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Abstract: Light detection and ranging (LiDAR) data of 3D point clouds acquired from laser sensors
is a crucial form of geospatial data for recognition of complex objects since LiDAR data provides
geometric information in terms of 3D coordinates with additional attributes such as intensity and
multiple returns. In this paper, we focused on utilizing multiple returns in the training data for
semantic segmentation, in particular building extraction using PointNet++. PointNet++ is known as
one of the efficient and robust deep learning (DL) models for processing 3D point clouds. On most
building boundaries, two returns of the laser pulse occur. The experimental results demonstrated
that the proposed approach could improve building extraction by adding two returns to the training
datasets. Specifically, the recall value of the predicted building boundaries for the test data was
improved from 0.7417 to 0.7948 for the best case. However, no significant improvement was achieved
for the new data because the new data had relatively lower point density compared to the training
and test data.

Keywords: LiDAR data; point clouds; multiple return; deep learning; semantic segmentation

1. Introduction

Airborne laser scanner (ALS) systems have become the most important geospatial
data acquisition technology since the mid-1990s. Light detection and ranging (LiDAR) data
obtained from the ALS provides geometric information in terms of 3D coordinates (i.e., X,
Y, and Z coordinates) and additional data including intensity, return number, scan direction
and angle, classification, and global positioning system (GPS) time. In addition, unlike
optical imagery, LiDAR data can be collected regardless of the Sun’s illumination and
weather conditions. Therefore, LiDAR can be utilized in a wide range of applications [1–3].
Above all, the significant advantage of the LiDAR is that it directly provides accurate 3D
coordinates of objects in the real world cost-effectively, which paved the way for deep
learning (DL) to evolve from 2D to 3D. Commonly, 3D data types are depth images, multi-
view images, voxels, polygonal meshes (e.g., digital surface model (DSM)), and point
clouds. 3D geospatial data contains richer information, such as geometric characteristics of
the objects, to represent the real world in comparison with 2D imagery. For instance, the
laser sensors to collect 3D information are crucial for autonomous vehicles and robots. Point
clouds including LiDAR are widely used simple form of 3D data that basically consists of
3D coordinates and additional attributes.

The challenging task of utilizing DL for classifying point clouds data is the lack of
regularity in distribution of the point data. The conventional convolutional neural networks
are not appropriate without rearrangement of the point clouds since distance between
points and density varies from region to region. Most DL models for object recognition,
classification, segmentation, and reconstruction are based on 2D optical images composed
of regular-pixel shape. On the other hand, LiDAR data are a disordered and scattered
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distribution of mass 3D point clouds. In recent years, artificial neural networks (ANNs)
designed to process point cloud data have been intensively developed. Examples of
this include PointNet, PointNet++, PointCNN, PointSeg, LaserNet, VoxNet, SEGCloud,
LGENet, and GSV-NET [4–8].

As one of the successful DL models for point cloud data, PointNet has the capability
to capture point-wise features using multi-layer perceptron (MLP) layers and extracts
global features with a max-pooling layer. The classification score is obtained using several
MLP layers [9]. Zaheer et al. also theoretically demonstrated that the key to achieve
permutation invariance is by summing up all representations and applying nonlinear
transformations [10]. Since features are learned independently for each point in PointNet,
the local structural information between points cannot be captured. Therefore, Qi et al.
proposed a hierarchical network, PointNet++, to capture fine geometric structures from
the proximity of each point. As the core of PointNet++ hierarchy, its set abstraction level is
composed of three layers: the sampling, the grouping, and the PointNet layer [11].

The major tasks involved with 3D point clouds are semantic segmentation, instance
segmentation, and part segmentation. Guo et al. [12] provided useful and detailed in-
formation including datasets, chronological overview of the most relevant DL models
for the particular tasks considering various aspects, and benchmark results for 3D point
clouds. The performance of DL is influenced by various factors such as characteristics of the
training data, training method, configuration of the DL model, and hyper-parameters for
training. Among them, architecture, configuration, and training method of the DL model
are the major issues without doubt. However, designing a new DL model to improve the
performance is not an easy task since it requires intensive testing and assessment under
various conditions. Another important factor related to the performance is characteristics
of the training data. In other words, suitable datasets have to be utilized to train DL model
to fit a specific purpose.

In addition, relying on one type of data from a single source will limit the training
performance of the DL models. In this respect, use of the multi-source or multi-modal
datasets and combining derived information or intrinsic information with source data
could provide better training performance of the DL models. Approaches with integrating
various meaningful feature data show beneficial results. Data fusion with multi-spectral
imagers and normalized difference vegetation index (NDVI) created from the multi-spectral
images were used to train the DL model [13]. Since each feature reflects the unique physical
property of the objects, multi-dimensional features including entropy, height variation,
intensity, normalized height, and standard deviation extracted from LiDAR data were
utilized for building detection with convolutional neural network (CNN) model [14].
Combining slope, aspect, and shaded-relief generated from DSM with infrared (IR) images
could improve semantic segmentation performance of the DL model [15].

This paper aimed to improve extracting point clouds belonging to buildings using
semantic segmentation with PointNet++ model. The assumption of this study is that the
training datasets conveying building information, such as building boundaries, could
provide better performance of DL models. In this regard, number of returns of the laser
beams recorded during the LiDAR data acquisition was utilized in creating training datasets.
To analyze the accuracy of building segments, we compared the results from various
configurations of the training datasets. One of the unique and important properties of the
laser scanner is multiple returns.

Figure 1 illustrates concept of the return number and number of returns. The number
of returns depends on the characteristics and situation of the objects’ surfaces. If the
laser beams hit the building roofs or terrain surfaces, only one return pulse is generated
(i.e., number of returns is 1). On the other hand, multiple return pulses could be generated
if the laser beams hit edge of the building roofs or branches of the trees. Specifically,
two returns (i.e., number of returns is 2) and several returns are to be generated for the
building edges and trees, respectively. Multiple returns are capable of determining heights
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of the objects, such as buildings and trees, by measuring the time of flight between the first
and the last returns within a laser footprint if the laser pulse reaches the ground [3].

Figure 1. Multiple returns of LiDAR: (a) property of the multiple returns; (b) two returns (i.e., last
return is the second return) on the building and superstructure boundaries.

In this paper, two returns were utilized for training the DL model because edges of
the building provide important features of the buildings that could differentiate them from
other objects. Two returns could be generated not only from the building edges but also
from parts of other objects such as trees. In fact, utilizing number of returns is beneficial
in extracting buildings. The results show that the accuracy of the building extraction was
improved by taking the number of returns into account instead of using all point cloud
data for training the DL model.

2. Datasets and Method
2.1. Description of Datasets

Two datasets, (1) Dayton Annotated Laser Earth Scan (DALES) datasets provided
by University of Dayton, Ohio, and (2) Vaihingen dataset of the International Society for
Photogrammetry and Remote Sensing (ISPRS) Benchmark Datasets, were used. The DALES
datasets and ISPRS Vaihingen datasets are for both training and testing the DL model, and
evaluating the trained DL mode as new data, respectively.

2.1.1. DALES Datasets

The DALES dataset is a large-scale aerial LiDAR dataset for point cloud segmentation.
The objective of the DALES datasets is to help advance the field of deep learning within
aerial LiDAR. The LiDAR data were collected using a Riegl Q1560 dual-channel ALS
system over the City of Surrey in British Columbia, Canada. The LiDAR datasets have
an average of 12 million points spanning a 10 km2 area and contain 40 tiles (area of each tile
is 500 × 500 m with a resolution of 50 pts/m2 (ppm) and multiple return level of 7) of dense
and labeled data with eight categories, namely, ground, vegetation, car, truck, pole, power
line, fence, and building. The average ground sample distance (GSD) is approximately
0.15 m. The mean error was determined to be ±8.5 cm at 95% confidence level for the
vertical accuracy [16–18].

The DALES datasets were used to train the PointNet++ model and test for the per-
formance of the model. Figure 2 shows locations of 40 tiles of DALES datasets. Figure 3
shows 29 training and 11 test datasets that were fed to PointNet++. Figure 4 depicts the
LiDAR data and color-labeled land cover classes. Figure 5 is a 3D perspective view of the
LiDAR data.
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2.1.2. ISPRS Vaihingen Datasets

The ISPRS Vaihingen datasets, which are provided by the German Society for Pho-
togrammetry, Remote Sensing and Geoinformatics, are for object classification and building
reconstruction. The LiDAR data of the Vaihingen in Germany was acquired using a Leica
ALS50 sensor (Leica Geosystems, Heerbrugg, Switzerland). The LiDAR point density
varies between 4 and 7 ppm that is equivalent to GSD of 0.4 m–0.5 m. The datasets include
IR aerial true orthoimages and DSMs with resolution of 0.09 m (Figure 6). Furthermore,
they also include label data of geo-coded land cover classification with six classes, namely,
impervious surface, building, low vegetation, tree, car, and clutter/background, as shown
in Figure 7 [19–21]. Figure 8 is 3D perspective view of the LiDAR data.

Figure 2. Location of data tiles overlaid on Google Earth image (yellow and red box represent training
and test datasets, respectively).

Figure 3. LiDAR data and semantic segmentation labels of DALES datasets: (a) training datasets;
(b) test datasets.
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Figure 4. Examples of DALES datasets: (a) LiDAR data; (b) semantic segmentation label data;
(c) object categories with 8 class labels.

Figure 5. 3D perspective view of the LiDAR data shown in Figure 4a.

Figure 6. ISRPS Vaihingen datasets for 2D semantic labeling overlaid on IR orthoimage.
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Figure 7. Examples of ISPRS Vaihingen datasets for 2D semantic labeling: (a) IR true orthoimages;
(b) LiDAR data; (c) DSM; (d) land cover label data (i.e., ground truth); (e) land cover categories with
6 class labels.

Figure 8. 3D perspective view of the LiDAR data shown in Figure 7b.

The standard LiDAR data format is LAS (i.e., LASer file format). The LAS specification
was developed and is maintained by the American Society for Photogrammetry and
Remote Sensing (ASPRS). The LAS format includes 3D coordinates (i.e., X, Y, and Z) of
each point, and additional attributes are provided: intensity, return number, number of
returns, classification values, edge of flight line, RGB values, GPS time, scan angle, and
scan direction. Table 1 shows an example of the return number and number of returns of
the LiDAR data in LAS format (see Figure 1).

Table 1. Example of return number and number of returns of LiDAR data.

Laser Beam X Y Z Return
Number

Number
of Returns

1© 514,519.07 5,447,023.33 95.39 1 2
514,520.24 5,447,031.85 91.71 2 2

2© 514,519.10 5,447,023.81 96.14 1 2
514,520.23 5,447,023.02 95.26 2 2

3©

514,519.13 5,447,023.63 100.20 1 4
514,519.33 5,447,024.32 97.76 2 4
514,519.41 5,447,024.63 96.76 3 4
514,519.65 5,447,025.46 92.81 4 4

In this paper, the number of return attributes plays a crucial role in extracting buildings.
Two returns of the LiDAR data with the LAS format are dominantly generated along the
building boundaries. “Return number” and “number of returns” are confused frequently.
An emitted laser pulse can have several returns depending on the features it is reflected
from and the capabilities of the laser scanner used to collect the data. The first return will
be flagged as return number one, the second as return number two, and so on, with the
LAS format. On the other hand, the number of returns is the total number of returns for
a given pulse. For example, a laser point may be return two (i.e., return number) within
a total number of returns [22].
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2.2. Overview of PointNet++ Model

PointNet++ is recognized as a state-of-the-art DL model and superior to other DL
models for semantic segmentation and classification using point cloud data. PointNet++ is
an improved DL version of the PointNet since PointNet does not extract the local features
of the point clouds successfully [9]. The PointNet++ is a hierarchal network applying
recursive PointNet for partitioned point clouds to capture fine-grained patterns in the data
for classification and semantic segmentation. In PointNet++, the farthest point is selected
for the given point cloud sets to form centroids for determining nearest neighbor points
for each centroid. Then, the PointNet is applied to the local regions to generate a feature
vector for each region [23]. PointNet++ adopts the U-Net architecture using skip link
concatenation (or skip connection) [24].

The set-abstraction levels within the encoder network of PointNet++ are composed
of sampling, grouping, and PointNet layer. The PointNet compoment contains a set of
convolution, normalization, and rectified linear units (ReLU) followed by a max-pooling
layer. The feature vectors are created from the local region patterns during the encoding
process. On the other hand, the decoder network is composed of interpolation and PointNet
layer. Figure 9 represents the architecture of PointNet++, and Figure 10 illustrates the
PointNet configuration in the PointNet++ model.

Figure 9. PointNet++ architecture for segmentation and classification.

Figure 10. PointNet++ architecture showing configuration of the PointNet layers.
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The sampling layer selects a set of points that can define the centroids of local re-
gions through selecting a subset of the farthest points to each other from the point clouds.
The grouping layer organizes local regions by searching neighboring points around the
centroids. Then, the subsampled data are fed to the PointNet for encoding the local
region patterns into the feature vectors. By stacking several set abstraction levels, Point-
Net++ can learn features from a local geometric structure and abstract the local features
layer by layer [5]. Details of PointNet++ including multi-scaling grouping and multi-
resolution grouping that are to solve point data with non-uniform density efficiently are
described in [25,26].

2.3. Proposed Scheme and Experiments

A total of 29 data tiles out of 40 tiles from the DALES datasets were used for training
of PointNet++. Test of the trained PointNet++ was performed with the remaining 11 tiles.
In addition to tests with DALES datasets, another test was performed with new data from
the ISPRS Vaihingen datasets. The ultimate goal of DL is to generalize the trained models.
In other words, ability of the models to adapt properly to new data is critical to achieving
generalization (versatility or universality) of DL. Tests using data similar to the training
datasets (i.e., data selected from the same region) could not refer to evaluation of DL
models. In this respect, ISPRS Vaihingen datasets were chosen as the new data. To improve
capturing the local features, we partitioned the training data tiles with size of 500 × 500 m
into 50× 50 m sub-areas because various objects could be mixed in the larger areas, leading
to decreased training performance. Data partitioning not only increases the amount of data
but also improves uniqueness and diversification of the data that are requirements of the
training data for DL models.

The experiments for the semantic segmentation were performed using PointNet++
with airborne LiDAR data of the DALSE and ISPRS Vaihingen datasets. PointNet++ is one
of the successful point-based DL models for semantic segmentation by training unorganized
3D point cloud data. The PointNet++ model consists of partitioning point clouds and
extracting features. The model applies previously developed PointNet recursively to
extract multi-scale features for accurate semantic segmentation [27]. The main tasks of
using airborne LiDAR data in the field of photogrammetry are spatial database building,
topographic mapping, DSM generation, 3D object reconstruction and modeling, and 3D
city modeling for digital twin. Recently, deep learning solutions are increasingly involved
in accomplishing these tasks. To improve performance of the DL model, one can add
the number of return additional attributes (or additional features) to the training data.
Figure 11 shows the workflow of the proposed method.

Figures 12 and 13 show the characteristics of the two returns, and these datasets were
used for evaluating the proposed method. It is clear that the two returns dominantly
conveyed building boundaries. If LiDAR data with two returns is utilized, it is particularly
beneficial to identify and extract buildings. The quality of the DALES datasets is superior
to the ISPRS Vaihingen datasets in terms of the point density. Moreover, the quality of
the LiDAR data depends on the performance of the laser sensor. Therefore, points with
two returns in DALES datasets represent much clearer building boundaries formed by
two returns than ISPRS Vaihingen datasets. The experiments showed that the quality of
the points on the building boundaries affect building segmentation.
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Figure 11. Workflow of the proposed method.

Figure 12. DALES data with two returns: (a) test 1; (b) test 2. Two returns belong to building
boundaries: (c) test 1; (d) test 2.

Figure 13. ISPRS Vaihingen data with two returns: (a) new 1; (b) new 2. Two returns belong to
building boundaries: (c) new 1; (d) new 2.
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2.4. Accuracy Assessment

In general, the performance of deep learning is based on the evaluation metrics such
as accuracy and loss of the DL model training, IoU, recall, F1-score, confusion matrix,
etc. Since such metrics are statistical representations of the overall quality by quantitative
numbers computed using formal equations, there is a limitation in revealing the local and
detailed phenomena. In this regard, visualization of the differences between prediction and
ground truth leads to meaningful evaluation and analysis of the results. In particular, the
pattern and location of the misclassified features can be identified through visual inspection
on the basis of the difference images between prediction and ground truth.

We applied global accuracy (or overall accuracy (OA)), mean accuracy, mean intersection-
of-union (mIOU), weighted IoU, IoU, and recall to evaluate DL model training performance
and results of the semantic segmentation. Mean accuracy is the average accuracy of all
classes in particular data (i.e., each test and new data). Weighted IOU is for reducing the
impact of errors in the small classes by taking number of points into account for each class.
The evaluation metrics are as follows:

Global accuracy =
Number o f correct prediction
Total number o f prediction

=
TP + TN

TP + TN + FP + FN
(1)

Mean accuracy =
∑(each class accuracy)

k
(2)

IoU =
Area o f overlap
Area of union

=
Area (prediction ∩ target)

Area (prediction ∪ target)
=

TP
TP + FP + FN

(3)

mIoU =
1

k + 1

k

∑
i=0

TP
TP + FN + FP

(4)

Recall =
TP

TP + FN
(5)

where TP, TN, FP, and FN are true positive, true negative, false positive, and false positive,
respectively. k is number of classes.

Class imbalance is a common problem in deep learning for multi-class classification
or segmentation with a disproportionate ratio of the data in each class. i.e., there is
a significant discrepancy in the amount of data across different classes. In this case, the
prediction accuracy of the class with greater data is higher than that of the class with less
data. Therefore, the ideal case would be for each class to have approximately the same
amount of data [28,29].

We applied weighted cross-entropy loss among the approaches for correcting class
imbalance such as over- or under-sampling, class aggregation, class weighting, focal
loss, and incremental transfer learning. The concept of the weight-based class imbalance
correction is that the weights are assigned inversely proportional to the number of data
of the classes. The weighted cross-entropy weights the losses associated with incorrectly
predicting rarer data more heavily than losses associated with more data as follows [30]:

w (p, y) =
C

∑
t=1

wt pt log (yt) (6)

where pt and yt denote the probability estimate and ground truth of class t, respectively.
C denotes the number of ground truth classes, and wt denotes the weight for class t.

3. Experimental Results and Analysis

Two LiDAR data were selected from the DALES datasets as test data, and two LiDAR
data were selected from the ISPRS Vaihingen datasets as new data. The test and new data
are shown in Figures 14 and 15, respectively. The aerial images in Figure 14 were captured
from Google Earth since images were not included in the DASLES datasets. The aerial IR
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images were provided by ISPRS Vaihingen datasets. Even though the aerial images were not
involved in training PointNet++, they are presented for the purpose of identifying regional
characteristics and visually analyzing semantic segmentation results. The parameters for
training PointNet++ were that training epoch was 20, mini-batch size was 6, and learning
rate started from 0.0005 for the first 10 epochs then 0.00005 after 10 epochs. Results of the
semantic segmentation from following cases are presented:

Case 1: Original datasets (i.e., all number of returns)
Case 2: Datasets of two returns with randomly selected points of 10% from the original datasets
Case 3: Datasets of two returns with randomly selected points of 50% from the original datasets

Figure 14. Test data from DALES datasets: (a) test LiDAR data 1; (b) test LiDAR data 2; (c) aerial
image 1; (d) aerial image 2.

Figure 15. New data from ISPRS Vaihingen datasets: (a) new LiDAR data 1; (b) new LiDAR data 2;
(c) aerial IR image 1; (d) aerial IR image 2.

Figures 16–27 show semantic segmentation results of test and new data from the
trained PointNet++ model that was trained using DALES training datasets. The results in
the figures consist of prediction from the model, ground truth (i.e., label data), visualization
of difference between prediction and ground truth, and the difference for buildings only.
Black and while areas in the difference images indicate misclassified and correctly classified
LiDAR points, respectively. Most of the erroneous results (i.e., black areas in the difference
images) occur at the objects’ edges (or boundaries). These might be caused from the hand-
labeling process because identification of each point is a challenging task, especially for
the ambiguous or unclear boundaries between adjacent objects. Moreover, the sampling,
grouping, and interpolation in the PointNet++ could affect the errors between prediction
and ground truth. Therefore, errors are more clearly visible at the boundaries of the objects.
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Figure 16. Results of semantic segmentation of test data 1 for case 1: (a) prediction; (b) ground truth
(i.e., label data); (c) difference between prediction and ground truth for all classes; (d) difference
between prediction and ground truth for building class only.

Figure 17. Results of semantic segmentation of test data 1 for Case 2: (a) prediction; (b) ground truth
(i.e., label data); (c) difference between prediction and ground truth for all classes; (d) difference
between prediction and ground truth for building class only.

Figure 18. Results of semantic segmentation of test data 1 for Case 3: (a) prediction; (b) ground truth
(i.e., label data); (c) difference between prediction and ground truth for all classes; (d) difference
between prediction and ground truth for building class only.
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Figure 19. Results of semantic segmentation of test data 2 for Case 1: (a) prediction; (b) ground truth
(i.e., label data); (c) difference between prediction and ground truth for all classes; (d) difference
between prediction and ground truth for building class only.

Figure 20. Results of semantic segmentation of test data 2 for Case 2: (a) prediction; (b) ground truth
(i.e., label data); (c) difference between prediction and ground truth for all classes; (d) difference
between prediction and ground truth for building class only.

Figure 21. Results of semantic segmentation of test data 2 for Case 3: (a) prediction; (b) ground truth
(i.e., label data); (c) difference between prediction and ground truth for all classes; (d) difference
between prediction and ground truth for building class only.



Appl. Sci. 2022, 12, 1975 14 of 20

Figure 22. Results of semantic segmentation of new data 1 for Case 1: (a) prediction; (b) ground
truth (i.e., label data); (c) difference between prediction and ground truth for all classes; (d) difference
between prediction and ground truth for building class only.

Figure 23. Results of semantic segmentation of new data 1 for Case 2: (a) prediction; (b) ground
truth (i.e., label data); (c) difference between prediction and ground truth for all classes; (d) difference
between prediction and ground truth for building class only.

Figure 24. Results of semantic segmentation of new data 1 for Case 3: (a) prediction; (b) ground
truth (i.e., label data); (c) difference between prediction and ground truth for all classes; (d) difference
between prediction and ground truth for building class only.
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Figure 25. Results of semantic segmentation of new data 2 for Case 1: (a) prediction; (b) ground
truth (i.e., label data); (c) difference between prediction and ground truth for all classes; (d) difference
between prediction and ground truth for building class only.

Figure 26. Results of semantic segmentation of new data 2 for Case 2: (a) prediction; (b) ground
truth (i.e., label data); (c) difference between prediction and ground truth for all classes; (d) difference
between prediction and ground truth for building class only.

Figure 27. Results of semantic segmentation of new data 2 for Case 3: (a) prediction; (b) ground
truth (i.e., label data); (c) difference between prediction and ground truth for all classes; (d) difference
between prediction and ground truth for building class only.

Figures 28 and 29 depict 3D perspective views of the point clouds belonging to the
building class of the DALES test data and ISPRS Vaihingen new data, respectively. The
building points were extracted from the semantic segmentation results by applying the
proposed methods.
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Figure 28. Examples of 3D perspective view of DALES data building point clouds: (a) test 1; (b) test 2.

Figure 29. Examples of 3D perspective view of ISPRS Vaihingen building point clouds: (a) new 1;
(b) new 2.

Training accuracy alone is not sufficient in determining the performance of the models
since it is not always representative of each class within the datasets. It is more important
to assess the robustness and generalization of a DL model for the new datasets since the
ultimate goal of DL is to expand the trained model to other datasets (i.e., new or unseen
data) that are not involved with training. On the other hand, IoU is calculated for each
class separately, then averaged over all classes to provide the mIoU score of semantic
segmentation prediction. The threshold to be considered accpetable prediction is 0.5. If IoU
is larger than 0.5, it is normally considered a good prediction [15,31]. The results show that
LiDAR data with two returns and appropriate point density could lead to improved results
on the building boundaries.

In order to assess the proposed method, we analyzed results from each case for the test
and new data on the basis of the visual inspection as well as standard evaluation metrics.
Performance of the DL model training is presented in Table 2 in terms of accuracy and loss.
The overall evaluation of the trained model is shown in Table 3 with accuracy and IoU.
Classification accuracy of each class is shown in Table 4. It was noticed that land cover class
of DALES and ISPRS Vaihingen datasets were not the same, as shown in Figures 4c and 7e.
Therefore, the classes in test data and new data did not coincide with each other.

The major objective of the proposed method was in utilizing multiple returns of the
LiDAR data. Specifically, two returns of the laser pulse convey rich information of the
building boundaries. In consequence, the accuracy of the building boundaries for the test
data in terms of recall were improved by utilizing two returns, as shown in Table 5 and
Figure 30. However, there was not significant improvement for the new data because of the
poor quality of the new data (i.e., 4~7 ppm) caused by low point density compared with
the training datasets (i.e., 50 ppm).

Table 2. Training accuracy and loss for each case.

Evaluation Metrics Case 1 Case 2 Case 3

Accuracy (%) 97.08 95.55 96.45
Loss 0.20 0.23 0.20
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Table 3. Evaluation metrics of test and new data for each case.

Dataset Evaluation
Metrics Case 1 Case 2 Case 3

Test 1

Global accuracy 0.9253 0.8869 0.9126
Mean accuracy 0.6254 0.6304 0.6323

Mean IoU 0.4287 0.4640 0.4474
Weighted IoU 0.8669 0.8017 0.8454

Test 2

Global accuracy 0.9399 0.9059 0.9281
Mean accuracy 0.6411 0.6640 0.6537

Mean IoU 0.4979 0.5284 0.5031
Weighted IoU 0.8937 0.8372 0.8738

New 1

Global accuracy 0.6557 0.4754 0.6349
Mean accuracy 0.5216 0.3952 0.4961

Mean IoU 0.1916 0.1261 0.1860
Weighted IoU 0.4958 0.3115 0.4781

New 2

Global accuracy 0.5064 0.3104 0.4656
Mean accuracy 0.4976 0.3344 0.4630

Mean IoU 0.1591 0.0768 0.1405
Weighted IoU 0.3475 0.1540 0.3011

Table 4. Classification accuracy of test and new data.

Dataset Class
Accuracy IoU

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Test 1

Ground 0.9740 0.9607 0.9659 0.9140 0.8462 0.8955
Vegetation 0.8663 0.8528 0.8610 0.8035 0.7909 0.7986

Car 0.4005 0.3804 0.3980 0.2615 0.2837 0.2822
Truck 0.3731 0.1300 0.2562 0.0236 0.0198 0.0207

Powerline 0.8661 0.8703 0.8731 0.3932 0.5568 0.4650
Fence 0.0498 0.2979 0.1993 0.0391 0.1872 0.1136
Pole 0.5767 0.7089 0.6230 0.1413 0.2527 0.1825

Building 0.8966 0.8420 0.8820 0.8537 0.7747 0.8208

Test 2

Ground 0.9924 0.9898 0.9874 0.9302 0.8964 0.9166
Vegetation 0.8826 0.8651 0.8773 0.8445 0.8147 0.8355

Car 0.6838 0.3482 0.5332 0.2060 0.1711 0.2196
Truck 0.4217 0.4077 0.3738 0.2750 0.3033 0.2431

Powerline 0.6757 0.7863 0.7677 0.5517 0.6407 0.5376
Fence 0.1207 0.5763 0.3530 0.0907 0.2999 0.1816
Pole 0.4210 0.4619 0.4332 0.1788 0.2546 0.2108

Building 0.9208 0.8764 0.9044 0.9067 0.8464 0.8797

New 1

Ground 0.8814 0.9046 0.8534 0.5666 0.4129 0.5556
Vegetation 0.3350 0.2296 0.2831 0.2838 0.2098 0.2515

Car 0.1852 0.0756 0.1270 0.0920 0.0517 0.0953
Building 0.7523 0.3712 0.7208 0.6573 0.3342 0.5858

New 2

Ground 0.9445 0.9570 0.9429 0.3292 0.2742 0.3299
Vegetation 0.1712 0.0583 0.1332 0.1680 0.0564 0.1298

Car 0.0237 0.0139 0 0.0588 0.0085 0
Building 0.8512 0.3086 0.7760 0.7699 0.3797 0.6644

Table 5. Recall of building boundaries.

Dataset Case 1 Case 2 Case 3

Test 1 0.7417 0.7948 0.7598
Test 2 0.7691 0.7826 0.7851
New 1 0.5158 0.2611 0.5063
New 2 0.5938 0.1930 0.5344
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Figure 30. Graphical representation of Table 5.

4. Conclusions and Discussion

Extraction of building data consisiting of 3D information is important for building
modeling since 3D building models are utilized in various applications such as 3D map-
ping, city modeling and planning, and smart city associated with digital twin. LiDAR data
contain not only spatial information but also unique attribute information. In particular,
multiple returns of the laser beams imply the geometric characteristics of objects. The pro-
posed method aims to accurately extract point clouds belonging to buildings by preserving
the structual boundaries on the basis of the number of returns. The results of this study
could be used to process 3D building modeling.

Utilizing two returns yielded higher recall values of the building boundaries for the
test data. The maximum improvement was from 0.7417 to 0.7948 for test data 1, and
0.7691 to 0.7851 for test data 2 in terms of recall value. However, there was no significant
improvement for the new data. The quality and characteristics of the test and new data
should be similar to the training data of the DL model for optimal results. Therefore, the
results of the new data were not satisfactory because the quality of the data was lower than
that of the training data. However, buildings were adequately identified and classified
compared to the other objects.

In consequence, it is not sufficient to successfully carry out the semantic segmentation
of real-world objects by the raw (of original) data only. Additional meaningful attribute and
intrinsic information in the data could improve the performance for achieving objectives.
In this respect, multi-source and multi-modal data are being utilized more frequently. In
this regard, it is valuable to implement attributes such as multiple return information of
LiDAR data.

In addition, multiple return of the LiDAR could be applied to extract specific features.
For example, trees generate more multiple returns than other objects. Therefore, in order to
extract trees from the LiDAR data and create a 3D forest map for use in environmental and
ecosystem research, one must classify trees. By using multiple returns, one can efficiently
identify and distinguish trees from other objects.
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