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Abstract: Amongst all biometric-based personal authentication systems, a fingerprint that gives
each person a unique identity is the most commonly used parameter for personal identification.
In this paper, we present an automatic fingerprint-based authentication framework by means of
fingerprint enhancement, feature extraction, and matching techniques. Initially, a variant of adaptive
histogram equalization called CLAHE (contrast limited adaptive histogram equalization) along with
a combination of FFT (fast Fourier transform), and Gabor filters are applied to enhance the contrast
of fingerprint images. The fingerprint is then authenticated by picking a small amount of information
from some local interest points called minutiae point features. These features are extracted from the
thinned binary fingerprint image with a hybrid combination of Harris and SURF feature detectors to
render significantly improved detection results. For fingerprint matching, the Euclidean distance
between the corresponding Harris-SURF feature vectors of two feature points is used as a feature
matching similarity measure of two fingerprint images. Moreover, an iterative algorithm called
RANSAC (RANdom SAmple Consensus) is applied for fine matching and to automatically eliminate
false matches and incorrect match points. Quantitative experimental results achieved on FVC2002
DB1 and FVC2000 DB1 public domain fingerprint databases demonstrate the good performance and
feasibility of the proposed framework in terms of achieving average recognition rates of 95% and
92.5% for FVC2002 DB1 and FVC2000 DB1 databases, respectively.

Keywords: fingerprint authentication; FFT; Gabor filter; SURF algorithm; Harris corner detector;
fingerprint matching; RANSAC; FVC2002 and FVC2000 fingerprint databases

1. Introduction

Today, in the world of advanced digital technology, there is an increasing need for
security measures that lead to the development of many biometric-based personal authenti-
cation systems. Biometrics is a unique identification science for humans based on essential
behavioral or physical features. Among all biometrics, the fingerprint is the most commonly
utilized biometric on personal identification systems. Additionally, fingerprint-based au-
thentication is now considered one of the most secure and reliable biometric recognition
techniques. The reason why fingerprint recognition is the most popular and attractive
among biometric-based security systems is due to the unchanged ability and uniqueness of
an individual’s fingerprints throughout their life [1]. The fingerprint can be described as
a unique pattern of interleaved valleys and ridges on the finger surface, where a ridge is
expressed as a single curved segment, whereas a valley is defined as the region between
two nearby ridges.

Automated fingerprint recognition systems can be broadly categorized as verification
or identification systems [2]. Fingerprint verification is the validation of one person through
his fingerprint. The user presents his/her fingerprint together with his/her identity in-
formation like his/her ID number. The system of verification reclaims the template of
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fingerprint according to the number ID and matches the fingerprint obtained in real-time
from the user with the template. Fingerprint identification is to define the person’s identity
via fingerprint(s). Without knowing the person’s identity, the fingerprint identification
system attempts to match his fingerprint with those in the entire fingerprint database [3],
as depicted in the block diagram shown in Figure 1.
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Figure 1. Fingerprint verification vs. fingerprint identification.

Furthermore, the purpose of fingerprint matching is to find out if two sets of fin-
gerprints are similar or not; one fingerprint is stored in the database and the other is the
current fingerprint [4]. Fingerprint matching approaches can be roughly categorized into
three families:

• Correlation-based matching: In this approach, two fingerprints are placed on top of
each other and the correlation among the corresponding pixels is matched for various
alignments (different displacement and rotations). The principal disadvantage of
correlation-based matching is its computational complexity. Moreover, it requires an
accurate position of the recording point and is affected by non-linear distortion.

• Minutiae-based matching: This approach is the most common and used method, where
the fundamental fingerprint comparison is conducted by fingerprint analysts. Minu-
tiae are extracted from two fingerprint images and stored as point sets in the 2-
dimensional plane. Minutiae-based matching mainly consists of gaining alignment
between template and input minutiae sets which lead to the greatest number of
minutiae pairs [5].

• Pattern-based (image-based) matching: This approach compares the basic fingerprint
patterns (whorl, arch, and loop) between a candidate’s fingerprint and the pre-stored
template, which needs the fingerprint images to be aligned in the same direction. The
employed algorithm detects a central point in the image for this reason. The template
in the pattern-based matching algorithm contains the size, type, and orientation of
the patterns in the alignment fingerprint image. The template image is compared
graphically with the candidate to define the similarity degree.

Most fingerprint patterns include arches, loops, and whorls. In the arch pattern, the
ridges come in from one side, rise to form an arc in the middle, then out from the other side.
In the loop pattern, the ridge comes in from one side, making a curve, and it enters from the
same side. In the whorl pattern, the ridges are circularly rendered around a central point
on the finger [6]. It should be noted that the minutiae-based matching approach encounters
several issues, particularly when fingerprint samples are degraded or rotated, resulting
in poor performance results. On the other hand, the image-based matching approach is
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shown to be very robust against these degradation issues. Therefore, this research adopts
the image-based matching approach.

This work has several key contributions involving fingerprint enhancement, feature
extraction, and matching. Initially, a variant of adaptive histogram equalization called
CLAHE (contrast limited adaptive histogram equalization) along with a combination of
FFT (fast Fourier transform), and Gabor filters are applied to enhance the contrast of
fingerprint images. The fingerprint is then authenticated by picking a small amount of
information from some local interest points called minutiae point features. These features
are extracted from the thinned binary fingerprint image with a hybrid combination of
Harris and SURF feature detectors to render significantly improved detection results. For
fingerprint matching, the Euclidean distance between the corresponding Harris-SURF
feature vectors of two feature points is utilized as a feature matching similarity measure
of two fingerprint images. Moreover, an iterative algorithm called RANSAC (RANdom
SAmple Consensus) is applied for fine matching and to automatically eliminate false
matches and incorrect match points.

2. Related Work

The past two decades or so have witnessed the development of many biometric tech-
nologies based on fingerprint matching. N.F. Muhsain [7] investigated the problem of
reducing the fingerprint features fed into the neural network, where the input samples of
the back-propagation method are coded and normalized using an algorithm worked with
a prepared codebook. The key advantages of preparing a codebook lie in the simplicity of
its idea and its high-speed processing. The method was tested on the FCV2002 fingerprint
database, achieving a recognition accuracy of 94% with an equal error rate (EER) of 2.1.
In [8], the authors proposed a fingerprint recognition system composed of several stages,
i.e., pre-processing for image enhancement, binarization and thinning of fingerprint im-
ages, feature extraction from the thinned image ridge, and finally the matching stage in
which similarity and distance measurements are used to match two minutiae points. The
recognition method was evaluated accurately and reliably by using fingerprint images from
FVC2000 and FVC2002 databases, achieving an accuracy of 98.55% with a false acceptance
rate (FAR) and a false rejection rate (FRR) of 0.0154 and 0.0137, respectively.

Furthermore, in [9], Kuban and Jwaid introduced an innovative modification to one
of the most powerful algorithms developed to extract the points of interest (POIs), called
SURF. These key points, also called features of interest, are later used in the matching process
after the outlier sets are eliminated. The presented system was experimentally evaluated on
FVC2002 DB1 and FVC2004 DB2 fingerprint databases, using a set of performance evaluation
metrics such as accuracy, FRR, FAR, EER, and SMR. The obtained results showed that the
system was capable of successfully finding a (1:1) match between one fingerprint and another,
as well as a (1:M) match when more than one fingerprint image is compared with the query
image. Additionally, in [10], Ahmad et al. developed a fingerprint recognition system where
a piece of security system for identity verification is presented based on unique features
extracted from each fingerprint to differentiate one from others. In their work, the detection
of minutia coordinates and ridge orientation are utilized to determine uniqueness and do
matching. Through MATLAB simulations, it was verified that the developed algorithm
could effectively achieve a high recognition rate with an accuracy up to 96.11%.

In [11], an algorithm was presented to identify the valid minutiae and increase the
accuracy level and acceptance rate. The developed algorithm is split into two major steps:
pre-processing and post-processing. Initially, the algorithm performs appropriate pre-
processing steps to remove noise and obtain a noise-free fingerprint image for feature
extraction. Then, among the extracted minutiae, false minutiae are eliminated in later post-
processing stages to extract exact core point detection and matching valid minutiae. The
algorithm performance was evaluated on FVC2000 and FingerDOS databases, achieving
an average FMR of 1%, FNMR of 1.43%, and accuracy of 98.7%. Moreover, R. Kumar [12]
introduced a new fingerprint matching method based on fingerprint orientation analysis
utilizing local binary patterns (LBP) obtained from the ridge orientation field. The maxi-
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mization of mutual information between orientation features extracted from fingerprint
images is used to align the images. The fingerprint image is cropped around the detected
reference point to locate the region of interest (ROI). The Chi-square test, Euclidean distance,
and least square support vector machine (LSSVM) were used to evaluate the matching per-
formance of the orientation local binary pattern (OLBP) descriptor on the public FVC2002,
FVC2004, and FVC2006 fingerprint datasets. The results obtained in this study indicated
that the performance of LBP features extracted from the orientation image is comparable to
those previously reported in the literature.

In [13], a fingerprint recognition technique based on artificial neural networks (ANNs) is
proposed, where ridge termination and ridge bifurcation as minutiae are used for fingerprint
recognition. The most crucial step in automatic fingerprint matching is to securely extract
the minutiae from the fingerprint binary images. With the help of the developed technique,
the recognition rate rises, and the error rate decreases. The experimental results showed
that the average recognition rate of the proposed technique is 91.10%. In [14], Appati et al.
performed a study focused on fingerprint recognition for in-person identification, where a
proposal of the fusion of two transform and minutiae models is presented to improve the issue
recognition accuracy. More specifically, this study intended to suggest a transform-minutiae
fusion-based model for fingerprint recognition. The first wave atom transform (WAT) is
employed for data smoothing, while the discrete wavelet transform (DWT) is employed
for feature extraction. These features were later combined with the minutiae features for
person recognition. The presented recognition approach was evaluated on the FVC 2002
database, achieving a relatively better performance in comparison to existing methods, with
an accuracy measure of 100% compared to 96.67% and 98.55% for the existing methods.

3. Proposed Methodology

An automatic fingerprint recognition system typically constitutes of three main stages:
fingerprint acquisition, fingerprint pre-processing, and feature extraction and matching.
For fingerprint acquisition, optical or capacitive sensors are extensively utilized. They have
high performance and acceptable precision, except in some situations where the user’s
finger is dirty or dry. However, the training and testing datasets used in this work are
obtained from publicly available fingerprint resources (i.e., FVC2000 and FVC2002 designed
by Fingerprint Verification Competition (FVC)). Therefore, the acquisition stage is not
currently considered to be within the scope of the present work. The image pre-processing,
feature extraction, and matching steps are described in detail in the following subsections.

3.1. System Model Block Diagram

A functional block diagram of the automatic fingerprint recognition system (AFRS)
model that shows the main components of the system in series is depicted in Figure 2. As
illustrated in the figure below, firstly, the scanned fingerprint image is greatly improved
in contrast and clarity using a contrast limited adaptive histogram equalization (CLAHE)
technique, and then the enhanced image is normalized and segmented. The segmented
fingerprint image is further improved by using an adaptive enhancement algorithm based
on short time Fourier transform (STFT) analysis and contextual filtering. Thus, the orien-
tation field can be estimated from a set of filtered images generated by applying a bank
of Gabor filters; whereas the enhanced image is carefully binarized by applying a simple
local–global binarization algorithm.

For feature extraction, the binarized fingerprint image is thinned to form a skeletonized
image where ridges are only one pixel wide, and all the redundant pixel information is
removed [15]. Based on the robust technical characteristics of Harris and SURF algorithms,
a Harris-SURF feature extraction algorithm is then applied to effectively detect and extract
features from the skeletonized fingerprint image obtained by the above-mentioned pre-
processing steps. In the next step, a matching algorithm is applied for matching these
features. The fingerprint matching process also involves calculating a pairwise distance
(i.e., Euclidean distance) between the corresponding feature vectors to make a final decision
on fingerprint match, as shown in Figure 3.
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Figure 2. Functional block diagram of automatic fingerprint recognition system.

Figure 3. Working flow diagram of fingerprint feature extraction and matching.

3.2. Fingerprint Image Preprocessing

In practice, fingerprint images acquired from sensors or other media may not always
be well defined (i.e., are not assured with perfect quality), due to elements of noise that
corrupt the clarity of the ridge structures. Consequently, fingerprint enhancement methods
are usually applied to reduce the noise present in the image and enlighten the clarity and
continuity of ridge and valley structures. This greatly helps in better extraction of potentially
relevant features and finding stable and robust feature matches. In this work, as an initial
pre-processing step, an adaptive local–global technique for contrast image enhancement based
on local histogram equalization is carried out to increase the contrast between ridges and
valleys and to connect the false broken ridges due to an excessive or inadequate amount of ink.
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3.2.1. Histogram Equalization

Histogram equalization is a process that aims to distribute the gray levels in the
image so that they are equally distributed across their range. This process efficiently
resets the brightness value of every pixel based on the image histogram and intends
to extend the pixel value distribution to increase the perceptional information. In this
work, contrast limited adaptive histogram equalization (CLAHE) is employed. While
traditional histogram equalization works on the entire image, the CLAHE operates locally
on the image in small regions called tiles. CLAHE increases the contrast of small tiles
and incorporates the neighboring tiles in the image using bilinear interpolation which
removes the boundaries that are artificially caused. Additionally, the ’clip limit’ factor is
applied to avoid excessively saturating the image specifically the inhomogeneous areas
that have high peaks in the histogram of certain image tiles due to many pixels that fall
within the same range of gray level [16]. Figure 4 shows the histogram-equalized results of
a fingerprint image where improvements in average intensity and contrast are apparent.
Furthermore, the histogram distributed over the entire intensity increases the contrast and
the average intensity level in the equalized image histogram is higher (lighter) than the
original intensity level [17].

Histogram of original image   After Histogram Equalization          After CLAHE with Clip limit

(a)                                                  (b)                      (c)

Figure 4. Histogram-equalized results: (a) Histogram of original fingerprint image, (b) after the
conventional histogram equalization, and (c) after CLAHE with clip Llmit.

3.2.2. Normalization

Normalization is a process of adjusting the pixel intensity values range; it is also called
contrast stretching. This process is an easy and significant pre-processing step to enhance
the quality of the image by eliminating noise from the image. The image normalization
consists of changing the intensity of each pixel, hence which means changing the entire
image to some of the pre-defined values. Normalization maintains the clarity and contrast
of the ridges and valley structure and it is a pixel-wise operation [18]. The normalized
image N(i, j) is defined as follows:

N(i, j) =


M0 +

√
VAR0(I(i, j)−M)2

VAR
, if I(i, j) > M

M0 −
√

VAR0(I(i, j)−M)2

VAR
, otherwise

(1)

where M0 and VAR0 are the desired (pre-defined) mean and variance values, respectively,
which are defined as follows,

M(I) =
1

N2

N−1

∑
i=0

N−1

∑
j=0

I(i, j) , VAR(I) =
1

N2

N−1

∑
i=0

N−1

∑
j=0

(I(i, j)−M(I))2 (2)

In this work, we have set M0 = 0 and VAR0 = 1, so that new intensities of the pixel
for the normalized image would mostly be between −1 and 1, making the subsequent
calculations easier.
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3.2.3. Image Segmentation

Segmentation is used to distinguish the image’s fingerprint region (foreground) from
the image’s background area. When feature extraction is carried out on the background
areas of an image, it often generates noisy and false features. Segmentation aims to
ignore these background areas that facilitate efficient and accurate feature extraction [19].
A variance-based thresholding method is a very effective means for optimal threshold
segmentation. In our work, any part of the image where the pixel intensity is less than 10%
is considered as the region of no interest.

3.2.4. Fourier Transform

Fourier transform (FT) transforms an image from the spatial domain into the frequency
domain, which offers better processing of images. The application of the fast Fourier
transform (FFT) on a set of pixels of a small area in the image allows reconnection of
broken ridges following the same FFT orientation. The image is initially divided into
small processing blocks (e.g., of size 32 by 32 pixels). Blocks are generally constructed
using overlapped windows to avoid the effect of borders of Fourier transform. For each
32× 32 block, the FFT is applied and the bandpass Butterworth filter is used to remove a
Gaussian noise. The Fourier transform of the block is then multiplied by its power spectrum
to raise the image quality. Finally, the inverse fast Fourier transform (IFFT) is applied to the
resulting image. The Fourier transform is defined as follows,

F(u, v) =
M−1

∑
x=0

N−1

∑
y=0

f (x, y)e
−j2π

(ux
M

+
vy
N

)
(3)

for u = 0, 1, 2, . . . , 31 and v = 0, 1, 2, . . . , 31.

3.2.5. Ridge Orientation Estimation

The orientation image is the local direction of the ridge-valley at each pixel location in
the image. Orientation estimation is a critical step in the pre-processing as the subsequent
Gabor filter phase relies on local orientation to effectively optimize the fingerprint image. To
determine the orientation, the gradient-based approach is applied, utilizing the assumption
that the orientation vector is perpendicular to the gradient. Figure 5 shows the results of
orientation field estimation for a low-quality fingerprint image, where the arrows point to
the direction of the ridge flow.

Figure 5. Orientation field estimation: original image (left) and its directional field image (right).
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3.2.6. Ridge Frequency Estimation

The frequency of the local ridge is described as the frequency of the ridge and valley
structures found in a local neighborhood in a direction perpendicular to the orientation
of the local ridge, and this is a major parameter used in the Gabor filter construction. For
every non-overlapping square block of the fingerprint image, the frequency of the ridge is
measured only once. The local ridge frequency is then defined by counting the average
number of pixels in the direction normal to the ridge orientation among two consecutive
peaks of gray levels.

3.2.7. Gabor Filtering

Once the ridge frequency and orientation information are determined, the even-
symmetric Gabor filter is generated utilizing these parameters. The two-dimensional Gabor
filter consists of a sinusoidal plane wave, modified by a Gaussian envelope of a particular
orientation and frequency. Gabor filters have selective frequency and selective orientation
properties. These properties allow these filters to be set to provide maximum response to
ridges at a particular frequency and orientation in the image. Thus, a correctly adjusted
Gabor filter can be utilized to maintain the ridge structures efficiently, while reducing noise.
The Gabor even-symmetric filter is the real part of the Gabor function, produced by a
cosine wave modified by a Gaussian envelope. Gabor’s even-symmetric filter in the special
domain has the following general form:

G(x, y, θ, f ) = exp

{
− 1

2

[
x2

θ

δ2
x
+

y2
θ

δ2
y

]}
cos(2π f xθ) (4)

The coordinates (xθ , yθ) are defined by

xθ = x cos θ + y sin θ, yθ = −x sin θ + y cos θ (5)

where θ is the Gabor filter orientation, f is the cosine (sinusoidal plane) wave frequency,
δx and δy are the Gaussian envelope space constants (standard deviations) along the x
and y axes, respectively, and xθ and yθ are the x and y axes of the filter coordinate frame,
respectively. Gabor filter is applied to the image by convolving it with the filter. The pixel
convolution i, j in the image needs the corresponding orientation value O(i, j) and ridge
frequency F(i, j) of that pixel. Thus, the application of the Gabor filter G to obtain an
enhanced image E is carried out as follows [19],

E(i, j) =

wx
2

∑
u=−wx

2

wy
2

∑
v=
−wy

2

G(u, v; O(i, j), F(i, j))N(i− u, j− v) (6)

where O, F, and N denote the orientation, frequency, and normalized images, respectively.
The width and height of the Gabor filter mask are wx and wy, respectively.

3.2.8. Binarization and Thinning

The binarization process of a fingerprint image converts an 8-bit grayscale image into
a 1-bit image with a value of 0 for ridges and a value of 1 for valleys. This process increases
the contrast between the fingerprint ridges and valleys, making it easier to extract features
from the fingerprint image later on. This method involves examining the gray value of
every pixel in the enhanced image, and the pixel value is set to a binary value of one if
the value is greater than the global threshold; otherwise, it is set to zero. The result is a
binary image that comprises two data levels, the ridges in the foreground and the valleys
in the background. The Gabor filter’s useful feature is that it has a DC component with a
zero value, meaning that the mean pixel value of the resulting filter image is zero. Thus,
straightforward binarization of the image can be carried out by using a global threshold of
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zero. The resultant binary image of the Gabor enhanced fingerprint grayscale image, E(i, j)
is given by

Binary(i, j) =
{

1, if E(i, j)) ≥ 0
0, otherwise

(7)

Fingerprint ridge thinning attempts to minimize the redundant pixels until the ridges
are just one pixel thick. To achieve desirable thinning results, an iterative parallel thinning
algorithm that can be accessed in MATLAB via the ‘thin’ operation under the “bwmorph”
function is applied to the binary image. The thinned image is then filtered to eliminate
any H-breaks, spikes, and isolated points using the h-break, clean, and spur MATLAB
functions. The algorithm marks redundant pixels in every small image window in each
full fingerprint image scan (3× 3). Eventually, all those marked pixels are excluded after
multiple scans. The basic steps of the whole fingerprint image pre-processing process are
shown in Figure 6.

(a)   (b)  (c) (d)

Figure 6. Fingerprint image pre-processing: (a) original, (b) enhanced, (c) binarized, and (d) thinned images.

3.3. Fingerprint Feature Extraction

It is worth mentioning that effective and reliable feature extraction is the most crucial
and substantial issue to the final accuracy of the feature matching process, which heavily
depends on the perfection of the previous pre-processing steps [20]. The minutiae-based
feature extraction and matching approach suffers from critical issues, such as its computa-
tional complexity being usually very high. In addition, this approach requires high-quality
fingerprint samples, so that when the samples are seriously degraded, this usually results
in significant degradation in matching accuracy. On the other hand, the image-based
approach can effectively tackle these problems, where the feature detection algorithms
are applied to extract features locally from candidate fingerprint images. In this work, an
optimized combination of the Harris algorithm and SURF algorithm is presented, which is
potentially expected to generate a set of most represented features with high repeatability
and excellent matching properties [21].

3.4. Harris Corner Detection

The characteristics of the Harris corner point are used to segregate the background
and foreground. Around a corner point, turning the window to any direction should make
a high difference in intensity [22]. The Harris’s point strength in the fingerprint foreground
regions is extremely higher than that in the background regions [23]. The Harris algorithm
first introduced by Harris et al. [24] has appeared as a modification or development of the
Moravec corner detection function, which utilizes the gray contrast among pixels to extract
corner points. Given a grayscale image I and a window w(x, y) is going to be swept (with
displacements u in the x-direction and v in the y-direction). Thus, the variation of intensity
can be computed as follows,
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E(u, v) = ∑
x,y

w(x, y)[I(x + u, y + v)− I(x, y)]2 (8)

where I(x, y) and I(x + u, y + v) are the intensities at the position (x, y) and at the moving
window, (x + u, y + v), respectively. Since windows with corners are being looked for,
windows with a large variation in intensity are being searched [25]. Consequently, the
above equation should be maximized, particularly the following term:

∑
x,y

[I(x + u, y + v)− I(x, y)]2 (9)

Using Taylor expansion, we get

E(u, v) ≈∑
x,y

[I(x, y) + uIx + vIy − I(x, y)]2 (10)

Expanding the equation and canceling properly yield:

E(u, v) ≈∑
x,y

u2 I2
x + 2uvIx Iy + v2 I2

y (11)

Equation (11) can be expressed in a matrix form as follows:

E(u, v) ≈
[
u v

]
(∑

x,y
w(x, y)

[
I2
x Ix Iy

Ix Iy I2
y

]
)

[
u
v

]
(12)

Let us denote,

M = ∑
x,y

w(x, y)
[

I2
x Ix Iy

Ix Iy I2
y

]
Thus, Equation (12) can now be rewritten as follows:

E(u, v) ≈
[
u v

]
M
[

u
v

]
(13)

Let λ1, λ2 be the eigenvalues of matrix M which form a rotationally invariant descrip-
tion. Here, there are three cases to be considered:

• Once an eigenvalue (λ1 or λ2) is large and considerably greater than the other, then
an edge exists.

• If λ1 ≈ λ2 and the values are small (near zero), then this pixel point is a flat region.
• If λ1 ≈ λ2 and they have large positive values, then this pixel point is a corner.

For each window, a score can be computed to determine whether it can probably
contain a corner:

R = det(M)− k(trace(M))2 (14)

where det(M) = λ1λ2, trace(M) = λ1 + λ2 and k is a constant experimentally set between
0.04 and 0.06. A window with a score R larger than a certain threshold value is considered
to have a “corner”.

3.5. Speeded Up Robust Feature (SURF) Algorithm

The key idea of the SURF detection algorithm is to detect points of interest (i.e.,
keypoints) such as corners or blob-like structures from an image in the places where the
determinant of the Hessian matrix has a maximum value [26]. While the detector locates
the keypoints, the descriptor describes the features of these keypoints and constructs the
feature vectors of the detected keypoints [27]. The steps of the SURF algorithm contain
three tasks, namely, keypoint detecting, keypoint describing, and keypoint matching. In the
first step, given a fingerprint image, the keypoints can be detected based on the determinant
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of the Hessian matrix. Formally speaking, in a given image I, the Hessian matrix H(x, σ)
can be defined at a point x and scale σ, as follows:

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
(15)

where,

Lxx(x, σ) = I(x) ∗ ∂2

∂x2 g(σ), Lxy(x, σ) = I(x) ∗ ∂2

∂xy
g(σ), Lyy(x, σ) = I(x) ∗ ∂2

∂y2 g(σ)

where Lxx(x, σ) is the convolution of the image with the second derivative of the Gaussian,
g(σ) at scale σ. Figure 7 shows the weighted box filter approximations of discretized second
order Gaussian derivatives in the y and xy-directions.

Figure 7. Box filter approximation of second order Gaussian partial derivatives, where Lxx, Lxy, Dyy,
and Dxy are shown from left to right, respectively.

Using integral images in the calculation of Hessian approximation can greatly reduce
the computation time of key points detection. The SURF algorithm can effectively use
scale-space analysis of an image to identify the scale-invariant keypoints by using box filters
in pyramid mode instead of measuring the approximations for second-order Gaussian
derivatives of integral images at different scale values (σ). The box filter begins as an initial
scale layer with a (9× 9) size filter and the scale value is s = 1.2, which corresponds to
the estimated Gaussian derivative with scale value σ = 1.2, and so forth for the remaining
filter sizes. When the determinant of Hessian approximation is obtained at each layer, in a
3× 3 neighborhood, the non-maxima suppression (NMS) technique can be used to locate
the keypoints over an image scale. For achieving a good approximation, the determinant is
weighted to exclude keypoints having low contrast or points lying on edges or being near
to edges:

det(Happrox) = DxxDyy − (ωDxy)
2 (16)

where Dyy and Dxy are the approximated and discrete kernels for Lyy and Lxy, respectively.
The ω term is theoretically sensitive to scale, but it can be assumed almost constant at 0.9.

The extraction stage, also called the feature descriptor, aims to build a descriptor
for every detected pixel in the image from the neighborhood information using vector
space representation. In feature description, for generating SURF descriptors, two steps
are typically required. The first is to determine the orientation for every detected feature
by convolving the feature pixel into its neighborhood with the vertical and horizontal
Haar wavelet filters. To make the detected points invariant to rotation, Haar wavelet
responses are measured in both x and y orientation in the circular neighborhood of radius
6σ around the interesting point, where σ is the scale at which the point is detected. The
orientation of the dominant is then determined by measuring all responses summation in
the sliding orientation window and the longest vector is chosen as the dominant orientation.
The second step involves constructing a keypoint descriptor. For extracting a descriptor
for every selected point, a square region of size 20σ centered around the keypoint and
oriented along with the orientation selected in the previous step. Then, the region is
divided into smaller 4× 4 sub-regions and the Haar wavelet responses in x and y direction
at 5× 5 regularly spaced sample points are computed and summed up in every region.
This value results in a 4-dimensional feature vector V = (∑ dx, ∑ dy, ∑ |dx|, ∑ |dy|) per
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4 × 4 regions that yields a final vector of 64 dimensions. When the sign of entries is
considered, a final vector representation of 128 dimensions would be produced for each
feature. The final step in the SURF algorithm is the feature matching, which involves
calculating a pairwise distance (i.e., Euclidean distance) between the feature vectors of the
query image and database images [27].

3.6. Fingerprint Feature Matching

The feature matching process mainly aims to determine the reference point in one
image and to detect a matching point in another image. After extracting the SURF features
and calculating the descriptors (feature vectors), our goal in the matching phase is to
find geometrically consistent feature matches across all fingerprint images. Therefore, if
a feature from a fingerprint image is matched with the corresponding feature in another
database image, their descriptor should be matched to find the closest matching feature.
This can be carried out in various ways, but the most common and popularly accepted
method to define similarity is the use of the pairwise Euclidean distance between these
descriptors. Hence, two fingerprint feature vectors match, if and only if the distance
between them is less than a specified distance threshold.

Due to not all the feature points being matched properly, there are points that do not
fit the plan. To effectively tackle this problem, we use the RANdom SAmple Consensus
(RANSAC) algorithm to detect and remove points that fall outside the threshold as outliers
(i.e., error feature points) to finally determine the matching area exactly. The basic idea
behind the RANSAC algorithm is to find a model where the data points are suited to the
model (inlier features) and the non-suited points are eliminated. Feature points extracted
from fingerprint images are compared together using proximity metric using normalized
Euclidean distance to construct an index-pair matching matrix. Then, a multi-feature fusion
of local SURF and Harris features is performed and outliers in the matched features are
removed by applying the RANSAC algorithm. In Figure 8, a sample of correctly matched
points for a pair of fingerprint images is shown.

Figure 8. A sample of correctly matched points for a pair of fingerprint images.

Finally, the similarity or matching percentage (P) can readily be computed by the
following formula:

P =
|CF|
|TF| (17)

where CF is correct matching features after applying the RANSAC algorithm (inliers) and
TF is the total matching feature number in the index matching pair matrix.
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4. Experimental Results

In this section, the experimental results obtained are shown and discussed in order to
demonstrate the performance of the proposed fingerprint verification system. All testing
and evaluation experiments are performed on two public domain databases, widely used
in the related works, namely the Fingerprint Verification Competition’s FVC2000 DB1 [28]
and FVC2002 DB1 [29] databases where each of them consists of a total number of 80 finger-
print images with a resolution of 300× 300 pixels for FVC2000 DB1 and 388× 374 pixels
for FVC2002 DB1. Both datasets are publicly downloadable for free [30], in which the
fingerprint images were acquired from ten persons; eight acquisitions for each person of
the same finger [31]. For realistic fingerprint verification, a user initially needs his or her
fingerprint to be fed into the fingerprint verification system which is saved in some format
with the user’s identity. The system begins with the fingerprint enhancement process, and
then extracts the local feature points (both Harris and SURF keypoints) from fingerprint
images. These feature points are then compared with the feature points of the fingerprints
in a database and the outlier’s features are eliminated by applying the RANSAC algorithm.

Final fingerprint matching is done by calculating the weighted average of the matching
(or similarity) score between the fingerprint to be identified and each fingerprint in the
database in order to decide whether they are a matching pair (i.e., belonging to the same
finger), based on whether the similarity score is above or below a predefined matching
threshold (0.3,0.4). Figure 9 presents an example of matching similarity of two different
fingerprints and another example of matching results between two impressions of the
same finger.

(a) (b)

Figure 9. Matching results between two fingerprint pairs, where similarity (a) =0.0588 (b) =0.75.

Discussion of Results

In this work, the recognition rate (or accuracy) is used as an assessment parameter
to evaluate the performance of the proposed fingerprint verification system. Recognition
accuracy (ACC) is usually expressed as a ratio that can be easily calculated by dividing the
number of fingerprints recognized by the total number of fingerprints presented:

ACC =
Number of fingerprints recognized

Total number of fingerprints presented
(18)

As stated earlier, extensive tests and experiments were carried out based on two public
fingerprint databases of FVC2000 DB1 FVC2002 DB1 to demonstrate the effectiveness
and robustness of the proposed verification system. The average recognition accuracy is
computed as a measure of the overall performance of the presented system. The testing
results for both datasets are presented in detail in Tables 1 and 2.

In light of these results, it can be observed that the verification system performs consis-
tently well on both datasets, having relatively better performance on the FVC2000 dataset
(with an overall recognition rate of 95.5%) due to its relatively high-quality fingerprint im-
ages. Additionally, it should be interesting to perform a comparative performance analysis
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between the effectiveness of the proposed verification method and other related work in
terms of average recognition accuracy. The outcomes of this comparison are reported for
FVC2000 DB1 and FVC2002 DB1 in Tables 3 and 4, respectively.

Table 1. Recognition results on FVC2000 DB1.

User Recognized Samples ACC (%)

1 8 100
2 8 100
3 8 100
4 6 75
5 7 87.5
6 8 100
7 6 75
8 7 87.5
9 8 100
10 8 100

Total 74 92.5%

Table 2. Recognition results on FVC2002 DB1.

User Recognized Samples ACC (%)

1 8 100
2 7 87.5
3 8 100
4 7 87.5
5 8 100
6 8 100
7 7 87.5
8 8 100
9 8 100
10 7 87.5

Total 76 95%

Table 3. Recognition accuracy comparison on FVC2000 DB1.

Dataset
Recognition Accuracy

Our Method Chavan et al. [32] Ahmad et al. [10] Ali et al. [8]

DB1-FVC2000 92.5% 82.95% 82.43% 80.03%

Table 4. Recognition accuracy comparison on FVC2002 DB1.

Dataset
Recognition Accuracy

Our Method Muhsain [7] Awasthi et al. [13] Francis-Lothai et al. [33]

DB1-FVC2002 95% 94% 91.10% 81.16%

From the figures presented in the tables above, it can be clearly seen that the proposed
method performs notably better than other related state-of-the-art methods. All experi-
ments and computations in this study were carried out using MATLAB (R2016a) software
(on an Intel Core i5-4570 3.20 GHz, RAM 8 GB PC running Windows 10 Professional 64 bit).
The total computation time required for the whole fingerprint recognition process com-
prises three parts: the time spent for pre-processing contrast enhancement plus the time
spent for feature extraction plus the time for feature matching, as shown in Table 5.
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Table 5. Time spent for each stage of the recognition process.

Stage Elapsed Time (s)

Enhancement 3.786178
Feature extraction 0.139466

Recognition 0.106853

Total 4.032497

5. Conclusions

This paper has presented a new fingerprint-based authentication framework by means
of fingerprint enhancement, feature extraction, and matching techniques, where an inno-
vative technique was proposed for contrast enhancement of fingerprint images, based on
a variant of adaptive histogram equalization called CLAHE along with a combination of
iterative FFT and Gabor filters. The minutiae features are then extracted from the thinned
binary fingerprint image by the use of a hybrid combination of Harris and SURF feature
detectors to render significantly improved detection results. For fingerprint matching, the
Euclidean distance between the corresponding Harris-SURF feature descriptors of two
feature points was used as a feature matching similarity metric of two fingerprint images.
In addition, an iterative RANSAC algorithm was employed to refine the matched points.
Experiments and evaluations on two benchmarking fingerprint databases showed that the
proposed framework has achieved state-of-the-art performance in terms of accuracy and
robustness while maintaining real-time performance. Future work will include larger ex-
periments on publicly available low-quality fingerprint databases along with a quantitative
comparison of the framework to additional state-of-the-art baselines.
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