ranking, which can integrate the attribute information of multiple
evaluation criteria scores without subjective involvement and comprehensively assess
the importance of the solution to be selected based on the intrinsic nature of the scoring
data to obtain the base ranking of the solution to be selected. We combine the CRITIC
method with the current representative complex network indicators to obtain the multi-
attribute CRITIC network decision indicator (MCNDI), which comprehensively evaluates
the node importance.

The remainder of this paper is structured as follows.
Section 2 briefly reviews four typical centrality indicators for subsequent comparative

analysis. In Section 3, the specific implementation of the CRITIC method will be described.
In Section 4, we use two real network datasets to measure the integrated importance of
each node and compare it with a single metric; we then perform a deliberate attack on the
USAir97 and technology routes networks and discuss the simulation results.

2. Related Theoretical Foundations

Considering a graph G = (V, E) to represent complex networks, G is an undirected
connected graph, where V is the set of nodes and V = {1, 2, 3, . . . , n}. E is the set of
edges and E = {1, 2, 3, . . . , m}. Because the multi-attribute decision-making method can
take advantage of all single indicators, in the process of selecting sub-indicators for multi-
attribute decision making, it is important to first provide more comprehensive information
about the importance of nodes, while homogeneity of selected indicators should be avoided
as much as possible. The local information of nodes is the most basic importance measure
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of nodes, which characterizes the structural correlation between nodes and neighboring
nodes and portrays the local importance of nodes; as the hub of information flow in the
network, the shortest path of node association reflects the contribution of the node in the
global information flow process, and the global location information of nodes reflects the
distance of nodes from the center of the network and characterizes the core degree of
nodes in the network. Meanwhile, focusing on the set of indirectly associated nodes, the
nodes in the intermediary role tend to have more information. Therefore, in this paper,
we select multi-attribute decision sub-metrics from four aspects: node local information,
path centrality, node global location information, and node information quantity. Next, we
present each single centrality indicator.

Definition 1. H-index (abbreviated as H).

Originally used extensively to assess scholarly communication among academics,
the H-index has gradually been extended to apply to the study of a variety of complex
networks. The definition for the H-index is as follows [16]: the degree of any node i is
denoted by ki, and the degrees of its neighbors are k j1, k j2, . . . , k jki

. For a finite number
of real numbers (x1, x2, . . . , xn), we propose the operator H, which will return an integer
z = H(x1, x2, . . . , xn) > 0, where z represents the largest possible integer value that matches
the set of real numbers (x1, x2, . . . , xn) in which there exist at least z elements with values
not lower than z. Then, the H-index of node i is defined as:

Hi = H(k j1, k j2, . . . , k jki
) (1)

The H-index measures the importance of nodes from the overall quality of the neighbor
node set. Compared with node degree, the H-index reinforces the importance of nodes
with a large number of high neighbors and reduces the importance of other nodes, a feature
that helps us better identify key nodes in real networks.

Definition 2. Closeness centrality (abbreviated as COC).

Assuming that dij denotes the number of edges contained in the shortest path from
node i to node j, the closeness centrality of node i denotes the reciprocal of the sum of its
distances from all other nodes in the network. The expression of closeness centrality is
defined as:

COCi =
N

∑N
j=1 dij

(2)

Closeness centrality expresses the distance between the node and the network center
based on the standard of path centrality.The value of node closeness centrality represents
the distance of the node from other nodes in the network. The closer the node is to the
center of the network topology, the greater the importance.

Definition 3. K-shell (abbreviated as KS).

The k-shell decomposition method divides the network into substructures directly
related to degree centrality [28]. In this approach, the network is described as a hierarchical
structure, revealing the complete hierarchy of its nodes. In Figure 1, the innermost nodes
belong to a structure called the core, while the rest of the nodes are placed in more external
layers (called k-shells).
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Figure 1. Diagram of k-shell decomposition process.

The hierarchical steps of the network structure layer are as follows: first, all nodes
with node degree k = 1 are recursively removed from the network and assigned an integer
value of KS = 1. This process is then repeated until only nodes with node degree k > 1
are left on the network. Subsequently, we remove all nodes with node degree k = 2 and
assign them integer values KS = 2. This process is repeated until only nodes with node
degree k > 3 are left on the network, and so on until the network is deleted, at which point
all nodes of the network are assigned one of the k shells.

The k-shell decomposition method layers the network structure from the perspective
of topology location and describes the core degree of different nodes in the network. The
greater the value of KS in the node belt, the closer it is to the core level of the network, and
vice versa.

Definition 4. Network constraint coefficient (abbreviated as NCC).

The network constraint coefficient is derived from the structural hole theory proposed
by Burt [29], which is described as the tightness distance of a node connected directly or
indirectly to other nodes. The value of the network constraint coefficient is negatively
related to the extent of the structural hole. However, this concept only considers the nearest
neighbors of a given node; therefore, it cannot find some important bridging nodes in
complex networks.

NCCi = ∑
j

NCCij = ∑
j

(
pij + ∑

q
piq pqj

)2

, i 6= q 6= j (3)

pij =
Zij

∑q ziq
(4)

where pij is the proportion of i’s resources devoted to j, and the variable ziq represents the
strength of the contact between i and j, with pij being the direct contact and ∑q piq pqj being
the indirect contact. Thus, the constraint NCCij for a linked node varies in the interval
[0, 1] to the extent to which resources of i are used directly or indirectly for j.

The network constraint coefficient represents the information advantage and control
advantage of nodes in the network structure. The lower the network constraint coefficient,
the more structural holes are occupied by nodes, so it plays a more important role in the
network structure.
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3. Multi-Attribute Composite Measure of Node Importance

The node importance indicator based on multi-attribute decision making is fitted
from four single indicators: H-index, closeness centrality, k-shell indicator, and network
constraint coefficient. The combined node score can be expressed as:

Score i = ∑
m

wi · Indicator i (5)

We can find that the weight of a single indicator affects the degree of its influence
on the composite score, and whether the indicator weights can be reasonably determined
will directly affect the performance of the node composite score. To solve the multi-criteria
decision problem, Diakoulaki [27] developed the CRITIC method, which derives objective
weights for relevant indicators by quantifying the amount of information inherent in each
evaluation criterion in order to rank targets without bias. The CRITIC method operates in
the following process.

For a set A of n chosen targets to be evaluated and a given system Sj of m evaluation
criteria, the general form of the multi-criteria problem can be defined as follows:

Max{S1(a), S2(a), S3(a), . . . , Sm(a) | a ∈ A} (6)

Define the membership function xi by mapping the values of criterion Sj to the interval
[0, 1]. This transformation comes from the concept of an ideal point. We define xaj as the
degree to which alternative a is close to the ideal value Sideal

j . Sideal
j represents the best

performance of criterion Sj. xaj also represents the extent to which the alternative a is
far from the negative ideal Santi−ideal

j . Santi−ideal
j represents the worst performance of the

criterion Sj.

xaj =
Sj(a)− Santi−ideal

j

Sideal
j − Santi−ideal

j

(7)

We can observe that when the evaluation system is a negative indicator, i.e., the
indicator score is negatively correlated with the target performance, xaj can still have
practical significance. Using this method, the initial evaluation matrix can be transformed
into a relative score matrix with generic elements xij. Each assessment criterion corresponds
to a score vector xj, which represents the scores of all elements to be assessed.

xj =
(

xj(1), xj(2), . . . , xj(n)
)

(8)

σj =

√
∑n

i=1
(
xj(i)− x̄j

)2

n
(9)

Here, the standard deviation σj quantifies the contrast intensity of the vector xj,
reflecting the variation of scores within the evaluation indicator.

Next, combining the vector xij, we can construct the dimension m ∗m score matrix.
Define per as the Pearson coefficient of xj and xk. The value of per is lower if the scores
of criterion j and criterion k are more inconsistent. Conflictj represents a measure of the
conflicting differences between criterion j and other criteria.

Conflictj =
m

∑
k=1

(
1− per jk

)
(10)

Considering the two decision criteria of information contrast and inter-indicator
conflict contained in the set of indicators, the amount of information Cj emitted by the jth
criterion can be obtained by multiplicative aggregation:

Cj = σj · Conflict j (11)
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The higher the Cj value, the greater the amount of information of the corresponding
evaluation criteria, the greater the relative importance in the decision-making process, and
the weight of the corresponding index can be obtained by standardizing the Cj value.

wj =
Cj

∑m
k=1 Ck

(12)

Combining the indicator weights, we can define the multi-attribute CRITIC network
decision indicator (MCNDI) as follows:

MCNDIi = w1 · Hi + w2 · COCi + w3 · KSi + w4 · NCCi (13)

4. Experimental Results and Analysis

The topological forms in real networks mostly conform to the characteristic distribu-
tion of scale-free networks. In this paper, the research process will select the real network
data set without weight and direction for verification, and the importance measurement of
relevant nodes will also be carried out in this kind of network. In this study, to measure
the combined importance of each node, experiments were conducted using data from the
Chesapeake Bay network [30] and the contiguous USA network [31], and the results were
compared with those measured by the single indicator. Then, we conducted simulated
attacks on the USAir97 and technology routers networks to study the change of network
connectivity and analyze the simulation results [32].

4.1. Network Metrics Experiment
4.1.1. Chesapeake Bay Network Experiment

The Chesapeake Bay network is a mesohaline trophic network that can be used for the
simulation and analysis of complex network experiments. The network topology is shown
in Figure 2a, and it consists of 39 nodes and 170 edges. Nodes are groups of organisms
such as phytoplankton or ciliates; the edges between the nodes denote carbon exchange
relationships. Here, we use four single indicators and MCNDI to calculate each node in
this network to obtain the node importance. According to the above equations, the weight
distribution of the H-index, closeness centrality, k-shell indicator, and network constraint
coefficient under the CRITIC method is obtained as:

[H, COC, KS, NCC] = [0.16775, 0.21757, 0.45850, 0.15618] (14)

According to Equation (13), we can obtain the 39 nodes’ importance composite
scores’ MCNDI.

(a) (b)

Figure 2. This figure shows the topological distribution of the real network in our network experiment.
(a) Network topology of the Chesapeake Bay network. (b) Network topology of the contiguous
USA network.

4.1.2. Contiguous USA Network Experiment

The contiguous USA network is a geographic boundary network that characterizes the
48 contiguous states of the United States of America (USA) and the District of Columbia,



Appl. Sci. 2022, 12, 1944 7 of 14

which includes all states except Alaska and Hawaii. The network topology is shown
in Figure 2b. The network consists of 49 nodes and 107 edges; each node represents a
state-level district; links indicate shared borders between states. Similarly, by the above
equations, we also used four single indicators and MCNDI to calculate each node in this
network to obtain the node importance. The weight distribution of the H-index, closeness
centrality, k-shell indicator, and network constraint coefficient under the improved CRITIC
method was obtained as:

[H, COC, KS, NCC] = [0.19720, 0.23651, 0.30260, 0.26369] (15)

According to Equation (13), we can obtain the 49 nodes’ importance composite scores’
MCNDI. We simulated the node importance of the Chesapeake Bay network and the
contiguous USA network using the integrated indicator and compared the results with
those obtained using a single indicator to measure node importance, the results of which are
shown in Figure 3. In Figure 3, the abscissa represents the sequence number distribution
of nodes, and the ordinate represents the normalized value of the importance score of
nodes under the current evaluation indicator. We show the distribution of node importance
ranking normalized by box plots in Figure 4.

The experimental results show that the distribution curves obtained from the inte-
grated indicator are less volatile and smoother due to the topological characteristics of
the nodes; from the distribution of node importance, the importance distribution of the
composite index has a more concentrated range and a more uniform distribution, and has
a more stable metric performance, reflecting the consideration of multiple attributes.

(a) (b)

Figure 3. Simulation comparison chart of the importance of different indicators on network nodes.
(a) Ranking of the importance of network nodes in the simulated Chesapeake Bay network. (b) Rank-
ing of the importance of network nodes in the simulated contiguous USA network.

(a) (b)

Figure 4. Simulated distribution of different metrics on the importance ranking of network nodes.
(a) Importance distribution of network nodes in the simulation of the Chesapeake Bay network.
(b) Importance distribution of network nodes in the simulation of the contiguous USA network.
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4.1.3. Node Ranking Monotonicity Analysis

For the importance ranking indicator of nodes, the finer the granularity of the indicator,
the easier it is to distinguish the variability among nodes. Bae [33] defined the ranking
monotonicity indicator Monotonicity (i) as follows:

Monotonicity p(i) =

[
1− ∑iεI Ni(Ni − 1)

Np
(

Np − 1
) ]2

(16)

In Equation (16), Ni represents the number of nodes with the same indicator evaluation
score; Np represents the number of candidate nodes selected from the network with a ratio
of p for ranking; and Monotonicity (i) fluctuates in the range [0, 1], which represents the
proportion of nodes with the same index value to the set of candidate points. The higher
the monotonicity of the node importance index in the network, the more accurate the
identification of the importance of different nodes; conversely, the lower the monotonicity
of the node ranking, the poorer the granularity of the metric for identifying different nodes.
We chose p = 1, i.e., the monotonicity was calculated separately for the whole network
of the Chesapeake Bay network and the contiguous USA network. The results of the
monotonicity calculation are shown in Figure 5. According to the simulation results, it can
be found that the monotonicity of the node importance ranking of MCNDI is closer to 1 in
both networks, so in comparison with the single indicator, the integrated indicator MCNDI
has better monotonicity, which tends to improve the accuracy of the node importance
ranking. It should be noted here that the monotonicity may not necessarily remain 1 for
the multi-attribute composite indicator because there may be structurally symmetric nodes
in the real network.

Figure 5. Monotonicity performance of different metrics on simulated networks.

4.2. Network Attack Simulation Experiment
4.2.1. Attack Simulation to the USAir97 Network

The USAir97 network is an infrastructure network; as a representative case of a real
complex network, the network contains 332 nodes with 2126 edges, the number of k-shell
indicators between nodes is 27 layers, and the relationship between nodes is very complex;
its network topology is shown in Figure 6a. According to the above equations, we can
obtain the weight distribution of the H-index, closeness centrality, k-shell indicator, and
network constraint coefficients as:

[H, COC, KS, NCC] = [0.27924, 0.14960, 0.27592, 0.29524] (17)

Then, we will obtain the importance composite score MCNDI for 332 nodes.
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(a) (b)

Figure 6. This figure shows the topological distribution of the real network in our network experiment.
(a) Network topology of USAir97 network. (b) Network topology of technology routes network.

Usually, when a network is attacked, the change in network efficiency can be used to
measure the degree of damage to the network.

NE =
1

N(N − 1) ∑
i 6=j∈G

1
dij

(18)

In Equation (18), G represents the set of nodes in the network, N represents the number
of nodes in the network, and dij represents the length of the shortest path between the node
i and the node j. Here, we evaluate the accuracy of the node importance ranking algorithm
by means of the network efficiency ratio.

NEP =
ne
NE

(19)

In Equation (19), ne represents the network efficiency of G after deleting the set of
nodes to be determined and NE is the initial network efficiency of the network. A smaller
value of NEP means that the more important the deleted nodes are, the less secure the
network is.

On the one hand, we performed random attacks on the network, and on the other
hand, based on different indicators that measure the importance of nodes, we performed
deliberate attacks on the network by node ranking, and the network efficiency ratio was
quantified as shown in Figure 7. To weaken the impact of network size, the deliberate
attacks were scaled by network nodes. In Figure 7a, the horizontal axis represents the ratio
of failed nodes to the total number of nodes, and the vertical axis represents the network
efficiency ratio.

Simulation results show that random attacks are less effective for real complex net-
works due to the scale-free nature of the real network, such that the network structure
is strongly robust in the face of random attacks. In terms of deliberate attacks, the sim-
ulation results show that when simulating attacks on the USAir97 network according to
the comprehensive index ranking proposed in this paper, the rate of decline in network
efficiency showed the highest level of decline at the initial stage, and with the destruction
of the network structure, although the rate fluctuated slightly, it eventually maintained the
decline advantage in the rapid decline phase. The simulation results show that MCNDI is
a metric that integrates many structural attributes of nodes and can more accurately reflect
the real situation of nodes in the network.
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(a) (b)

Figure 7. This figure shows the topological distribution of the real network in our network experiment.
(a) Simulation comparison chart of the USAir97 network subjected to deliberate attacks with different
indicators, where the horizontal axis represents the ratio of failed nodes to the total number of nodes,
and the vertical axis is the network efficiency ratio. (b) Simulation comparison chart of the technology
routes networks subjected to deliberate attacks with different indicators, where the horizontal axis
represents the evolutionary stage (every five nodes are a basic evolution stage) and the vertical axis
is the network efficiency ratio.

4.2.2. Attack Simulation to the Technology Routes Network

To verify the generality of MCNDI, we performed a similar simulation for the tech-
nology routing network. The technology routing network is shown as an example of a
large and complex network, showing the actual distribution architecture of a routing level
network. The network contains 2113 nodes and 6632 links, and its topology is shown in
Figure 6b. According to the above equation, we can obtain the weight distribution of the
H-index, closeness centrality, k-shell indicator, and network constraint coefficients under
the CRITIC method as:

[H, COC, KS, NCC] = [0.15093, 0.18123, 0.19675, 0.47109] (20)

Then, we can obtain the 2113 nodes’ importance composite scores’ MCNDI.
The cost of simulating the attack in a large network by proportion is huge, while

deleting a large number of nodes in a single stage will cause the set of network nodes
to change drastically, which is not conducive to identifying the most critical set of nodes.
Therefore, we calculated every five nodes after deleting them as the evolutionary phase,
which again does not change the trend of the network. In Figure 7b, the horizontal axis
represents the evolutionary stage (every five nodes are a basic part) and the vertical axis
is the network efficiency ratio. The simulation showed that after the start of evolution,
when about 2.5 percent of nodes were removed, it already caused the NEP to drop to 60%,
reflecting the vulnerability of real networks with scale-free characteristics to deliberate
attacks, and the network efficiency of MCNDI converged faster than other methods during
this process, demonstrating the better efficacy of the method in targeting critical node
rankings in large real networks.

4.2.3. Discussion

In the network experiment, the ranking of node importance in the experimental net-
work is obtained according to the relevant node importance measurement indicators. The
descending order of node importance is used for attack simulation, and the experimental
results will be used as the basis to evaluate the quality of node importance metric indica-
tor. The networks used in our experiments all have large-scale and scale-free structural
properties. First, we obtained a single network property (H, COC, KS, and NCC) based
on the network data separately, and after that, we combined it with the CRITIC method
to obtain the composite indicator MCNDI. Next, simulated attacks were performed on
these networks based on the node importance (measured by five methods) from highest
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to lowest. Top 10 network node ranking is shown in Tables 1 and 2. M(i) represents the
monotonicity of the set of nodes.

Table 1. USAir97 network.

Rank H COC KS NCC MCNDI

1 118 118 118 118 118
2 112 261 112 261 261
3 255 67 67 182 255
4 261 255 179 255 182
5 67 201 255 152 67
6 109 182 232 201 152
7 147 47 248 67 166
8 152 166 258 166 201
9 166 248 261 230 230
10 176 112 172 47 112

M(i) 0.53 0.98 0.00 1.00 1.00

Table 2. Technology routes network.

Rank H COC KS NCC MCNDI

1 343 698 224 619 619
2 1808 619 1074 155 1808
3 619 343 343 1808 464
4 50 1808 50 614 50
5 464 464 1376 1404 155
6 277 1890 1605 464 1404
7 698 1301 2026 605 605
8 1196 1378 865 1850 698
9 1301 614 1034 80 614

10 708 306 1136 50 343
M(i) 0.84 1.00 0.00 1.00 1.00

In the USAir97 network, the numbers of node members with the same ranking of our
method (MCNDI) and single indicators (H, COC, KS, NCC) are (7, 8, 4, 9). Node 118 has the
highest importance among all indicators, which means that node 118 is the most influential
in the USAir97 network. Similarly, in the technology routing network, the numbers of node
members with the same ranking of our method and single indicators (H, COC, KS, NCC)
are (6, 6, 2, 8). Combined with the monotonicity, we found that the k-shell indicator is
the most different from the composite indicator, and has the worst monotonicity, which
can cause difficulties in node importance decisions. I.e., the top 35 nodes in the USAir97
network have the same KS value. We also found that some of the top ten nodes of MCNDI
in Table 2 do not exist in the top 10 ranking of the single indicators, which proves that
their overall score is high, and such nodes with high overall importance are difficult to be
measured by a single indicator. By contrast, MCNDI integrates the internal and external
attributes of nodes, and the indications are accurate in decision making.

Comparing Figure 7a with Figure 7b, we found similar network changes. According
to the changes of the node network efficiency ratio, the network efficiency ratios of different
networks all decrease rapidly under the MCNDI indicator attack, reflecting the stability
of MCNDI’s assessment of the importance of nodes in different networks, while the other
indicators are affected by the network topology, and there are large fluctuations in the
ability to influence the network efficiency ratio. The reason for the difference between the
two figures is the different topology of the network, so the importance of the distribution
of the nodes is also different, and the attack using MCNDI can cause good effects on them
all, indicating that the composite indicator is a more accurate and generalized measure of
network importance.
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5. Conclusions

In this paper, we applied the CRITIC method to the process of node importance rank-
ing, based on the H-index, closeness centrality, k-shell indicator, and network constraint
coefficient, and a multi-attribute critic network decision indicator (MCNDI) was proposed
to measure the node importance. The method takes into account not only the local neigh-
borhood importance of the nodes but also combines the network location of the nodes with
the amount of intermediate information, which makes the metric more generalizable. In the
metric process, the CRITIC method is used to objectively determine the indicator weights
based on the intrinsic nature of the data. Through metric measurement, we found that in
the Chesapeake Bay network and contiguous USA network, the MCNDI evaluation results
were less volatile and reflected the node importance more comprehensively compared to
a single indicator. Then, we obtained the variation of network efficiency by simulating
deliberate attack behavior in a real network based on different indicators. The simulation
results show that the attack according to MCNDI was less dependent on the network
topology and could maintain a stable evaluation performance, and the convergence rate of
network efficiency was better than in other methods.

The work in this paper is a further refinement of the node importance metric method
and helps to expand the research ideas in the field of complex networks. At the same time,
we also note that in networks with multi-layer structures covering more attributes such as
weight, direction, time, and traffic, the method we provide is limited by the application
conditions of the method, and the sub-indicators for multi-attribute decision making
need to be improved to accommodate multi-dimensional network attributes. In recent
years, exploring the importance ranking metrics of network nodes with more complex
attribute conditions has also become an important research direction, which provides
more ideas for our multi-attribute decision making. In this paper, we studied single-layer
undirected unweighted networks, and the related methods can be extended to entitled
networks [34], multiplexed networks [35], and other models that fit more closely to real
networks. Additionally, the heterogeneity of nodes [36] puts new demands on importance
ranking. In future work, we will continue to investigate node importance, in conjunction
with the multilayer distribution structure of the network and the heterogeneity of the nodes.
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