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Abstract: As society grows, the urbanized population proliferates, and urbanization accelerates.
Increasing traffic problems affect the normal process of the city. The urban transportation system is
vital to the effective functioning of any city. Science and technology are critical elements in improving
traffic performance in urban areas. In this paper, a novel control strategy based on selecting the type
of traffic light and the duration of the green phase to achieve an optimal balance at intersections is
proposed. This balance should be adaptable to fixed behavior of time and randomness in a traffic
situation; the goal of the proposed method is to reduce traffic volume in transportation, the average
delay for each vehicle, and control the crashing of cars. Due to the distribution of urban traffic and the
urban transportation network among intelligent methods for traffic control, the multi-factor system
has been designed as a suitable, intelligent, emerging, and successful model. Intersection traffic
control is checked through proper traffic light timing modeled on multi-factor systems. Its ability
to solve complex real-world problems has made multiagent systems a field of distributed artificial
intelligence that is rapidly gaining popularity. The proposed method was investigated explicitly
at the intersection through an appropriate traffic light timing by sampling a multiagent system. It
consists of many intersections, and each of them is considered an independent agent that shares
information with each other. The stability of each agent is proved separately. One of the salient
features of the proposed method for traffic light scheduling is that there is no limit to the number
of intersections and the distance between intersections. In this paper, we proposed method model
predictive control for each intersection’s stability; the simulation results show that the predictive
model controller in this multi-factor model predictive system is more valuable than scheduling in the
fixed-time method. It reduces the length of vehicle queues.

Keywords: predictive controller; traffic-light control; multiagent systems; state-space equations;
multiagent control with traffic light control

1. Introduction

Traffic signal control is one of the essential topics in recent world developments. Due
to the growing population in cities, the demand for transportation has increased, and heavy
road traffic has been known to be a big issue for some time. Controlling traffic and the
direct effects of urban transportation systems on traffic are big problems. For example,
Mexico City, with the rank of 66%, is the first in the world in terms of traffic congestion.
This country’s population of 21 million is one of the traffic congestion reasons, which
makes the people waste at least 1 hour a day in city traffic. One of the city’s main plans
is to reduce traffic congestion by developing public transportation [1-3]. Additionally,
among the big cities, Istanbul has the highest traffic volume after Mexico City. However, in
recent years, traffic congestion has decreased significantly [4]. Over the years, city officials
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have expanded public transportation to reduce traffic congestion. At the same time, they
plan to extend metro lines to decrease traffic congestion in the city. In Istanbul, drivers
face the worst traffic congestion in the country and the worst in Europe [5]. It is difficult
to get around Istanbul, especially at night. The city’s direct economic effects, such as
delays in transporting goods and materials due to traffic congestion leading to severe traffic
congestion, are expected [6-9].

There are equations in the paper for period green phase time queue length; it has been
done using fixed time and intelligent technique methods [10]. The intelligent method has
been used to adjust signal timing; nowadays, this technique is used for urban traffic control
plans. The intelligent methods started in 1990, for which Scoot and Scats are prototypes of
intelligent transportation systems [11]. The urban transportation system requires adequate
solution methodologies. Traffic signal timing optimization is one of the quickest, most
efficient ways to reduce overcrowding at intersections and develop traffic flow in urban
traffic [12,13]. There are approaches for solving traffic issues below, such as:

e Compulsory migration for urban dwellers.
*  Development of urban transport infrastructure.
¢ Improving the use of available infrastructure.

For the first approach, if we do not want to be irrational, we have to say that it
removes the problem form. The second approach is a vital issue, but this approach comes
with hardship and cost in crowded areas like city centers. The third approach seems
more straightforward, and it improves how to use transport infrastructure and improves
traffic flow. Therefore, to date, traffic control methods have primarily been introduced
to classical control methods through data and experiments. Finally, in this research, the
parameters desired are adjusted in the form of the optimal and specific level of control.
This level of accountability in traffic systems for high complexity of the structure includes
sections such as control, communications, computer, and a high volume of implementation
and maintenance costs, in research related to traffic control. It has to have a proper and
complete understanding and completion of the traffic system. This article aims to provide
an intelligent solution for traffic control. Urban traffic is a complex system for controlling
traffic issues, consisting of continuous and discrete solutions. Parameters important for
controlling traffic include input flow speed to the lines and intersection, adjusting traffic
light signals, reducing the effect of noise generated like accidents, stopping unnecessarily,
etc. In this work, with attention to the problem, the agents’ approach is studied. We suggest
minimizing the number of vehicles at intersections by predicting the green time using urban
traffic control strategies [14-16]. The system is linear in condition evolution equations,
yet links predict queuing dynamics. In the model predictive control approach, linearity is
essential, since the objective is to solve optimization problems with near-optimal control
techniques repeatedly. We employ only linear dynamics in the proposed model predictive
control framework to achieve this [17-19]. Multiagents are modeled as a sequence of queues
with nonuniform features, and connections at intersections are contacted.

Problem Statement

There are many problems related to traffic congestion in the big city. It generates
environmental pollution, hinders transportation, impairs the daily lives of humans, and
causes material losses. Researchers are trying to solve this by analyzing various aspects
in every country based on the traffic situation. In this work, a traffic light controller was
designed using model predictive with MATLAB. Mathematically, at first we used a dynamic
model from an intersection, and proposed to improve a single intersection to 8 intersections.
Then, for connecting intersections together, we suggested a multiagent model. Eventually,
we further proposed a model predictive control for stability proof. The purpose of this
research is summarized as follows:

* Linking eight intersections in urban traffic with the use of multiagents.
*  Proof and stability of the proposed model.
*  Design model predictive controller reduces the number of vehicles in the queue.
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¢  Evaluate the average number of cars queued in the two models with and without a
controller.

The rest of this paper is categorized as follows. Section 2 introduces related work.
Section 3 suggested a building model system for designing model predictive control for
intersections with multiple agents. Mathematical models of intersections are described.
The stability analysis is mentioned in Section 4. In Section 5, designation of the predictive
controller is described in detail. Simulation results are mentioned in Section 6. They are
followed by Section 7, which concludes this paper.

2. Related Works

A kind of traffic flow is a fundamental diagram used in urban traffic because of its
ability to predict the capability of a road system as it can consider inputs and speed limits
with applying regulation. A low-scatter relationship between traffic accumulation can
determine traffic accumulation and trip completion rate for urban networks. For example,
there is a traffic control strategy for a single urban congested region [20]. This research
has presented a macroscopic traffic flow model for the condition to achieve a stable traffic
flow. There is congestion in urban overcrowding problems in city roads. However, it is
frequently the first point of reference [21]. In [22], the use of Cell Transmission Model
(CTM) at a macroscopic model proposed to increase the accuracy and prediction of the trip
period at the visible model. The main goal is to create a general structure in urban traffic
networks. In [23], they developed an agent-based networked traffic-management system
to achieve flexible and intelligent control of traffic and transportation systems. The agent-
based control decomposes a complicated control algorithm into simple task-oriented agents
which are distributed over a network. This study proposes a fuzzy intelligent controller
to achieve an optimal balance at nine intersections. Recently, numerous researchers have
applied fuzzy logic in the field of traffic signal control.

2.1. Urban Traffic Control with Multi-Agent

Due to its geographically dispersed nature, many subjects have introduced multiagent
system technology in transportation and transport; over the past few years, there has
been a dramatic increase in intermittent use and idle running features. One of the most
intelligent methods is the Multi-Factor Systems method, which can use multiple intelligent
agents to solve problems that interact with each other for controlling urban traffic [24]. The
general framework and working methods of forecasting control include process models,
cost functions, and organizational strategies; different choices for each element lead to
other structures. Predictive control is the first model from which critical processes can be
derived [25]. This study examines the intelligent control of consensus control with multiple
systems. Control thresholds are introduced for individual systems via event-based, static,
flexible, and collaboration methods. It is also rated [26]. An integrated multi-factor deep
scalable and scalable local method has been successfully implemented to improve traffic
light control for existing traffic systems [27]. This has recently demonstrated a technique
that combines Artificial Intelligence and Internet-of-Things, defined as Al-powered Internet-
of-Things, which has been processing large amounts of generated data. Then, with the use
of multiagent, Q learning, queue lengths, waiting time at intersections, this has improved
the throughput efficiency of the all-over control system [28]. The authors of this [29] suggest
that a multiagent system (MAS) helps transport operators determine the best transportation
strategies to deal with non-urban road accidents. Agents are applied to both systems using
the Java Agent Development (JADE) Framework. This paper has used a mathematical
method for timing traffic signals at an intersection to deal with travel and improve speed
cars by the multiagent system at urban signal traffic; it has been done with the Matlab
program [30].
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2.2. Urban Traffic by Using Predictive Model Control

Model predictive control was presented in 1970. It is a new model in which a control
is based on model prediction [31]. In [32], traffic congestion on major urban roads and
highway control to regulate and improve the economy by monitoring the forecast range
based on macro base maps was first proposed. The main goal of this system is to use a
predictive model for improving traffic signals at urban way traffic, management rights, and
finding optimal methods. Currently, the urban transport community is one of the biggest
problems [33].

This paper’s primary function is to model and minimize the queue length and the
oscillation of green time in urban traffic using predictive model control and neural networks
in a genetic algorithm [34].

This article presents a participatory control approach to a bright urban environment
based on information from pollution, and urban traffic control engineering models have
been used to adjust the length of traffic lights cycles using [35].

Table 1 demonstrates a summary of the technologies used in the direction system
with a classification of a different model in the urban traffic. As shown, the primary goals
are the used model and the kind of advantages they have used—the spatial term in their
suggested system and the research work’s main scenario. Overall, a summary of the
presented strategy with other related work shows various control techniques utilized to

improve the system’s performance based on urban traffic.

Table 1. Existing studies of urban traffic.

Author

Model

Advantages

Limitation

Haber et al. [36]

Cooperative control of urban subsystems

Improve the performance

Urban traffic networks

Pallavi et al. [37]

Deep reinforcement learning

Decision-making capabilities

Region-based traffic flow

Sulaiman et al. [38]

Deep learning-based

Prediction

Framework urban traffic flow

Fan et al. [39]

Spatial- temporal
Ordinary Differential Equations

Prediction accuracy and
computational efficiency

Multi-city traffic flow

Yiling et al. [40]

Multi-task learning

Prediction, multi-task learning

Control signal traffic, traffic control

Mileti¢ et al. [41]

Fuzzy logic

Reduce traffic

Traffic signal

Tuo et al. [42]

Machine learning, genetic algorithms

Fast, training parameter, minimize

Traffic signal

Hong et al. [43]

Adaptive linear quadratic

Reduced traffic delay
and energy consumption

Urban traffic control operations

Radja et al. [44]

Particle Swarm Optimization

Reducing fuel consumption
and pollutant emissions,
optimal signal timing

Urban traffic
networks with
course determination

Ting et al. [45]

Data-driven model free

Improve the performance

Urban traffic management

Bartosz et al. [46]

Dynamic Radio Frequency
IDentification identification

Identification

Traffic lights under the universe

Cang et al. [47]

Fuzzy logic

Reduce and improve, optimal

Traffic light control for
heterogeneous, traffic systems

Yanmei et al. [48]

Multi-objective linear programming

Guarantees the interests of passengers,
reduce carbon emissions, minimize

Traffic light control for
heterogeneous traffic systems

Hoang et al. [49]

Distributed control strategy

Optimal and minimize

Large-scale urban network

Mahdiyeh et al. [50]

Multiple linear regression model

Multiple linear regression model

Modeling traffic noise
level in intersection

Zongtao et.al. [51]

Deep hybrid network

Prediction

Urban traffic flow

Alvaro et al. [52]

Weighted multi-map strategies

Traffic management

Urban traffic

3. Multi-Agent and Model Predictive Control

All predictive control structures include general predictive control frameworks and
operation models, cost functions, and organizational methods. Different choices for each
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element lead to other facilities. Model predictive control is the first model from which an
essential process can be derived. Predicting future production based on current values and
future control methods are recommended. The optimizer calculates this by considering the
cost function and constraints. Specific models are easy to understand and implement; more
information is explained in [53].

Here, the actions performed within an agent system in a structure affect the sub-net
network and the subsidiary network. In a design, an agent control adjusts points and
also enables other agents. There is an agent in a structure control multiagent, and this
control causes changes in how other agents select another agent. It causes adjusted system
performance at the high layer. Additionally, all information in the structuring agent is used.
Using this method reduces the load on the computer. Agents can communicate with other
agents and work together to provide a better solution. Factor cycle control using general
prediction control has a current mode system and maximum efficiency.

The framework of multiagents with model predictive control is as follows:

* Inasystem model, the selected can be a hierarchical system.

*  The control issue adjusts to minimize the hierarchical cost function.

* A hierarchical control problem can be solved using hierarchical architecture.

e Agents must communicate in the model predictive multiagent system. The central-
ized system and control problem are separated, and they become smaller problems
dependent upon each other.

Effects on business agent evolution. The system is connected to its subsystem. Agents
are not reviewed in a multiagent environment, however they can only have sensors and
actuators. There is uncertainty in the subsystem, which was used out of connection to
reduce this uncertainty. That is why conscious consumers value their plans: a proxy
recurrence account and local contact for each control cycle. Figure 1 shows communication
between multiagents and a model predictive control and how to combine. Each model
prediction control tool cycle includes this form cycle: the advantage of system behavior
and actions. The system behavior and system input and output in this process are limited.

Constraint

—
|
|
|
|

| Action output: |

| | _

| | e
! . ! g
| - e
| ! | |

Sensor input

Physical network

— — — — | control structure

Measurement of
network state

Figure 1. Single-agent model predictive control.

There is information about future glitches. The primary purpose of this data is to
improve the system’s behavior and is a sign that costs are being kept to a minimum. The
control agent used model predictive control to predict the system’s behavior to get the best
performance. This figure has the supervisory control layer, which considers the dynamics of
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both a lower and underlying physical network. This physical network has been controlled
with several control layers to control the network.

4. Mathematical Models in Intersections

Our study elaborates on a network control process consisting of several junctions that
control all the traffic lights. The aim of achieving an optimal balance at intersections has
been proposed in this algorithm based on selecting a kind of traffic light and the duration
of the green phase. This intersection consists of many independent agents that exchange
information with each other, and the stability of each agent is proved separately. This article
investigates eight isolated intersections; the four phases are shown in Figure 2. We used a
dynamic model from a single intersection at the first step. After that, with attention to the
dynamic model intersection, we prove stability, then we get a new equation. To expand an
intersection to 8 intersections, we proposed a multiagent method to connect intersections.
Here, Figure 2 shows the presented multiagent model, which has been used for eight
intersections in traffic control and reducing the queue length using a model predictive
control. Finally, we want to reduce the queue length created at the intersections by the
proposed model.

Past inputs and outputs

predicted |
M Od el outputs - -

1

J)L:(‘:]:’ 1) =AX(m)+B(mS+C(m)
~LY(H) =CX(m)

Future inputs

Action umput;iv Optimizer “fun w

T I —
| |
I I erors — > Reduce Traffic
: Environment :
|
| t I

Sensor input:

ffffffffffffffff Cost function Constrains

X(n+1)=(I,, ® 4)X()+ (I, ©B)S()+1.C,
Y(n)=CXx(n)

Figure 2. The overall structure of the proposed method.

In this section, mathematical equations and several connecting intersections have
been mentioned. The stability of an intersection has been mentioned in [53]. For more
explanation, there are two phases at an intersection, Leg 1, Leg 3, and Leg 2, Leg 4. Here, a
vehicle’s queue length is one of the main parameters in the equation of traffic flow at each
intersection in the Equation (1).

Qi(n+1) = Qi(n) +qi(n) —di(n)si(n) 1)

In this case, i = 1,2,3, ..., n is the leg index that enters the intersection. In addition,
n =0,1,2,..,N —1is the discrete-time interval index. Q;(n) represents the length of
the queue of vehicles, g;(n) represents the number of leaving cars, d;(n) represents the
number of entering vehicles and s; € [0, 1] represents the traffic light status in the legs of
the simulation. As long as T has been considered as a discretized time interval, and can
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be assumed uniform in every time interval, a uniform arrival of vehicles is presumed for
every time interval, resulting in the calculation of the overall waiting time as Equation (2).

Wi(n+1) = W; + TQi(n) + q:(n) — d;(n)s;(n)1/2q;(n)! 2)

For further details, state-space equations for a single intersection are as below:

®)

{X(n +1) = AX(n)+ B(n)S + C(n)

Y(n) = CX(n)

We used Equation (2) for proving the stability of eight intersections. At this Equation,
X;(n), W;(n) are control variables. Additionally, Equation (3) shows other matrices of
coefficients and vectors, for example A,B,C,D, as follows:

€= [ISA I?J @)
I 0
A= [ng IM} 5)
[ di(n) 0 0 ]
0 dz(n) 0
_ 0 : d (n)
B() = =11 21d, (n) 0 S "0 ©)
0 1/2Tdy(n) 0 0 0 0
0 0 1/2Tdy(n)
C, = [q1(n)qz(n)...qM(n)l/Zqu(n)1/2Tq2(n)...1/2TqM(n)]T (7)
These are:
X(n) = [Qu(1n)Qa(1)..Qu () W1 (1) Wa()...1/2Tqpm(n)] " ®)

These variables refer to state variables and queue lengths and delays of Q;(n).

Mathematical Model of Multi-Agent Intersections

Figure 3 shows multi-agent intersections linked to each other.

When the intersections are connected to each other, all the parameters of Q;(n), W;(n)
all the matrices of the coefficients are similar to the intersection. Their only difference is
in the state-space equations based on the Kronecker product as Equation (9). The most
important feature used in the multiagent systems of Kronecker mathematics is a Kronecker
multiplier. It is displayed as ®. This multiplication factor is on two matrices of optional size.

The interrelationships between agents have been represented in a multi-factorial
system in Figure 3. Each factor of the graph is equal to the presence of one element,
and the information exchanged between the agents depends on the connection of each
path. Table 2 shows the parameters using notations in the predictive model based on the
proposed method.

{ X(n+1)=(Iy®A)X(n)+ (I ®@B;))S(n)+1-C; )
Y(n) = CX(n)
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——) di(n)
> ai(n)

Figure 3. Multi-agent two-phase signaled intersection.

Table 2. The parameters used in this article.

Component Description

Qi(n) Queue length

gi(n) The number of vehicles that enter the queue
di(n) The number of vehicles that have left the queue
Si(n) Control signal

Wi(n) Waiting time

T Sampling time

X(n) Model variable vector

S(n) Control signal

Ipm Identity matrix

A;, B;, C; Metrics

J Cost function

y(n) New output

y'(n) Output

H Hamilton equation

® Kronecker

5. Designing Stable Predictive Controller for Multi-Agent Intersections

The cost function according to an intersection model using a multiagent system is
described as follows:

J=XT(n+1)(Iy® Q)X(n+1)+ AST(n)(Iy ® W)AS(n) (10)

The model predictive control determines control signals by having a process model
and receiving future signals based on optimization. This act minimizes the difference
between the predicted outputs and the reference signals.

Theorem 1. The dynamic system in Equation (9) limits and finalizes the overall system. In
counting, all signals of the closed-loop system have been limited.

The proof: Typically, in urban intersections, the control signal is a traffic light that is
green or red, and if it is green, vehicles can enter or leave, and during the red phase, the
vehicles only can enter the queue.

][ ) (o o o
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The new output will be as follows:
y'(n) = [¢] (Aéfg)) (12)

Now, for proving the stability of the general system, the suitable Hamiltonian function
with the goal of strength should be presented in this Theorem. Since the equations are
discrete, then in this paper, Equation (13) is the Hamiltonian function.

H=y'Ty+ ASTRAS (13)

Equation (13) causes the cost function to minimize. This equation is a new output on
the based cost function at a general system, totaling the previous output with the control
and reference signals. Then, via putting relation AX in relation Equation (13), the above
equation can be written as follows:

H= (EAX(n+1))T1(EAX(n+1)) + ASTRAS (14)
where ¢ =[11110000] and by placement:
AX(n+1) = AAX +BAS+C (15)

With assuming that:
(16)

A= (Iy® A;)x(n)
B = (Im ® B;)x(n)
C=1¢C

Additionally, Iy = q has been defined as input at the general system. Using Equa-
tion (17) and via putting relation, Equations (17) and (18) can be rewritten as follows:

(17)

H = (&(In ® Aj)X(n) + (I ® B;)S(n) + 1.C)T
(E(Iy ® A))X(n) + (I ® B;)S(n) 4+ 1.C; + ASTRAS
According to Equation (17), ¢ affects each parameter, written as the Hamiltonian

equation below.
(18)

H = (&(Im ® A)X(n) + &(Im ® B;)S(n) + £1.C;) "

(&(Im @ A)X(n) + §(In ® B;)S(n) 4+ §L.C;) + ASTRAS

After some mathematical manipulations, such as with attention, considering the
Equation (14) and placing it in Equation (18), the following Equation is obtained:

(19)

H=(AX"(Im ® A)"¢" +AsT(In @ B)"¢" +1.¢]¢7)
(E(In @ A;)AX + E(Ip @ Bj)AS + EC;) + ASTRAS
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At this step, using (AB)T = BT ATand(A ® B)T = BT @ AT applying some mathemat-
ical operations, we get the following Equation (20):

(20)

H=AX"(Iyy @ A)TETE(Iy @ A)AX + AXT (I @ A)TETE(Iy @ B;)ASH+
AXT (I ® Aj)TETE1L.Ci + AST (I @ B;) TET& (I © Aj)AX + AST (Iy®
Bi)"¢"¢(In ® Bi)AS + AST (In © B;)T¢TEC; + 1L.C:E ¢ (I @ Ai) AX+
1.C¢TE(Iy ® B))AS + 1.CFETEC; + ASTRAS
Finally, calculating the general system can create a Hamiltonian equation, which de-

rives the cost function ratio to the control effort by equalizing it with zero. The Hamiltonian
Equation (21) obtained the following:

oH
5AS = 0 (21)
Then Equation (22) obtained:
(22)
JoH
3AS — AXT (I @ A)TETE(In @ Bi) + AXT(In @ A1) ¢ ¢ (Im @ By) + AST

(In @ B)TETE(Ing @ B;) + CTETE(Iyy ® By) + CTETE(Iyg @ B;) + ASTRAS = 0

At result:
(23)
AST((Inm © Bi)§ ¢ (Im © Bi) + R+ RT) =
—2(AXT (I @ AN ¢ (I @ Bi) + Cl¢TE(Im @ By))
Therefore, the above relation after differentiating can be expressed as follows:
(24)

AST = —2(AXT(Iyy ® A))T&TE(Im ® By) + C] " & (I © By))
(Im®B;) ¢ ¢(Iy @ B;) + R+ RT) ™

This completes the proof. In this section, we first presented a dynamic equation in
which the main parameter has been obtained from a single intersection then has consid-
ered several intersections as a multi-factorial system, connected by agents; it was shown
communication between agents as a graph. Additionally, considering dynamics for several
intersections has been proved stable using model predictive control.

6. Simulation Results

In the simulation, the quadruple length reduction criterion is used in both fixed time
and the proposed model predictive control, and sampling time T = 0.1 s is utilized, which
draws attention to the values of different traffic conditions. The parameters g; and d; are
random and distributed in the predictive model. The results of this example are shown
in visual form. Below, we explain the proposed model without a controller. Then, in
fixed-time control, the simulation results for the number of vehicles in the queue without
controller actions are shown in the following figures.
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The number of vehicles in the first intersection using fixed-time control improves
using the model predictive control. The length of the queue of vehicles on the fourth leg
is higher than on the other leg, and the number of cars per leg is monitored with timing.
In the first phase, the number of cars is almost constant and has not increased. However,
the volume of traffic at the third leg is higher than at the second and fourth leg at this
intersection, as shown in Figure 4.

‘ Intarsection 1 Without Modsl predictive Cuntrol|

Vehicles Quaues
@
=]

0 e B ~ES mES .-l sl sl BN _sES ol
o 10 20 30 40 50 60 70 80 90 100
Time(s)

o First leg (first intersection) m Scond leg (first intersection)

m Third leg (first intersection) Fourth leg (first intersection)
Figure 4. The length of vehicle’s queue in of the first intersection (The performance of the queue
length of the vehicle in the intersection with using fixed-time controller).

The volume of vehicles that cars produce increases in the first and third legs, and in
the second leg with fixed time increasing. The length of the queue of vehicles in the fourth
leg is more than in another leg in the intersection, as shown in Figure 5.

2 Without Model predictive Control |

g
& 40
£ 30
=
= 20
d
> 10
0 L}

Time(s)

mFirst leg (scond intersection)  mscond leg (scond intersection)

m Third leg (scond intersection) Fourth leg (scond intersection)
Figure 5. Vehicle queue length in the second intersection (The performance of the queue length of the
vehicle in the intersection with using fixed-time controller).

Figure 6 shows the number of vehicles at the third intersection. The number of cars on
the first leg shows that the number of vehicles increases. However, the number of cars in
the third leg will be fixed after a while. The traffic volume in the fourth leg is more than the
other legs after. It will be fixed for a time.

| Intersection 3 Without Model predictive Control ‘
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Figure 6. Vehicle queue length in the third intersection (The performance of the queue length of the
vehicle in the intersection with using fixed-time controller).

The vehicle queue length in the fourth intersection at the first leg and the second is
fixed and does not fluctuate. Then, the number of vehicles in the third leg will stabilize and
decrease over time. Additionally, the volume of traffic in the fourth leg is more than the
other legs trend; it has an increase, as shown in Figure 7.
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Intersection 4 Without Model Predictive Control
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Figure 7. Vehicle queue length in the fourth intersection (The performance of the queue length of the
vehicle in the intersection with using a fixed-time controller).

This Figure 8 shows the traffic at the fifth intersection. The number of vehicles has
increased in the first phase using fixed-time control, so as you can see, the number of
vehicles will be proved after a while in the third phase. However, the traffic volume on the
fourth leg is higher than the other legs, increasing.

| Intersection 5 Without Model Predictive Control |
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Figure 8. Vehicle queue length in the fifth intersection (The performance of the queue length of the
vehicle in the intersection with using fixed-time controller).

Figure 9 shows the length of the vehicle queue at the sixth intersection of the controller
without a predictive model. In the first phase, the number of vehicles increased, and in the
fourth phase, traffic volume decreased. Additionally, as you see, the vehicle queue length
in the second leg and the third is fixed and does not fluctuate.

| Intersection 6 Without Model Predictive Control ‘
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Figure 9. Vehicle queue length in the sixth intersection (The performance of the queue length of the
vehicle in the intersection with using fixed-time controller).

Figure 10 shows the queue vehicle in the seventh intersection without the predictive
controller; the queue length of cars is fixed in the first leg, the second leg shows results
with the fix-time controller, which has been proven after a while. The number of vehicles at
the third leg increases. Additionally, the traffic volume in the fourth leg first increases and
then decreases.
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Intersection 7 Without Model Predictive Control
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Figure 10. Vehicle queue length in the seventh intersection (The performance of the queue length of
the vehicle in the intersection with using fixed-time controller).

The eighth intersection in Figure 11 has been shown. In the first and third legs, we
have seen the increasing trend of traffic, which we expect to decrease by applying predictive
model control. However, the number of legs decreases after a while in the second and
fourth leg, but traffic is still seen in it.

| Intersection 8 Without Model Predictive Cnntrul|
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Figure 11. Vehicle queue length in the eighth intersection (The performance of the queue length of
the vehicle in the intersection with using fixed-time controller).

Figure 12 shows control variables indicating green or red traffic lights. Similarly, the
vehicle’s queue length has been shown at other intersections, which has improved by using
a predictive controller. The proposed controller is designed based on equations. The output
of the predictive controller as the control variable S; of the traffic system was demonstrated
as follows. The proposed model is explained using model predictive control in the below
figures:
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Figure 12. Green or red traffic light (Signal control).

Figure 13 shows the number of vehicles in the first queue of intersection; there was no
change in the queue of vehicles at the first stop compared to the case without a controller.
In the second phase, we see a reduction in the length of the number of vehicles in traffic. In
the third phase, there was a significant reduction in the number of vehicles compared to the
uncontrollable mode. Finally, the length of the queue on the fourth leg has been changed
drastically. This indicates the excellent performance of the designed controller.
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Figure 13. The number of vehicles in the first queue of intersection using model predictive
control (The performance of the queue length of the vehicle in the intersection by using model

predictive control).

The following figures further show the queue length of vehicles at additional intersec-
tions with the model predictive control that has been given.

According to the results of the decreasing trend of the queue length in Figure 14, it is
seen at all the legs of the second intersection.

‘ Intersection 2 With Model predictive Control ‘
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Figure 14. The number of vehicles in the queues of the second intersection using model predictive
control (The performance of the queue length of the vehicle in the intersection by using model

predictive control).

Figure 15 shows that the length of the queue of cars in the first leg has not changed
compared to the case without a controller; in the second leg, the length of the queue of
cars has been reduced. However, in the fourth leg in this intersection queue, length first
increases and then decreases. At the third intersection, the length of the car queue in
the third leg has been fixed, and in the other legs, relative to without the controller has
been improved.
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Figure 15. The number of vehicles in the queues of the third intersection using model predictive
control (The performance of the queue length of the vehicle in the intersection by using model
predictive control).

It shows the fourth intersection at Figure 16. The queue length of vehicles in the first
leg was initially constant and then had an increasing trend, and eventually decreased.
Additionally, in the second leg, the queue length of vehicles has been reduced. In the
third and fourth legs, the number of vehicles decreased significantly. As a result, model
predictive controller has had good performance in the intersection.
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Figure 16. There is a number of vehicles at the fourth intersection using model predictive control (The
performance of the queue length of the vehicle in the intersection by using model predictive control).

Figure 17 shows how a predictive model can be used to control the queue length of
vehicles. The number of vehicles at intersection 5 decreased with a suggested model in legs
1 and 3, while the volume of traffic used by the proposed method in the second and fourth
legs significantly reduced to zero.
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Figure 17. Number of vehicles at the fifth intersection using model predictive control (The perfor-
mance of the queue length of the vehicle in the intersection by using model predictive control).

The sixth intersection is shown in Figure 18 at the start, where the queue length of cars
has increased then decreased.

‘ Intersection 6 With Model Predictive Control ‘
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Figure 18. The number of vehicles in the sixth queue of intersection using model predictive

control (The performance of the queue length of the vehicle in the intersection by using model
predictive control).

The length of the queue for the third leg did not change significantly. In addition,
however, the queue length of cars in the intersection has been reduced in the second and
fourth. Meanwhile, the number of vehicles at this third-leg intersection increased.

Figure 19 shows the number of vehicles in the seventh intersection using model
predictive control. The length of the car queue has decreased in the second and fourth legs,
and we have seen a much better result. In the third leg, we are also facing a decrease in the
length of the car queue.
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Figure 19. The number of vehicles in the seventh queue of intersection using model predictive
control (The performance of the queue length of the vehicle in the intersection by using model
predictive control).

The eighth intersection, which in the second and fourth legs means there are reduced
queue lengths more than the first and third legs, is shown in Figure 20.

‘Intersection 8 With Model Predictive Cnnlrul‘
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Figure 20. The number of vehicles in the eighth queue of intersection using model predictive
control (The performance of the queue length of the vehicle in the intersection by using model
predictive control).

In this chapter, first, several intersections are considered a multi-factor system. The
relationship between the factors are shown in graphs, proving that the dynamics considered
for several intersections are stable. Moreover, according to the simulation results, it can
be said that by using a predictive controller, the queue length of cars in each leg has been
decreased compared to the fixed time control. Continuing, we compared results in the
length of the queue of vehicles using a model predictive control according to the simulation
results in the corresponding Table 3 and Figure 21, which has been given below. Table 3
and Figure 21 below show the proposed model’s performance at eight intersections by
comparing the fixed time control. The number of vehicles has been prepared with sample
times equal to 0.1 s. At the first intersection, a total of 97% vehicles in the 4-line fixed model,
4 intersection was reduced to 13 while using the controller. Furthermore, the improvement
measure is 86.60%. Using model predictive control, the second intersection has reduced
the number of vehicles from 159 to 52. As can be seen, the queue length in Leg 4 has
been reduced from 162 to 33 in the third intersection. The measure of improvement in
these four roads was 79.63%. The number of vehicles has been minimized in the fourth
intersection, clearly seen in Figure 21 and Table 4. Similarly, the improvement percentage
is 91.43%, which has resulted in optimization. In other intersections such as eighth, sixth,
and seventh, respectively, using the model predictive control, a percentage of improvement
has been seen compared to the fixed time, which indicates the excellent performance of the
controller. In the simulation, an improvement has been seen in the intersection by using
model predictive control as shown in Figure 21. The queue length at each intersection has
been reduced compared to the fixed time controller using a model-based predictive model.
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Table 3. The comparison of results in length of queue of vehicles using model predictive control.

Queue Length of Vehicles Intersection Without Controller With Controller Improvement (%)

(@) Q1 3 1 66.67
1 (b) Q2 7 1 85.71
(c) Q3 40 7 82.50
(d) Q4 47 4 91.49
Total 97 13 86.60
(@) Q1 55 7 87.27
) (b) Q2 7 3 57.14
() Q3 50 38 24.00
(d) Q4 47 4 91.49
Total 159 52 67.30
(@) Q1 55 12 78.18
3 (b) Q2 7 3 57.14
() Q3 53 17 67.92
(d) Q4 47 1 97.87
Total 162 33 79.63
(@) Q1 49 1 97.96
4 (b) Q2 7 6 14.29
() Q3 2 1 50.00
(d) Q4 47 1 97.87
Total 105 9 91.43
(@) Q1 150 31 79.33
5 (b) Q2 32 3 90.63
(c) Q3 150 10 93.33
(d) Q4 28 3 89.29
Total 360 47 86.94
(@) Q1 175 12 93.14
6 (b) Q2 32 3 90.63
() Q3 2 3 —50.00
(d) Q4 28 3 89.29
Total 237 21 91.14
(@) Q1 3 0 100.00
; (b) Q2 20 3 85.00
9c) Q3 175 7 96.00
(d) Q4 3 1 66.67
Total 201 11 94.53
(@) Q1 175 7 96.00
g (b) Q2 20 3 85.00
(c) Q3 150 12 92.00
(d) Q4 3 0 100.00
Total 348 22 93.68

The performance of our method at different numbers of intersections without controller and
with controller

N
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Figure 21. The performance of our approach at several numbers of intersections without controller
and with controller (The performance and comparison of reduced queue length of cars proposed
model with fixed-time control in the 8 intersections.).
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Table 4. Comparison of intersections the proposed method with other existing studies.

Existing Work

Approach Benefit Applied Model

Azimirad et al. [35]

Minimal waiting time

Single intersection and length of queue

Fuzzy Logic

Jafari et al. [53]

Optimal traffic and

. Model Predictive Control
reducing queue length

Single intersection

Jiachen Yang et al. [54]

Significant reduction in delay Multi-Agent Deep

3 intersection . . " . .
or various traffic conditions. Reinforcement Learning

Hyunjin et al. [55]

Maximize the throughput and

9 intersection efficiently distribute the signals

Deep Q-Network

Hongwei Ge et al. [56]

Adaptive multi

4 intersection . - .
intersection signal control

Cooperative deep Q-network

Proposed

Optimal traffic and

8 intersection reducing queue length

Model Predictive Control

The Comparison of the Proposed Method with Other Existing Studies

This section has compared different models and intersections with the proposed
model, such as fuzzy logic, model predictive control, and machine learning methods
shown in the table. Additionally, each model has been applied on different intersections,
including single intersections, four intersections, six intersections, and nine intersections.
This paper [35] has been used as a fuzzy logic control for traffic flows under both normal
and exceptional traffic conditions. Still, the dynamic model is not stable on a single
intersection. Here, [53] has been considered at only one intersection for reducing queue
length of the vehicle. Algorithms derived from RL techniques operate based on biological
principles. Developed creatures can change their behavior based on their environment
and optimize their efforts to improve, getting better compensations. In RL algorithms,
this ability is made achievable by making agents. This paper [54] considered the speed of
vehicles and the iteration number by using Multi-Agent Deep Reinforcement Learning to
reduce traffic. The traffic signal control system used in intelligent transportation analyzes
and controls traffic flow in real-time. This article [55] presented a Deep Q-Network model,
which is determined by the optimal demand of a green signal. Another study on the multi
intersection has [56] shown a cooperative deep Q-network for signal control modeled as
a multiagent reinforcement learning system. At the proposed model, we expanded one
intersection to several intersections. However, in the model predictive control, in addition
to having all the advantages of all intelligent methods, the superiority of the model-based
predictive control over the rest of the fuzzy control is inherent predictive property. It
does not depend on anything. Model predictive control also has the intrinsic ability to
compensate for dead time, while in fuzzy, it depends on the expert. Additionally, our
proposed method results show the proposed model’s good performance. In the other
existing studies, these types of learning systems are not present. Available traffic control
methods do not consider the latest multiagent deep reinforcement learning progress. In
addition, current traffic congestion management explanations based on deep reinforcement
learning (DRL) do not consider vehicles cooperating with traffic lights but only controlling
traffic lights signals. Therefore, traffic control in cities does not achieve a general effect. A
comparison of the proposed method has been presented in Table 4 in one intersection. The
advantages and disadvantages of the proposed model compared with other existing works
are summarized as below:

Advantages:

*  Model predictive control is updated every minute, and this update applies controls
based on what will happen in the future to the system.

®  They can be used for delayed systems and multidimensional systems.

* Can be added to that constraint. For example: control the traffic load behind the
crossroads for one h a day.

*  Being bound by model predictive control.
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¢ All controllers are unpredictable, including advanced controllers such as slip model
control (a nonlinear controller is resistant). Nonlinear resistors mean that they do their
job against system uncertainties. For example, in the math model from the real world,
we do not know the name of a parameter.

e Unlike all controllers, the (1) predictor signal drops at (f + 1) to (t + np). (np :
Predictivehorizon).

Disadvantages:

*  Model predictive control has several models. Any situation that is based on step re-
sponse and impact response must be stable. The system must have no integral behavior.
Integral behavior means that there should be no necessities in the system model.

¢ In the basic model, the conversion function is noise-sensitive.

7. Conclusions

In this paper, a model predictive control was first developed to generate and control
traffic signals for multiagent intersections linking to each other; then, their stability was
proved. The model predictive control is designed based on the theory of multi-functional
systems, and the effect of adjacent intersections on their behavior is considered. In each
phase, two basic parameters are the length of the queue and signal traffic to reduce them.
A model predictive control, which is designed based on the state space equations, showed
that the queue of vehicles in each phase decreased compared to the constant time mode and
maximized the volume of traffic. Simulation results depicted the efficiency of the method
proposed for the intersections.

Discussion and Future Direction

Table 5 compares the proposed model with modern technology in terms of sampling
time and limits of the queue length; this article is a new way to discuss traffic lights at
intersections. The traffic control system was designed to improve traffic light scheduling
processes. This article is a new method of discussing traffic lights in intersections. We
intend to expand the proposed method for future work to engage with different cities for
better performance. Examples of things that can be done to continue working on the issue
of traffic control are:

*  Provide a comprehensive model of traffic behavior at several adjacent intersections by
considering parking lots and side streets near the adjacent intersection and parking
lots and side roads near intersections in the model.

*  Hybrid systems are used to design suitable transmission systems by designing
several models.

e Weimpose traffic restrictions on pedestrians, weather conditions, etc.

Table 5. Comparison of the proposed model with other works.

Author

Model Queue Length

Sample Time

Limitations

Solution

Large scale

Determining queue

Elvira et al. [57] Macroscopic model Exit 250 s urban length, flow crossing
traffic network and routing decisions
Integrated formulation Cooperative signal
Rasool et al. [58] and adistributed - 6s Urban streetnetworks controland perimeter
solution technique traffic metering
Mutual coordination Traffic organization method
Yunp eng et al. [59] traffic - 40s Multiintersection road networks ~ method for CAVs
organization method road networks
. Reinforcement Learning L Real time and
Azzedine etal. [60] based Cooperative 5s Traffic signalsystem delaytraffic conditions
. ; Model based on swarm Trafficflow - . .
Xiancheng et al. [61] intelligence algorithm - 90s at intersections Relieving trafficcongestion
Model Relieving traffic congestion
Proposed Model predictive control Reducing length queue  0.1s Urban traffic and optimization model of

with multi-agent

intersection traffic signal timing
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