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Abstract: We examine a classification task in which signals of naturally occurring earthquakes are
categorized ranging from minor to major, based on their magnitude. Generalized to a single-label
classification task, most prior investigations have focused on assessing whether an earthquake’s
magnitude falls into the minor or large categories. This procedure is often not practical since
the tremor it generates has a wide range of variation in the neighboring regions based on the
distance, depth, type of surface, and several other factors. We present an integrated 3-dimensional
convolutional recurrent neural network (3D-CNN-RNN) trained to classify the seismic waveforms
into multiple categories based on the problem formulation. Recent studies demonstrate using artificial
intelligence-based techniques in earthquake detection and location estimation tasks with progress in
collecting seismic data. However, less work has been performed in classifying the seismic signals into
single or multiple categories. We leverage the use of a benchmark dataset comprising of earthquake
waveforms having different magnitude and present 3D-CNN-RNN, a highly scalable neural network
for multi-label classification problems. End-to-end learning has become a conventional approach
in audio and image-related classification studies. However, for seismic signals classification, it
has yet to be established. In this study, we propose to deploy the trained model on personal
seismometers to effectively categorize earthquakes and increase the response time by leveraging the
data-centric approaches. For this purpose, firstly, we transform the existing benchmark dataset into a
series of multi-label examples. Secondly, we develop a novel 3D-CNN-RNN model for multi-label
seismic event classification. Finally, we validate and evaluate the learned model with unseen seismic
waveforms instances and report whether a specific event is associated with a particular class or not.
Experimental results demonstrate the superiority and effectiveness of the proposed approach on
unseen data using the multi-label classifier.

Keywords: multi-label classification; earthquake signal detection; 3D CNN; GRU; log-Mel spectrogram;
disaster response

1. Introduction

The recent advances in machine learning have been highly influential in classification-
related tasks where the input sensor data is audio or image. Categorizing multiple labels
is an essential and well-studied topic [1–4] with computer vision [5–9], audio classifica-
tion [10,11], natural language processing [12,13], and information retrieval [14] applications.
However, no classifiers are available in seismic signal processing literature to perform
multi-label classification on earthquake categorization tasks. The typical classification
application for seismic data is to distinguish between earthquakes buried in the seismic
noise. Although the earthquake detection problem has been addressed differently, most of
these methods are proposed as binary classification (e.g., [15–17]). These works referred to
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earthquake recognition as a single-label task: determining whether a seismic signal belongs
to an earthquake or a seismic noise.

Nevertheless, it is often not natural to assume earthquake detection as a binary classi-
fication task. There are primarily two explanations for this inappropriateness. To begin, the
limitation of addressing earthquake detection as a binary classification task is incomplete-
ness; a single earthquake label may not accurately describe the earthquake category for
a particular seismic wave. For example, it will be a subjective value, but it can represent
a human impression of the earthquake better than the physical value of magnitude. Sec-
ondly, it also demonstrates uncertainty, i.e., the class boundaries among many earthquake
categories are ambiguous essentially. We see from many reported earthquakes worldwide;
the series of effects from an earthquake depends on the shallowness and duration of an
earthquake and its magnitude. Sometimes, two earthquakes slightly differ between their
magnitudes but demonstrate the same effect on the ground. When referring to an inter-
mediate earthquake condition, it is difficult to identify whether the earthquake category
is “minor” or “slightly major” in terms of its effect on the ground. Currently, available
earthquake datasets do not provide information about the intensity or felt reports. For this
reason, we have converted the multiclass problem to a multi-label problem where each
earthquake waveform can have multiple categories simultaneously, i.e., for example, when
an earthquake happens, it has one value generally known as the magnitude that describes
the size. However, we can have many intensity values distributed around the epic center
and located in different geographic areas for this particular earthquake. We propose, by
using regression analysis, the earthquake magnitudes can be modeled into multiple classes,
i.e., after dataset conversion, an earthquake of magnitude “1” can belong to class “0”, “1” or
“2” simultaneously, which in this particular study is considered as a multilabel classification
problem (see Figure 1). Although the labels can be interpreted as intensities, however, they
are not the actual intensities measured by the instrument. To avoid ambiguity, we do not
label them as intensities. This study only uses the magnitude information from which we
convert the single label information to multi-label information. The uncertainty associated
with these border seismic signals makes it impossible to distinguish earthquakes even from
a human viewpoint, and no prior study has addressed this issue.

Figure 1. Multiclass to multi-label data transformation: examples of converted multiclass earthquake
categories to multi-label categories. An earthquake signal first belongs to a single category. However,
after transformation, it belongs to multiple categories.

Moreover, many researchers [18] find ways to employ low-cost ground motion sensors
in cities to monitor seismic activity in urban areas. The primary motivation to conduct this
study is to pave the way for data-centric approaches and deploy an efficiently trained deep
learning model on personal seismometers where seismic noise is high. We believe that
using deep learning models on these sensors to categorize earthquake severity in an urban
environment will significantly increase the response time.

Furthermore, categorizing earthquakes into multiple classes is a time-consuming
operation in a classical method. For example, in classifying the earthquake into several cat-
egories, the earthquake magnitude must be estimated using the following steps: firstly, we
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compute the sensor response; secondly, we convolve the estimated response with a signal
response from a Wood Anderson instrument (specialized to measure the signal response
accurately) [19], thirdly, transform the original signal counts to acceleration. Moreover, to
estimate the correct earthquake magnitude, we need to apply the attenuation models for
each region and introduce some correction terms. Finally, we average the measurements
from multiple nearby single stations to accurately estimate the earthquake magnitude.

Motivated by the reasons mentioned above, we propose to view earthquake magnitude
categorization as a multi-label classification task, assigning several labels to a seismic signal
based on its reported magnitude by a seismograph. We propose to solve this task using a
3-dimensional convolutional recurrent architecture (3D-CNN-RNN). Encouraged by the
significant advancements in convolutional neural networks (CNN) [20–25], we utilize CNN
as the earthquake feature extractor. On the other hand, numerous earthquake classes
demonstrate high co-occurrence correlations in seismic data. For example, earthquakes
having magnitude 1.5–2.5 can exhibit the same seismic pattern and have similar effects,
while magnitudes 1.5 and 4.5 can never have indistinguishable fallout. With the recent
success of recurrent neural networks (RNN) [26–28] in modeling the dependencies, we
propose to employ separate RNNs on each kernel of the last convolutional layer to model
the dependencies among labels and predict earthquake categories step by step. In this way,
the network can implicitly integrate the information inferred using the previous hidden
states when recognizing the subsequent labels.

Due to the acoustic nature of the seismic signal, it exhibits similar properties as an
audio signal; therefore, we propose to extract log-Mel features for algorithm training. The
signal is easily convertible to a log-Mel spectrogram and is treated as an input to the CNN.
Moreover, it is imperative to make the earthquake signal discriminative and preserve the
spatial information of the spectrogram. For this purpose, recurrent layers are employed
on each kernel of the third CNN layer to leverage additional spectral information for the
earthquake recognition task. In this study, CNN is used for local feature extraction and
recurrent layers to model the state-to-state and input-to-state transformations, capturing
information in the spatiotemporal domain.

In addition, considering that there is no dataset for the multi-label earthquake recogni-
tion task, we propose constructing a new dataset in this study. The data catalog comprises
93 K seismic waveforms, out of which six new classes are generated from two categories of
an existing earthquake dataset, STEAD (STanford EArthquake Dataset) [29]. In summary,
we claim three main contributions of this work:

1. We examine earthquake magnitude categorization as a multi-label classification task
by evaluating the features extracted through log-Mel spectrograms and analyzing the
relationships among different earthquake classes.

2. We present a 3D-CNN-RNN based architecture to evaluate the multi-label earthquake
classification task. It encapsulates a 3D-CNN to extract features from an input spec-
trogram, and recurrent layers are employed on each kernel of the final CNN layer to
model the similarities among different earthquake signals.

3. We develop a new multi-label earthquake dataset and reorganize an existing dataset [29]
for the earthquake categorization task.

This paper is organized as follows: Section 2 discusses our approach to categorize the
earthquake magnitudes and comprehensively explains the use of 3D convolutional and
recurrent neural networks and their adaptation to multi-label earthquake magnitudes clas-
sification tasks. Section 3 describes the dataset properties, extraction, and transformation
methods to evaluate the proposed framework. Section 4 describes the feature extraction
methods, and Section 5 explains our experiments on the transformed dataset acquired from
STEAD. Section 6 concludes this work and discusses possible future research directions
motivated by the proposed method.
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2. Our Approach

In this work, to comprehensively categorize the earthquake magnitudes, we propose
to treat earthquake magnitudes categorization as a multi-label classification task. Moreover,
a 3D-CNN-RNN incorporating recurrent layers is constructed to undergo this task, which
simultaneously frames and classifies earthquake magnitudes, allowing multiple labels to
belong to a single earthquake category. To attain higher dimensionality in the temporal and
spatial domain, we convert the raw seismic signals into log-Mel-based spectrograms, feed
the extracted features to a 3D-CNN-RNN architecture and perform multi-label classification
predictions. The complete architecture of our proposed method is presented in Figure 2.
The network comprises three parts, i.e., feature engineering, the 3D-CNN, and recurrent
layers assimilated with convolutional layers. The feature engineering part extracts the
log-energies in the Mel scale and creates a log-Mel spectrogram. The convolution layers
extract the spatial information, while recurrent layers capture the temporal features from
seismic waveforms.

Figure 2. The proposed architecture of 3D-CNN-RNN for earthquake magnitudes categorization.
The above design employs a composition of 3 convolutional layers and 16 distinct GRUs for every
filter in the subsequent layers. Each feature map from the previous layer is given to 32 GRU cells
in the 16 recurrent layers. The sigmoid output layer serves as a final fully connected (FC) layer for
categorizing earthquakes. The input consists of a series of 10-s seismic activity samples.

2.1. 3D Convolutional Neural Networks

Deep neural networks, like CNN, have shown significant performance in a vari-
ety of applications, including audio and image. However, it has not been examined for
the multi-label earthquake classification task. A CNN comprises layers with filters, fre-
quently referred to as kernels, seeking specific characteristics in the earthquake signals.
3D-CNN [30], having the above filters represented in a three-dimensional matrix, extract
spatial and temporal information and identify patterns in the input. During periods of in-
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tense seismic activity, it is highly probable that the changing behavior of the signal is likely
to be understood in the temporal domain, which inspired us to implement 3D-CNN by
convolving a kernel having three dimensions. We produce these convolutions in this work
by stacking numerous neighboring spectrograms of a 60-second ground motion divided
into a 10-s frame. In a conventional setting of convolutional layer, operations are carried
out in three stages: firstly, we perform convolution operation using 3D kernels to create
matrix transformations linearly; secondly, each linear matrix convolution passes through
spatial and temporal features in the spectrogram by employing a non-linear activation
(ReLU) function; and finally, the feature maps are downsampled using a pooling operation.
Various combinations of these essential basic components may be used to create the CNN.

The value of any element at position (x, y, z) in the jth feature space of the ith layer is
represented by ux,y,z

ij , and defined as,

ux,y,z
ij = g

(
bij + ∑

m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

wp,q,r
ijm u(x+p)(y+q)(z+r)

(i−1)m

)
, (1)

where g is the activation function, bij is a bias for the feature space, Ri is the size of the
3-dimensional filter along the time axis, wp,q,r

ijm is the (p, q, r)th value of the filter associated
to mth feature in the former layer.

2.2. Recurrent Neural Network (RNN)

In sequence-to-sequence learning, RNNs are a subset of neural networks that can
untangle irregular input features by utilizing their primary internal memory and process-
changing sequences through recurrent layers. RNNs can unfold sequence-to-sequence
learning tasks as they retain temporal features across their inputs, making them optimal
for time-domain-related tasks. Numerous practical applications [28] propose employing
‘gatedrecurrent units’, also known as GRUs, since they overcome the issue of vanishing
gradients that might occur while training neural networks. Due to the lack of an out-
put gate, GRUs have fewer network parameters and are thus more viable for practical
implementation than LSTM-based recurrent networks. GRUs operate based on a single
gating unit and can concurrently update the gated units in a recurrent structure. Moreover,
GRUs train faster, are computationally more efficient and have comparable performance to
LSTMs on less training data [17,31]. Furthermore, the model is intended to be deployed in
real-time in the future, and GRUs having fewer parameters than LSTMs make it an ideal
candidate for the magnitude classification task. Following are the equations for updating
gated recurrent unit [18] states:

h(t)i = u(t−1)
i h(t−1)

i + (1 − u(t−1)
i )σ

(
bi + ∑

j
Ui,jx

(t−1)
j + ∑

j
Wi,jr

(t−1)
j h(t−1)

j

)
, (2)

where u stands for the update gate and r for the “reset" gate. Their value is separately
defined as:

u(t)
i = σ

(
bu

i + ∑
j

Uu
i,jx

(t)
j + ∑

j
Wu

i,jh
(t)
j

)
, (3)

r(t)i = σ

(
br

i + ∑
j

Ur
i,jx

(t)
j + ∑

j
Wr

i,jh
(t)
j

)
, (4)

In gated recurrent units, portions of the state vector are “ignored" independently using
update and reset gates, allowing the temporal information and forget-states of distinct
units to be controlled dynamically.
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2.3. 3-Dimensional Convolutional Recurrent Architecture

This section describes a 3D-CNN-RNN architecture for classifying earthquake magni-
tudes. In literature, there are numerous combinations of CNN-RNN topologies to choose
from; we would want to focus on the core of 3D-CNN, which is three convolutional layers.
In addition, we also incorporate RNN layers into all the kernels of the third convolutional
layer. Moreover, we extract information using a fully connected (FC) last layer to identify
earthquake magnitudes and perform the classification task. We process features based on
log-Mel spectrograms and provide the extracted features to the 3D-CNN. After applying 3D
kernels succeeded by a max-pooling operation, as shown in Figure 2, the CNN is designed
using three convolutional layers as a preliminary step. With the 3D filter, we create a
receptive field of 3 × 3 × 3 in size. We further extract the feature maps using a 3 × 3 kernel
to fetch the features in the spatial dimension, whereas the third dimension scans it along
the time axis. Each convolutional layer has a max-pooling operation of (1 × 2 × 1) for the
first, (2 × 2 × 2) for the second, and (3 × 2 × 2) for the third.

Stride, padding, and filter size are three of the most often used hyper-parameters for
creating convolutional computations, and we choose the most optimal parameters for this
study. The stride parameter specifies the size of the step taken by the receptive field each
time. We downsample the inputs along each dimension while gradually extending the
dynamic range using the max-pooling procedure. For each convolutional layer, a rectified
linear unit is used as an activation function, where g(.) = max(0, .) represents the maximum
value for an activation function. Rectified linear unit’s (ReLU’s) back-propagation rule
removes any gradient components smaller than zero. Finally, batch normalization is
performed to each convolutional layer to optimize the learning rate. We prevent overfitting
by using a dropout rate of 0.3 in each convolutional layer. Weights are randomly initialized
for the training phase using Xavier initialization [32]. The final convolutional layer has
16 filters; therefore, GRUs are used on each filter to keep the temporal information, yielding
16 GRUs. We downsample the log-Mel spectrograms from 50 temporal features to 13,
creating a recurrent layer for each feature map. Finally, recurrent layers are concatenated
and linked to the FC layer using a many-to-one architecture. In addition, we obtain a
flattened tensor from the previously concealed hidden layer. With the help of the sigmoid
layer, it transforms them into the required output and generates a 6-dimensional vector
that represents the earthquake categories.

3. Data and Methods

To the best of our knowledge, no prior datasets have been used to study earthquake
magnitude categorization as a multi-label classification task. Therefore, to assess the
proposed framework, we extract the dataset presented in [29] and further transform the
data as utilized in [17]. In this section, we first introduce the properties and then the
transformation procedure of the dataset.

3.1. Properties of Dataset

A worldwide earthquake database was published recently, encompassing 1.2 million
seismic waveforms obtained from different major networks globally. The data comprises
earthquakes that occurred between January 1984 and August 2018. The data catalog is
named STEAD, and it was recently made opensource to expedite research in this area.
The data is split up into two subsets: local quakes and seismological noise. Typically,
earthquakes are monitored, and their position is estimated using measurements from
seismometers acquired in east-west, north-south, and vertical directions. Generally, the
seismic waveforms often contain different lengths of pre-event data before the primary
wave (P-wave); however, the seismic waveforms in the given dataset [29] are well aligned
and do not affect the feature extraction process. Nearly 1,050,000 three-component seismo-
logical events are included in the database. Each one-minute-long waveform comprises
6000 samples of seismic activity. We extract the vertical component from the Stanford
database for the presented work as the model is intended to be installed on an inexpen-
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sive personal seismometer equipped with a vertical component sensor designed to detect
ground motion in an urban region with strong seismic noise.

Each waveform in the presented dataset comprises 32 properties, making it suitable
for multi-class and multi-label-related research. A major part of the database consists of
earthquake waveforms with a magnitude of <2.5 (on the Richter scale), which is indicated
as an attribute named ‘source magnitude.’ To perform this research, we filter the recorded
waveforms into several classes by utilizing the features as explained in STEAD. The Stan-
ford database has distinctive waveforms: ones recognized automatically by algorithms and,
secondly, manually picked by seismic stations. These are referred to as ‘automatic’ and
‘manual’ picks. We examined the signals recorded by seismographs to train the algorithms,
i.e., ‘manual’ selections. Training and testing sets have distinct waveforms with no overlap-
ping signals. The ‘source magnitude’ and ‘earthquakes’ attributes are used to distinguish
waveforms and are separated into several categories. We ensure consistency by detrending
(i.e., mean shifted) the data, using a band-passed filter from 1–45 Hz, and resampling
the signals at 100 Hz. We built our dataset from the Stanford earthquake database using
the characteristics indicated above. Our experiment used 93,144 waveforms, 65,208 for
learning the model, and 27,936 for testing. The training and test sets are composed of 70%
and 30%, respectively. We defined five classes of earthquakes and constructed the dataset
necessary to conduct multi-class classification. Additionally, we labeled the signals with
the numerical values ‘(0–1)’, ‘(1–2)’, ‘(2–3)’, ‘(3–4)’, ‘(4–8)’, and ‘Non-earthquake’, where
‘(0–1)’ means we include all the earthquakes with magnitude greater than zero and less
than equal to one in this category. The same procedure is valid for all the other categories.
The complete distribution of earthquake categories and accompanying training and test
sets are shown in Table 1.

Table 1. Multi-class dataset orientation for earthquake waveform categories.

Earthquake Categories Earthquake Waveforms
(Training Set)

Earthquake Waveforms
(Test Set)

Magnitudes (0–1) 10,868 4656
Magnitudes (1–2) 10,868 4656
Magnitudes (2–3) 10,868 4656
Magnitudes (3–4) 10,868 4656
Magnitudes (4–8) 10,868 4656
Non-earthquake 10,868 4656

Total 65,208 27,936

3.2. Transforming Multi-Class to Multi-Label Dataset

This study takes a different approach and transforms a multi-classification task into a
multi-label task. The simplest example of a transformation of this type is to use regression.
We receive multiple probabilities for each class using an algorithm trained on multi-class
classification tasks as presented in [33]. We convert the target labels by using a probability
threshold value of 0.5. It assigns a numeric value of 1 if the predicted class misclassifies
with a threshold value greater than 0.5, whereas it assigns a numeric value of 0 otherwise.
Because we employ a regressor, predicting a specific instance may not result in a value of
exactly 0 or 1 for each target. For this reason, we propose thresholding to transform the
dataset into a multi-label problem where each earthquake waveform can belong to multiple
categories simultaneously. The detailed label distributions of earthquake magnitudes
associated with the multi-label dataset are presented in Figure 3.
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Figure 3. Label Distributions of Earthquake Magnitudes in Multi-label dataset.

4. Experiments
Data Representation: Feature Extraction

Here, we propose interpreting log-energies in the Mel scale at the frame level to
represent earthquake signals accurately. Log-Mel spectrograms are constructed by linearly
spacing triangular-shape filters in the Mel scale. The extraction of log-energies is identical
to those of MFCCs [34], except that the extraction of discrete-continuous Transform (DCT)
is eliminated while calculating the log-Mel energies. Log-Mel was initially proposed as
a speech feature with a log scale filter and gives an impression that extra non-seismic
wave components are covered. However, in this work, we need to discriminate seismic
waves from a mixture of many types of sources, including various frequencies. Moreover,
extracting features from seismic data using the log-Mel scaling help retain maximum spatial
components while simultaneously keeping the temporal features. Firstly, 1-min collected
waveforms are split into six ten-second chunks. Secondly, each 10-s sample is processed
using triangular-shaped filters to produce a single log-Mel time-frequency spectrogram.
A 10-s sample is sent through a sequence of 400 ms window signals, which results in
49 windows. However, we have added a zero at the end of the signal to obtain 50 frames
to maintain consistency. A 10-s sample contains 1000 samples, but after adding ‘0’ at the
end, it makes it 1001 samples, resulting in 50 windows. This zero-padding helps retain the
features during the training process in CNNs. Moreover, the short-time Fourier transform
is computed using a fast Fourier transform (FFT) of 64 bins and a hamming window with
50% signal overlap (STFT). The number of filters is set to 60 to obtain 60 features in the
Mel scale. Moreover, when we increase the number of filters in obtaining the log-Mel
spectrogram equal importance is given to higher frequency components (not limited to
1–20 Hz, see Figure 4 for detailed comparison). The remaining five samples are processed
following the same procedure, and a stack of six spectrograms is created to provide the
data to a neural network to construct feature maps. The complex spectrum of the seismic
waveform s(t) is denoted by the following equation,

S(n, f ) = S(n, f )ejθ(n, f ) (5)

Using θ(n, f ) and S(n, f ), we express a signal’s amplitude and its phase spectrum at
a given frequency f in frame n. Mel-scale features have substantially benefited low-
frequency speech recognition implementations; however, they have not been investi-
gated in low-frequency applications containing seismic signals. We propose to apply
D. O’Shaughnessy’s [35,36] analytical technique to transform Hertz-scale frequencies to
Mel-scale and retrieve log energies.
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m = 2595 log10(1 + f /700) (6)

whereas filter bandwidths are computed using the equation below,

f = 700(10m/2595 − 1) (7)

(a) (b)

(c) (d)

(e) (f)

Figure 4. Signal improvements and comparison of short-Time Fourier transform (STFT) with log–
Mel spectrograms of the earthquake signals. (a) STFT of earthquake magnitude > 4; (b) log–Mel
spectrogram of earthquake magnitude > 4; (c) STFT of earthquake magnitude > 2; (d) log–Mel
spectrogram of earthquake magnitude > 2; (e) STFT of earthquake magnitude > 3; (f) log–Mel
spectrogram of earthquake magnitude > 3.
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Using the above equations, we constructed linearly spaced triangular filters and
extracted 60 features in the spectral domain and 50 features in the time domain. Finally, the
magnitude measurements are normalized and transformed as log magnitudes to perform
network training.

S(n, f ) = log(S(n, f )) (8)

δ × 60 × 50 is the dimensionality of the recovered features, where δ indicates the
sample size for each ground motion signal. Finally, the 6 × 60 × 50 features are fed into the
3D-CNN-RNN architecture as an input. Figure 5 also illustrates the data input stream for
the feature extraction phase.

Figure 5. The data input pipeline for 3D-CNN RNN network: Feature extraction using log-Mel
spectrograms.

5. Evaluation
5.1. Evaluation Metrics

We consider using label-based evaluation metrics where we treat every label separately.
It reduces the multi-label classifier as a binary label classifier with four possible outcomes
for a particular label, i.e., true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN). In a perfect classifier, TP = 1 and FP = 0.

Precision, Recall, and F-score of the earthquake magnitudes classifier are assessed
using (9), (10) and (11) respectively. Although confusion matrices are acceptable for visual-
izing the results of multiclass models, they fail when it comes to multi-label classification
because an instance from a data set may belong to numerous classes simultaneously. In
multi-label classification, the predicted class can be completely accurate if the outcome of
the predicted labels is exactly the same. Moreover, the predicted class can also be partially
accurate if the predicted labels are the subset of the ground truth labels. Finally, it can be
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completely inaccurate if the predicted label does not belong to any of the labels present in
the ground truth example.

Precision =
∑l

i=1 TPi

∑l
i=1 TPi + FPi

(9)

Recall = ∑l
i=1 TPi

∑l
i=1 TPi + FNi

(10)

Fscore = 2 × Precision × Recall
(Precision + Recall)

(11)

5.2. Training

We designed the 3D-CNN-RNN architecture, which includes 3D convolution filters
and three convolutional layers. The model was trained using a drop-out rate of 0.3. We
employed a sigmoid layer to calculate the loss for solving multi-label classification task.
Adam’s optimization method is used with a momentum of 0.9 and a starting learning rate
of 10−3 to prevent vanishing gradient problems and optimize the learning rate. We trained
our models using a batch size of 64, i.e., 64 training examples. We train our baseline model
using 97% of the total training data and use a 3% validation split to compute validation loss
and monitor the training process. To minimize overfitting and promote generalization, we
shuffled the data in the training set and halted the training after 50 epochs. The model is
implemented using TensorFlow. Our networks are trained on a single NVIDIA V100 GPU.
Our suggested architecture requires 14 h of learning time, including feature extraction,
training, and testing.

In the proposed multi-label structure, label distribution and feature extraction are
essential factor for classification performance. The experimental results summarize our
proposed method’s accuracy and demonstrate improvement in the previous study’s clas-
sification results utilizing a multi-class approach. Specifically, we transformed labels to
multi-label prediction to contain labels with numeric values with a certain threshold.
However, varying the threshold will impact the results and lead to different predictions.
Additionally, we analyze the algorithm’s classification performance regarding the propor-
tion of successfully categorized earthquake signals into distinct earthquake classes with
multiple labels. We select the best model in terms of accuracy, and the precision metrics
remain the same every time we take the classification report. There is only a 0.005 variation
which is usually ignorable when we obtain the accuracies up to two decimal points. Fur-
thermore, we also monitor the inference speed for each prediction, i.e., 2.27 seconds using a
dedicated V100 GPU. We use an input length of sixty seconds of the signal to calculate the
inference speed. Since this is the first experiment of its type, the findings obtained using
our suggested approach validate as the standard for multi-class and multi-label earthquake
magnitude categorization. As seen in Tables 2 and 3, there is a significant improvement
in the overall accuracy of the predicted labels. In Tables 2 and 3, the term “Magnitudes
(0–1)” means we include all the earthquakes with magnitude greater than zero and less
than equal to one in this category. The same procedure is valid for all the other categories.

Table 2. Multi-class: Accuracy results for the proposed method in the reference paper [33].

Earthquake Categories Precision Recall F1-Score

Magnitudes (0–1) 0.72 0.60 0.65
Magnitudes (1–2) 0.52 0.52 0.52
Magnitudes (2–3) 0.50 0.34 0.40
Magnitudes (3–4) 0.46 0.58 0.52
Magnitudes (4–8) 0.61 0.75 0.67
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Table 3. Multi-label: Accuracy results for the proposed method in this study.

Earthquake Categories Precision Recall F1-Score

Magnitudes (0–1) 0.97 0.50 0.66
Magnitudes (1–2) 0.98 0.69 0.81
Magnitudes (2–3) 0.83 0.51 0.63
Magnitudes (3–4) 0.93 0.90 0.91
Magnitudes (4–8) 0.84 0.81 0.82
Non-earthquake 0.99 0.87 0.92

We trained our model using a real-world, relatively small dataset (see Section 3.1)
in addition to improving its generalizability in real-world circumstances. Our model’s
effectiveness depends on the feature extraction approach to extract spectral and temporal
information. Given the presence of significant seismic traffic, a signal de-noising ap-
proach may be used to decrease the rate of misidentification in various earthquake classes.
Although it is difficult to assume that excessive seismic noise is only responsible for mis-
classifications, raw signal amplification by instruments might be one of the explanations
for the findings mentioned above.

6. Conclusions

This study provides a 3D-CNN-RNN-based methodology for classifying earthquake
magnitudes. We have presented a novel method that can automatically categorize earth-
quake magnitudes using artificial intelligence-based algorithms. We investigate earthquake
magnitude categorization as a multi-label classification problem by assessing the character-
istics derived from log-Mel spectrograms and studying the interactions between distinct
earthquake categories. Moreover, to address the earthquake categorization problem, we
provide a 3D-CNN-RNN-based framework. It contains a 3D-CNN for extracting features
from an input spectrogram and recurrent layers to examine patterns between seismic sig-
nals. Furthermore, we also create a new multi-label earthquake dataset using an existing
earthquake dataset. Based on the results, we summarize that the multi-label classification
model demonstrates how effectively deep learning-based classifiers can accurately detect
earthquakes of varying intensities. As part of our future research, we want to investigate
more closely the relationships between earthquake recognition and its application in real-
world environments using semi-supervised-based classification approaches. Furthermore,
it will be interesting to categorize earthquakes by creating synthetic data and leveraging
encoder-decoder-based models to achieve better performance. The findings from this
research have demonstrated that deep learning-based algorithms can automatically classify
earthquake magnitudes based on data from single stations. Moreover, we report the infer-
ence speed for each prediction using a dedicated GPU; however, in the future, more work
is needed by using model pruning techniques to deploy the learned model on a personal
seismometer having no GPU. This also provides an opportunity for future study into the
efficient integration of ground-motion sensors in urban areas for the early detection of
minor-to-major earthquakes. This project is part of a larger effort to build a comprehensive
deep-learning-based infrastructure for seismic signal recognition and prediction. The future
research will explore the real-time deployments of the Artificial intelligence system on
personal seismometers and its effectiveness in densely populated locations with a high
level of seismic activity.
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