
����������
�������

Citation: Morio, J.; Junqua, I.; Bertuol,

S.; Parmantier, J.-P. Optimisation of

Segregation Distances between

Electric Cable Bundles Embedded in

a Structure. Appl. Sci. 2022, 12, 2132.

https://doi.org/10.3390/app12042132

Academic Editor: Adel Razek

Received: 15 January 2022

Accepted: 14 February 2022

Published: 18 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Optimisation of Segregation Distances between Electric Cable
Bundles Embedded in a Structure
Jérôme Morio 1,* , Isabelle Junqua 2, Solange Bertuol 2 and Jean-Philippe Parmantier 2

1 ONERA/DTIS, Université de Toulouse, 31055 Toulouse, France
2 ONERA/DEMR, Université de Toulouse, 31055 Toulouse, France; isabelle.junqua@onera.fr (I.J.);

solange.bertuol@onera.fr (S.B.); jean-philippe.parmantier@onera.fr (J.-P.P.)
* Correspondence: jerome.morio@onera.fr

Abstract: This paper presents the optimisation of the segregation distance between two electric
cable bundles installed in an aircraft structure under electromagnetic compatibility constraints. We
first describe the problem formulation where a probabilistic constraint has to be verified during the
optimisation process. To overcome the nonlinearity of the constraint function and guarantee the
algorithm convergence, we propose a joint approach between Monte Carlo sampling and a Kriging
surrogate to estimate the optimum distance with a low computational cost. This methodology was
tested on a realistic use-case of distance segregation between cable bundles.

Keywords: electromagnetic susceptibility; segregation distances; uncertainty quantification; reliability-
based design optimisation

1. Introduction

To avoid electromagnetic (EM) compatibility problems, the allocation of elementary
electrical cables in a bundle and the installation of cable harnesses in structures must be
controlled and respect the segregation rules set today by the integrators. To this extent,
in aeronautics, the wiring, named the Electrical Wiring Interconnection System (EWIS), is
now considered as a system as a whole, which must fulfil the Certification Specifications
for Large Aeroplanes (CS25 subpart H).

Consequently, these constraints must be considered early in the upstream phase of
a program, when cable harnesses are defined while most input data are not completely
mastered or are even unknown (as cable lengths, relative location of harnesses, location
versus the structure, etc.). This is the reason why only some routes in which harnesses
can be grouped to run together are predefined. With respect to the signal nature and
the electrical power on cables, distances between routes are imposed to secure the EM
inter-compatibility between cables. Moreover, once these installation rules are defined,
it is necessary to validate them for certification purposes. However the update of the
computer-aided design (CAD) mock-up because of modifications of the structure or the
installation of the harnesses in the structure can lead to deviations from the installation
rules, by reducing for example the distance between two harnesses to a distance lower
than the recommended segregation distance. In this case, one must be able to evaluate the
potential risk brought by this deviation in order to justify it and to obtain the derogation.

The objective of this article was thus to develop a modelling strategy to evaluate the
optimal segregation distance between two electric cable bundles connecting two equipment,
which will ensure their EM inter-compatibility. Therefore, we wanted here to minimise the
distance between two bundles to save space for the installation of harnesses provided that
the electromagnetic compatibility (EMC) constraints are respected with a given probability.
We show in this article that this problem is in fact similar to a stochastic optimisation with
probabilistic constraints [1]. Different methods have been proposed for this range of prob-
lems, and we particularly concentrate here on surrogate models and stochastic sampling.
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Besides, a recent review of this class of algorithms for optimisation under probabilistic
constraint was performed with application to reliability in [2]. In this article, we also
focus on the joint approach between Monte Carlo and Kriging surrogate models where the
Monte Carlo sampling enables estimating the probability that the EM constraint is fulfilled
and the Kriging model mimics the objective and the constraint function in an augmented
space. The difficulty lies here in the nonlinearity of the constraint function, notably at high
frequency, which can make the surrogate model unsuitable. Due to industrial constraints
to provide a converged result in a reasonable time, whatever the use-case, we propose here
to switch from the Kriging surrogate model with Monte Carlo sampling to classical Monte
Carlo sampling when the surrogate model is not efficient. This question has been addressed
in the Clean Sky 2 ANALYsis Statistical Techniques in aeronautics (EMC ANALYST) project
(CFP07 GA 821128), gathering two Italian (Ingegneria dei Sistemi (IDS) and University of
L’Aquila) and two French (AxesSim and ONERA) partners to answer the topic manager’s
(Safran Electrical & Power) requirements.

In this article, we first describe the problem of segregation distance between cable
bundles in Section 2. In Section 3, we show that this issue is in fact an optimisation
problem under a probabilistic constraint where the constraint function is nonlinear due
to the physics. Section 4 is dedicated to the statistical process we propose to solve this
optimisation, and the last section develops the obtained results on the considered use-case.

2. EMC between Two Bundles
2.1. Electric Cable Bundle Configuration

Let us consider two electric cable bundles A and B composed respectively of nA and nB
elementary electric cables. Both cable bundles are parallel with each other along the whole
path. We also assumed that the following characteristics are known for any elementary
cable i ∈ [[1, nA]] of bundle A and j ∈ [[1, nB]] of bundle B, as presented in Figure 1:

• The input impedance of the equipment at both extremities, denoted as ZA,NE,i-ZA,FE,i
and ZB,NE,j-ZB,FE,j;

• The source generators, applied at one extremity of both bundles and defined as voltage
generators, V0,A,j/V0,B,j or current generators I0,A,j/I0,B,j;

• The EM susceptibility (EMS) thresholds of the equipment at the extremity opposite
the source application (SA,i and SB,i). They are intrinsic to each equipment and are
measured in specific conditions of installation defined in the EMC standards. They
can be expressed in terms of voltages or currents;

• The cable length l (assumed to be identical for both harnesses A and B);
• The cable heights of both harnesses, hA and hB, over the reference ground plane.

The source generators and EMS thresholds are given in the frequency domain.

Figure 1. Analysis of the EMC of 2 parallel cable bundles.

The currents and voltages on the elementary wires of both bundles, IA,i/VA,i and
IB,j/VB,j, are induced by the useful signal imposed by voltage/current generators on the
elementary wires, crosstalk between the wires in the same bundle, and crosstalk between
bundles A and B.

The consistency between the EMS thresholds and source generators is supposed to
be fulfilled for all elementary cables. Furthermore, we also assumed that both bundles
A and B have been correctly designed, which means that they are EM self-compatible.
In other words, the signals carried by a cable of a given bundle will not induce significant
interference on their neighbouring cables inside the bundle.
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2.2. Inter-Compatibility Criterion

The EM susceptibility of an equipment input, SA,i (SB,j), can be defined as a voltage
or a current and as a limit below which the equipment operates correctly. As an example,
if SA,i is defined as a threshold current (respectively voltage), the magnitude of the induced
current IA,i (respectively voltage VA,i) must be compared to SA,i. This is the reason why we
introduced OA,i and OB,j as either the magnitude of the currents (IA,i or IB,j) or the magni-
tude of the voltages (VA,i or VB,j) following the nature of the susceptibility thresholds (SA,i
or SB,j). OA,i and OB,j induced on each elementary cable i of bundle A and j of bundle B by
the source generators depend on the frequency f , the segregation distance d ∈ [dmin, dmax],
the coupling length l ∈ [lmin, lmax], the heights hA ∈ [hmin, hmax], hB ∈ [hmin, hmax], and
finally, on the electric characteristics of all elementary cables in each bundle. The com-
putation of OA,i and OB,j can be performed with a computer code named CRIPTE [3,4].
This code developed at ONERA for more than 20 years is dedicated to the evaluation
of electromagnetic interferences induced on multiconductor cable networks, for typical
applications as lightning indirect effects and internal EMC problems (crosstalk). It is based
on a topological formalism associated with the transmission line theory generalised to
multiconductor networks. The code is mature enough to model cable networks of industrial
complexity such as engine cable architectures [5].

The next step consists of defining a mathematical scalar criterion to determine if the
two bundles A and B are EM compatible. For this purpose, we propose to compute a G
function defined as:

G(d, l, hA, hb) = max
f∈F, i∈[[1,nA ]], j∈[[1,nB ]]

(
OA,i − SA,i

SA,i
,

OB,j − SB,j

SB,j

)
(1)

The event G(d, l, hA, hB) < 0 means that both bundles A and B are EM compatible, and
EM immunity is ensured for all equipment and, conversely, if G(d, l, hA, hB) > 0. Indeed,
if G < 0, it means that OA,i < SA,i, ∀i and OB,j < SB,j, ∀j. For instance, if SA,i is defined
in terms of current, it means that OA,i are the currents induced on bundle A, and these
currents are lower than the threshold acceptable by the equipment. Thus, we deduced that
the equipment will operate correctly, and we can conclude that A and B are compatible.

The normalisation of the induced currents/voltages to their corresponding suscepti-
bility thresholds enables obtaining a dimensionless G criterion, which is independent of
the nature of the susceptibility thresholds (themselves defined as currents or voltages). Let
us remark also that G in Equation (1) covers the whole frequency band F. The computation
time to obtain one evaluation of G with CRIPTE is about 1 min for a thousand frequencies
and bundles of about thirty elementary conductors for a given set of (d, l, hA, hb).

3. Segregation Distance Optimisation Problem with EMC Constraints

The objective in this article was to determine the smallest value of the distance d,
denoted as dopt, under the constraints that:

1. dopt ∈ [dmin, dmax];
2. G(dopt, l, hA, hB) < 0 for any l, hA, and hB;
3. For every value d > dopt and for any l, hA, and hB, G(d, l, hA, hB) < 0.

This definition of the optimal segregation distance dopt is in fact very conservative.
As G is not a monotonic decreasing function with d, our objective was to find the maximum
of different minima d that satisfy the constraints. For a given use-case, it may be possible to
find a distance d′ lower than dopt that will be EM compatible, but if such a distance d′ exists,
by definition, we can also find a distance d′′ with d′ < d′′ < dopt such that d′′ does not
lead to an EM-compatible configuration. Moreover, these conditions are computationally
hard to verify since the G function has to be evaluated for every combination of l, hA, and
hB at a given distance d. We thus propose to replace these constraints with probabilistic
ones. For this purpose, we now consider that the length l and the heights hA and hB can be
represented by three random variables. We thus define three independent uniform random
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variables L, HA, and HB, respectively, between the intervals [lmin, lmax] and [hmin, hmax].
The associated random vector (L, HA, HB) is denoted as X with a probability distribution
fX. The probability P(G(d, X) < 0) defines the probability that bundles A and B are EM
compatible at a distance d. Then, the previous minimisation problem can thus be rewritten
in the following way as we seek to evaluate dopt with:

dopt = argmin
d∈[dmin,dmax]

d such as: P(G(d, X) < 0) = 1 (2)

P(G(d, X) < 0) = 1, ∀d > dopt (3)

However, even in this case, it can be quite difficult from a computational point of view
to verify that the EMC constraints are respected. Moreover, it is probable that the resulting
dopt will be too conservative. For this reason, the probability constraint onP

(
G(dopt, X) < 0

)
can be relaxed so that if the probability to be EM compatible at the distance dopt is greater
than 1− α, then we consider that EMC constraints to be respected. The value α is defined by
the end-user and is typically set to 0.05 in practice. The optimisation problem formulation
we evaluate here is now defined by the following equations:

dopt = argmin
d∈[dmin,dmax]

d such as: P(G(d, X) < 0) > 1− α (4)

P(G(d, X) < 0) > 1− α, ∀d > dopt (5)

The sought distance dopt is the lowest distance so that the bundles A and B are EM
compatible with probability 1− α and for any distance d greater than dopt, the bundles A
and B are still EM compatible with a probability at least equal to 1− α.

4. Sampling and Surrogate Modelling Joint Approach

The proposed algorithm involves an optimisation and the verification of a probability
constraint. The objective function of Equation (4) is trivial even if the EMC constraint is
not monotonic with d. Classical optimiser-under-constraints techniques are fully adapted
to the proposed case. For this purpose, we considered in this article constrained optimi-
sation by linear approximation (COBYLA) [6]. COBYLA is a gradient-free optimisation
algorithm capable of handling nonlinear inequality constraints. The COBYLA algorithm
is a sequential trust-region algorithm that applies linear approximations to the objective
and constraint functions. The initialisation value of d in COBYLA is easy to choose by
the constraint P(G(d, X) < 0) > 1− α, ∀d > dopt as it imposes to start the optimisation
algorithm at d = dmax.

COBYLA thus performs the optimisation process, and in the meantime, for each
value d proposed by COBYLA, the EMC constraint has to be evaluated in order to guide
the optimisation.

4.1. Classical Monte Carlo

The difficulty of Equation (5) lies in the verification of the EMC constraint
P(G(d, X) < 0) > 1− α for a given distance d. This probability can in fact be estimated in
the following way with the Monte Carlo method (MC) [7]:

P(G(d, X) < 0) ≈ P̂MC
d =

1
N

N

∑
i=1

1G(d,Xi)<0 (6)

where Xi are independent and identically distributed (i.i.d.) random variables with dis-
tribution fX and 1G(d,Xi)<0 is the indicator function that is equal to one if G(d, Xi) < 0
and zero otherwise. Monte Carlo methods provide also a confidence interval with the

central limit theorem to quantify the uncertainty of Monte Carlo probability estimate P̂MC
d .

The confidence interval IC0.95(P̂MC
d ) with a 95% confidence level is then given by:
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P
(
P(G(d, X) < 0) ∈ IC0.95(P̂MC

d )
)
= 0.95 (7)

with:

IC0.95(P̂MC
d ) = P̂MC

d ± 1.96

√
P̂MC

d (1− P̂MC
d )

N
(8)

The value 1.96 approximates the 0.95 quantile of a standard Gaussian random variable.

It can be generalised in the following way: the confidence interval ICγ(P̂MC
d ) with a γ

confidence level depends on the γ quantile of a standard Gaussian random variable. The
probability P(G(d, X) < 0) of Equation (4) does not need to be estimated too accurately
during the optimisation process as many calls to the G function could then be required.
In order to adjust the value of N for the estimation of the probabilities P(G(d, X) < 0)

for different values of d, one can consider the confidence interval IC0.95(P̂MC
d ). At least

N = Nmin MC samples have to be generated to obtain a first estimation of this confidence

interval. If 1 − α 6∈ IC0.95(P̂MC
d ), the MC sampling process can be stopped as we can

be confident in the decision concerning the EMC at distance d. Otherwise, if 1 − α ∈
IC0.95(P̂MC

d ), this means new MC samples are required to reduce the size of IC0.95(P̂MC
d ) as

long as the maximum number of MC samples Nmax is not reached. If N = Nmax, then a

decision on the constraint respect is made based on the estimation P̂MC
d with N = Nmax.

The complete algorithm with MC sampling to evaluate the probability constraint is given
in Algorithm A1 for a given distance proposed by COBYLA.

4.2. Surrogate Model Strategy

The EMC probability with Monte Carlo sampling presented in the previous section
may require many calls to the costly G function. An idea to reduce this cost is to learn a
surrogate model Ĝ of the G function from an input–output n-sample of this function and
then estimate the constraint probability on the surrogate model Ĝ instead of the G function.
If the surrogate model Ĝ is not accurate enough on some regions of the input space, it
is possible to improve it by calling the true G function for some relevant input positions.
The most well-known strategy for probability estimation with the surrogate model and
Monte Carlo sampling is notably active learning reliability method combining Kriging and
Monte Carlo simulation (AK-MCS) [8], and various evolutions of this algorithms have been
proposed recently [9–11]. The probability estimation with a surrogate model relies mainly
on four elements:

• The type of surrogate model. Throughout the article, the surrogate model Ĝ is assumed
to be a conditioned Gaussian process (GP) Gn. Hence, the distribution Gn knowing
the n input–output observations {(d, x)doe = ((d, x1), . . . , (d1, xn)), y = G(dn, xdoe)} is
Gaussian Gn = G|((d, xdoe, y) ∼ GP(µn(·), σ2

n(·)). The initialisation of the design of ex-
periments (DOE) is often performed with Latin hypercube sampling [12]. The mean µn
and the variance σ2

n are estimated from ((d, x)doe, y). The mean µn is an approximation
of G, whereas the term σ2

n evaluates the surrogate model error;
• The sampling approach to estimate the probability with the surrogate model. In this

article, we only considered Monte-Carlo-based sampling approaches. The constraint
probability is estimated with:

P(G(d, X) < 0) ≈ P(µn(d, X) < 0) ≈ P̂MC
d =

1
N

N

∑
i=1

1µn(d,Xi)<0 (9)

where Xi are i.i.d. samples with distribution fX. An inferior bound of the probability
estimate can be estimated with:

P(µn(d, X)− 1.96σn(d, X) < 0) ≈ P̂MC
d,min =

1
N

N

∑
i=1

1µn(d,Xi)−1.96σn(d,Xi)<0 (10)
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and in the same way, a superior bound is given with:

P(µn(d, X) + 1.96σn(d, X) < 0) ≈ P̂MC
d,max =

1
N

N

∑
i=1

1µn(d,Xi)+1.96σn(d,Xi)<0 (11)

• The surrogate model enrichment criterion to properly enrich the surrogate model
in order to achieve an accurate approximation of the probability. In this article,
the enrichment criterion is the expected feasibility function EFF(x), initially coming
from the efficient global reliability analysis (EGRA) method [13] and is given by the
following expression:

EFF(d, x) = µn(d, x)
[

2Φ
(
−µn(d, x)

σn(d, x)

)
−Φ

(
− ε + µn(d, x)

σn(d, x)

)
−Φ

(
ε− µn(d, x)

σn(d, x)

)]
− σn(d, x)

[
2φ

(
−µn(d, x)

σn(d, x)

)
− φ

(
− ε + µn(d, x)

σn(d, x)

)
− φ

(
ε− µn(d, x)

σn(d, x)

)]
+ ε

[
Φ
(

ε− µn(d, x)
σn(d, x)

)
−Φ

(
− ε + µn(d, x)

σn(d, x)

)] (12)

where Φ(·) is the standard normal cumulative distribution function and φ(·) the
standard normal density function. In EGRA, the expected feasibility function is built
with ε = 2σn. At each iteration, the next best point to evaluate G to improve the
Gaussian process Gn is then the candidate sample whose EFF value is maximum
among the MC samples generated for probability estimation. The learning stopping
condition is based on a stopping value of the learning criterion and is defined as
maxx(EFF(d, x)) ≤ 0.1 in this article;

• The probability stopping criterion is set to determine when the surrogate model
learning is sufficient to obtain an accurate decision on the achievement of the EMC

constraint. As long as 1− α belongs to the interval [P̂MC
d,min, P̂MC

d,max], the surrogate model
is not accurate enough to decide if the EM constraint is respected at a distance d.

If the learning criterion and the probability stopping criterion are validated at the same
time, a decision can be made on the achievement of the EMC constraint between the two
bundles at distance d. The whole procedure is described in Algorithm A2. The required
number of calls to the G function is significantly decreased if compared to the classical
MC approach of the previous section. Nevertheless, we also introduced nswitch maximum
number of calls to G for the evaluation of the constraint at distance d with a Gaussian
process. Indeed, the G function can be highly nonlinear notably for high-frequency bands
F for which the frequencies have to be considered. A surrogate model is then not adapted,
and the risk of misestimation of the EMC probability is not negligible. For this purpose,
if the number of iterations becomes larger than nswitch = 250, this means that the surrogate
model is not able to mimic the G function well at the distance d, and we propose then to
switch to Algorithm A1, taking into account calls to the G function already performed
during Algorithm A2. The general scheme of Algorithm A2 is available in Figure 2.
The block indicating “call to the G function” implies the launch of the CRIPTE computer
code simulation to evaluate the induced currents for a given configuration of cable bundle
installation parameters (distance, heights, length).
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Figure 2. Implementation of the COBYLA/Kriging algorithm.

5. Application to a Realistic Test-Case

In this section, we propose to apply the two algorithms detailed in Section 4 to a
realistic test-case of electric cable bundle segregation.

5.1. Description of the Use-Case under Study

We considered in the article the reference test-case schemed in Figure 3. It has the
following EM characteristics:

• Bundle A is made of nA = 12 elementary conductors and bundle B of nB = 24
elementary conductors;

• The two bundles were parallel with each other and had the same length;
• All conductors of both bundles were loaded by a 9 Ω common mode resistance at both

extremities;
• A 115 V voltage generator, constant over the frequency range F = [ fmin, fmax], was

applied on all elementary conductors of bundle A;
• The susceptibility level of all conductors of bundle B was adjusted in F to obtain an

optimised segregation distance dopt between both bundles of about 15 cm.

Figure 3. Analysis of the EMC between bundle A and bundle B.

This use-case is reasonably balanced in terms of the representativity of real indus-
trial cases and the computing resources needed to calculate the G function defined in
Equation (1).
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Consequently, the objective is to compute dopt, for heights of bundles varying between
1.5 cm and 20 cm and a bundle length varying between 6 m and 15 m. This optimum
distance should ensure that the probability to be susceptible is lower than α = 0.05.

In order to demonstrate the mathematical challenge of this use-case, the current
induced on one elementary conductor of bundle B and computed by the CRIPTE computer
code [4] is plotted versus frequency in Figure 4 for two very close installation configurations:

• d = 0.49 m, hA = 9.2 cm, hB = 4.5 cm, l = 53 m;
• d = 0.49 m, hA = 8.7 cm, hB = 4.0 cm, l = 52.8 m.

Figure 4. Examples of currents induced on bundle B.

Figure 4 clearly illustrates the fact that below the resonance frequencies, the current
response varies slowly with the installation parameters (distance, heights, and length), and
the strategy of optimisation, including the surrogate model, will easily converge. On the
contrary, in the domain of the resonance frequencies, we can expect a slow convergence
and the need to switch from the surrogate model to the standard Monte Carlo method.

5.2. Optimisation Strategy Results

The two proposed algorithms presented in Section 4 were implemented to estimate the
optimal segregation distance under the EMC constraint. The algorithms were validated for
various configurations of the use-case, chosen in terms of increasing complexity. The vali-
dation process consisted of comparing the value of dopt obtained by both algorithms to the
value obtained by a brute force Monte Carlo analysis, for which the distance parameter
was varied step by step. Figure 5 illustrates the variation of the G function for more than
1000 computed geometrical configuration samples with the brute force analysis in a nar-
row frequency band below resonances F = [1.99; 2.066] MHz and for fixed heights of the
bundles. The G function is distributed in well-defined strips and can be considered as a
monotonic decreasing function with the distance of segregation.

Table 1 summarises the results of the optimisation algorithm compared to the brute
force analysis and validates the implementation of the algorithms. The gain in terms of
the number of calls to CRIPTE, that is to say in terms of the computational resources to
solve this problem, is obvious, and the optimal segregation distance estimation was very
well estimated by the proposed algorithm. The linearity of the G function facilitates its
approximation by a surrogate model. Thus, very few calls to G are required to obtain an

accurate evaluation of the probability P̂MC
d for different values of d.
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Figure 5. G function distribution: brute force analysis F ≈ 2 MHz and fixed heights of the bundles.

Table 1. Brute force, COBYLA/classical MC, and COBYLA/Kriging methods with F ≈ 2 MHz and
fixed heights of the bundles.

Brute Force Monte Carlo COBYLA/Classical MC COBYLA/Kriging

dopt 15 cm 15 cm (±1 m) 16 cm (±1 m)

number of calls to G 12,000 1592 (±100) 72 (±5)

computational time 160 h 22 h 1 h

The second configuration was much more complex since the analysis was carried out
on a larger frequency band [75–125 MHz], which includes several resonance frequencies
(see Figure 4); meanwhile, the three installation parameters (length and heights) were
varied. Figure 6 shows the variation of the G function for several bundle segregation
distances. This time, the strip structure observed in Figure 5 is no longer present and
presents a blurred distribution, revealing a non-monotonic variation of the G function.

As noted in Table 2 and as expected in this case, the COBYLA/Kriging algorithm
needed sometimes to switch to the classical Monte Carlo method in order to converge
towards the optimal segregation distance since the G function is highly nonlinear and
non-stationary. Consequently, the number of iterations of COBYLA/Kriging compared to
the first case was much larger, but was still lower than the classical MC approach.



Appl. Sci. 2022, 12, 2132 10 of 13

Figure 6. G function distribution: brute force analysis with F = [100 ± 25] MHz, heights and
lengths varying.

Table 2. Brute force, COBYLA/classical MC, and COBYLA/Kriging methods with F = [100± 25]
MHz, heights and lengths varying.

Brute Force Monte Carlo COBYLA/Classical MC COBYLA/Kriging

dopt 30 cm 30 cm (±1 m) 32 cm (±1 m)

number of calls to G 12,000 1304 (±200) 501 (±200)

computational time 250 h 30 h 12 h

6. Conclusions

In this article, we developed a strategy to evaluate the optimal segregation dis-
tance between two electric cable bundles connecting two equipment to ensure their inter-
compatibility. We first showed that this problem can be solved as an optimisation under
constraints. We then proposed a new algorithm based on Monte Carlo samples with a Krig-
ing surrogate model and the COBYLA optimisation method to find the optimal segregation
distance. This approach was then applied on two realistic test-cases of electric cable bundle
segregation. With a similar algorithm, one can also evaluate the risk to exceed the suscepti-
bility thresholds for a segregation distance lower than the optimum distance, which will
give cable bundle integrators possible justification for derogation. At this point, the process
of optimisation was fully validated by brute force Monte Carlo analysis. The next step
of this work will consist of comparing the simulated results to experimental results on a
bundle installation configuration for which their definition, composition, installation, and
electrical characterisation are fully controlled.

The method proposed in this paper is a first step in order to make it one day a real
industrial tool to help installation and derogate to predefined installation rules with quanti-
tative justifications. The computer code based on this method and developed in the frame
of the ANALYST project has been delivered to SAFRAN E&P for further evaluation on their
industrial use-cases. As a perspective, there would be a real interest to assess our method
against geometries of increasing complexity with additional varying parameters. We think
for example of two bundles of different lengths or no longer parallel with the possibility
to crossing each other. Finally, it seems that the mathematical concepts developed in this
article could be extended in order to evaluate EMS at the scale of a whole network in order to
optimise the design of entire cable harnesses made of several branches of cable bundles.
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Appendix A. Algorithm of the Proposed Methods

Algorithm A1 EMC probability evaluation with the Monte Carlo method.

1: Setting definition: Define fX, α, the minimum number of Monte Carlo samples Nmin and the
maximum number of Monte Carlo samples Nmax, the distance d proposed by the optimiser
COBYLA

2: Initialisation with Nmin samples:
3: Generate Nmin independent samples X1, . . . , XNmin with distribution fX

4: Estimate P̂MC
d = 1

Nmin
∑Nmin

i=1 1G(d,Xi)<0

5: Compute IC0.95(P̂MC
d ) = P̂MC

d ± 1.96

√
P̂MC

d (1−P̂MC
d )

Nmin

6: if P̂MC
d − 1.96

√
P̂MC

d (1−P̂MC
d )

N > 1− α then Return “the EMC constraint is respected at distance d”
7: end if

8: if P̂MC
d + 1.96

√
P̂MC

d (1−P̂MC
d )

N < 1− α then Return “the EMC constraint is not respected at distance
d”

9: end if
10: Iteration until a decision is possible:
11: Set N = Nmin
12: while N < Nmax do
13: Set N = N + 1
14: Generate 1 independent sample XN with distribution fX

15: Estimate P̂MC
d = 1

N ∑N
i=1 1G(d,Xi)<0

16: Compute IC0.95(P̂MC
d ) = P̂MC

d ± 1.96

√
P̂MC

d (1−P̂MC
d )

N

17: if P̂MC
d − 1.96

√
P̂MC

d (1−P̂MC
d )

N > 1− α then Return “the EMC constraint is respected at distance
d”

18: end if

19: if P̂MC
d + 1.96

√
P̂MC

d (1−P̂MC
d )

N < 1− α then Return “the EMC constraint is not respected at
distance d”

20: end if
21: end while
22: The whole budget is necessary to make a decision:

23: if P̂MC
d > 1− α then Return “the EMC constraint is respected at distance d”

24: end if
25: if P̂MC

d < 1− α then Return “the EMC constraint is not respected at distance d”
26: end if
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Algorithm A2 EMC probability evaluation with the surrogate model.

1: Setting definition: Define fX, α, n-sample ((d, x)doe, y), the maximum number of calls
nswitch to G to enrich the surrogate model, the distance d proposed by the optimiser
COBYLA

2: Initialisation:
3: Set j = 1
4: Construction of a GP metamodel Gn(d, x) based on the n-sample ((d, x)doe, y).
5: Generate N independent samples X1, . . . , XN with distribution fX

Enrichment of the surrogate model until a decision is possible:
6: while j < nswitch do
7: Set n = n + 1 and j = i + 1
8: The learning function EFF(d, x) given by Equation (12) is evaluated on X1, . . . , XN

to find the best candidate x∗ to evaluate for enriching the GP metamodel
9: The G function is computed on the sample (d, x∗), and the DOE is enriched with

this new point (d, x∗) and G(d, x∗)
10: Construction of a GP metamodel Gn(d, x) of the performance function G(d, x) on

the DOE
11: Estimate P(G(d, X) < 0) ≈ P(µn(d, X) < 0) ≈ P̂MC

d = 1
N ∑N

i=1 1µn(d,Xi)<0

12: Compute P(µn(d, X)− 1.96σn(d, X) < 0) ≈ P̂MC
d,min = 1

N ∑N
i=1 1µn(d,Xi)−1.96σn(d,Xi)<0

and P(µn(d, X) + 1.96σn(d, X) < 0) ≈ P̂MC
d,max = 1

N ∑N
i=1 1µn(d,Xi)+1.96σn(d,X)<0

13: if P̂MC
d,min > 1− α and EFF(d, x∗)<0.1 then Return :the EMC constraint is respected

at distance d”
14: end if
15: if P̂MC

d,max < 1 − α and EFF(d, x∗)<0.1 then Return “the EMC constraint is not
respected at distance d”

16: end if
17: end while
18: The whole budget is necessary:
19: if j = nswitch then Switch to Algorithm 1 for the probability estimation
20: end if
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