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Abstract: This paper focuses on analyzing the dynamic response of an innovated quasi-zero stiffness
pneumatic vibration isolator (QZSPVI) using two mechanisms, including wedge and semicircle cam.
Different from other studies relating quasi-zero stiffness isolation system, the pneumatic cylinder
in this paper works as an air spring in order to easily adjust the dynamic stiffness of the proposed
system according to the change of the isolated load through regulating the pressure. Firstly, the
dynamic stiffness of the QZSPVI will be analyzed. Then, the condition for which the minimum
dynamic stiffness is quasi-zero around the equilibrium position is also determined. The fundamental
resonance response of the QZSPVI subjected to the externally harmonic force is analyzed through
multi-scale method and the numerical simulations are verified. Secondly, due to exiting relative
sliding frictional phenomenon between the cylinder and piston, instead of an experiment, another key
content of this work is to identify the friction force model of the cylinder through virtual prototyping
model. From this identified result, the complex dynamic response of the QZSPVI and coexistence
of multiple solutions will be discovered by realizing the direct integration of the original dynamic
equation through using the 5th-order Runge–Kutta algorithm. The analysis and simulation results
clearly show the advantages of the proposed model against the equivalent pneumatic vibration
isolator (EPVI), which only employs the wedge mechanism. This research will offer a useful insight
into design and QZSPVI in practice.

Keywords: vibration isolator; quasi-zero stiffness; pneumatic cylinder; complex dynamic; sliding friction

1. Introduction

Along with technological developments in engineering sciences and micro-fabricate
systems, ultra-precision measurements have been studied deeply [1,2]. However, the accu-
racy as well as the lifespan of the manufacturing systems or measurement depends on many
causes, in which vibration is one of the main reasons. Hence, minimizing the transmissibil-
ity of unpleasant vibrations from source to isolated object is a significant demand. In recent
years, nonlinear structures with quasi-zero stiffness characteristic have offered promising
effectiveness for preventing low frequency vibrations [3,4]. Hence, studying dynamic
characteristics of these nonlinear systems or structures has drawn increasing interest from
researchers. Xu et al. [5] analyzed the dynamic response of quasi-zero stiffness isolator, as
well as the jump-up and jump-down phenomenon of the amplitude–frequency curve. The
nonlinear dynamic response of an isolator using the negative stiffness structure is experi-
mentally investigated by Le et al. [6]. The result obtained that the amplitude–frequency
curve moves towards the low frequency. Zhou et al. [7] built and analyzed the nonlinear
dynamic model of a prototype of quasi-zero stiffness (QZS) vibration isolation model with
cam-roller-spring, obtaining an effective isolation response at low frequency bands. A
useful and compact prototype of an oscillator, including two oblique springs and one verti-
cal spring to get the QZS characteristic, was designed and experimented by Lan et al. [8].
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A novel study of compact isolators, combining a symmetrically scissor-like structure in
horizontal direction to a spring-mass-damper system in order to improve the isolation
performance in three directions with high-static and quasi-zero dynamic stiffness character-
istics, is proposed by Sun et al. [9]. Instead of using the approximate technique, the dynamic
equation with original irrational nonlinearity was built and analyzed by Hao et al. [10],
which means that the prediction of a large displacement can obtain high accuracy. Chai
et al. [11] studied the vibration transmissibility of a novel two-stage quasi-zero stiffness
nonlinear oscillator subjected to harmonic force excitation. Vibration characteristics of a
fluid-conveying pipe supported by two nonlinear isolators featuring quasi-zero stiffness is
numerically simulated by Ding et al. [12]. The simulated results revealed that the natural
vibration frequency of the system can be shifted to the low frequency region. The static and
dynamic of a one degree of freedom quasi-zero stiffness oscillator for large deflection was
analyzed by Gatti [13]. Unlike the above system, another perspective for designing low
frequency vibration isolation models was studied and experimented by Bian et al. [14] in
which a novel compact isolation mount is proposed based on the X-shaped structure with a
small size, aiming to adjust both the quasi-zero stiffness and loading capacity. Through a
specific nonlinear mechanical mode, the overall approach was generalized by Gatti [15] in
which the parameters of the system are optimized to enhance the elastic potential energy,
which obtains a quasi-zero stiffness behavior achieving at maximum displacement. Addi-
tionally, Yan et al. [16] presented comprehensive methodology of low frequency isolation
which can be classified into three mechanisms, including stiffness adjustment, auxiliary
mass, and damping mechanism. Oscillators with the quasi-zero stiffness characteristic
mentioned above are to use the mechanical elastic elements such as coil spring. It is simple
and easy to apply in practice. However, a very important aspect of using these models for
vibration isolation is that changing the isolated load can result in a reduction in isolation
effectiveness because of fixed elastic parameters, meaning that the isolated load influences
the frequency–amplitude response as demonstrated by Le et al. [17].

Besides, magnetic springs have been used to study the low frequency vibration isolator.
For instance, a compact QZS Stewart isolator, which can be applied widely to isolate
vibration for 1-6 degrees of freedom systems, has been studied by Zheng et al. [18], obtained
the resonant frequency of the system. This can be reduced in 6 degrees of freedom and
the load-bearing ability remains. Zheng et al. [19] analyzed and experimented with the
negative stiffness magnetic spring, consisting of a pair of coaxing ring permanent magnetics
in parallel with the mechanical spring to reduce the resonance frequency and achieve the
desired isolation effectiveness. Based on Maxwell normal stress, Zhang et al. [20] designed
and experimentally validated an innovative magnetic negative stiffness isolation system for
enhancing isolation effectiveness in the low frequency range. A magnetic isolator, which
shows the decreasing of the peak frequency and expanding of the isolation frequency
towards the low frequency band, is proposed by Dong et al. [21]. Zhao et al. [22] proposed
an electromagnetic active negative stiffness generator which can produce high-static low-
dynamic stiffness. The analysis and experimental results proved the natural frequency
of optical platform to be reduced and its isolation performance was enhanced effectively
towards the low frequency bandwidth. Besides, Yuan et al. [23] developed an isolator
containing three coils with a ring magnet by controlling the current to the coils to improve
the isolation performance under violent vibration conditions. The experimental results
proved that this isolator is suitable for large excitation and can be tuned online. Except for
the permanent magnetic method, isolators using the electromagnetic method can easily
adjust the dynamic stiffness to obtain desirable isolation effectiveness, but the drawback of
the magnetic spring is that it has low load ability. Accordingly, application limitation of the
magnetic spring is inevitable.

Another type of elastic element, which can overcome the issues mentioned above, is an air
spring, due to easy control of the spring coefficient and high bearing capacity. Thus, in recent
years, this type has been widely applied in vibration isolation platforms [24–26], etc. Therefore,
it is interesting to combine the mechanical and pneumatic system to develop quasi-zero stiffness



Appl. Sci. 2022, 12, 2378 3 of 25

vibration isolation models which can extend the isolation region toward low frequency [27,28].
A quasi-zero stiffness isolator based on a set of two double-acting pneumatic linear actuators is
analyzed and demonstrated experimentally by Palomares et al. [29], obtaining a reduction in
resonance frequency. Nguyen et al. [30] analyzed an air spring vibration isolation system based
on a negative stiffness structure, showing that the load capacity of the isolator can be adjusted
easily via the gas pressure. Motivated by the interest of the scientific community toward quasi-
zero stiffness vibration systems and promising application, authors developed and realized the
static analysis of a quasi-zero stiffness pneumatic vibration isolator (QZSPVI) [31] in which
a pneumatic cylinder with an auxiliary tank worked as an elastic element, revealing that the
stiffness curve of the isolator is asymmetrical around the desirable equilibrium position. This
asymmetry can effect the amplitude–frequency response as well as the dynamic behavior
of the isolator. As is known, the isolation system mentioned above is the combination of
components such as joints, sliding parts, and so on, which could involve self-locking or
frictional effects as discussed in [32,33]. Accordingly, the nonlinear dynamic response of the
QZSPVI, which is inherited by the sliding friction between the piston and cylinder, will be
studied comprehensively in the present paper. First, by using a multi-scale method, the primary
frequency–amplitude response will be analyzed. In addition, due to possessing the strong
nonlinear characteristic in the dynamic response and existing relative sliding friction between
the piston and cylinder, the complex dynamic and bifurcation phenomenon of the dynamic
response curve as well as the asymmetric are also analyzed through the directly numerical
integration and Poincáre section method. The organization of this paper is as follows: the
model description and stiffness analysis are presented in Section 2, the primary frequency–
amplitude relation and its stability are indicated in Section 3, the identification of friction force
model of cylinder and complex dynamic response QZSPVI are illustrated in Section 4. Finally,
conclusions are shown in Section 5.

2. Model of Quasi-Zero Stiffness Pneumatic Vibration Isolator
2.1. Description

The QZSPVI, which is constructed by a positive stiffness structure connecting in
parallel with a negative stiffness one, is described as in Figure 1a. The formerly named
load-bearing mechanism (LBM), consisting of the wedges 7, rollers 5, and cylinder 1, is
used to support the load plate 8, while the latter is used to correct the dynamic stiffness of
the system and is called the stiffness correction mechanism (SCM), including semicircular
cams 6, rollers 4, and cylinder 2. It is noted that the wedge 7 and cam 6 are fixed on the
leg 14 which is fixed on the load plate 8 and only moves vertically through the guidance
bars 11 and rollers 9, meanwhile the rollers 5 and 4 only realize horizontal motion via the
rods and cylinders in which the cylinders can only slide horizontally without frictional
phenomenon thanks to the sliding on fixed guidance bars 12 of sliders 13. An auxiliary
tank 3 connects to the cylinder 1 of the LBM to improve symmetry of the dynamic stiffness
curve, and the stiffness of the QZSPVI can offer desirable low values by adjusting the low
pressure in cylinders 1 and 2.

During the operation of the system, it can spend three states as shown in Figure 1b,
including the undeformed, desirable equilibrium, and arbitrary position. For example, at
the undeformed one, the air in the cylinders 1 and 2 is not compressed, meaning that no
force is generated by the LBM and SCM. The vertical distance (Ho) between the centers
of the cam 6 and roller 4 is called the static deformation of the system. The desirable
equilibrium position (DEP), determined as the load plate, is loaded until the centers of
cam and roller are on the same horizontal line. At this state, the vertical force which acts
on the load plate is only caused by the load-bearing structure, whilst the arbitrary state is
determined when the load plate moves away from the equilibrium position at distance
u < Ho, at which the load plate will be acted on by two vertical forces generated by both
the LBM and SCM
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Figure 1. (a) Schematic diagram of the QZSPVI composed by the LBM and SCM, (b) Specific states of
the QZSPVI.

Supposing at an arbitrary position, the vertical forces generated by the elastic forces
of the load-bearing mechanism (FLBM) and the stiffness corrected mechanism (FSCM) are
determined as the following:

Fs = FLBM + FSCM (1)

As analyzed in [28], the FLBM and FSCM are expressed as below

FLBM = 2A1

[
Pso1

(
A1h1 + Vt

A1h1 + Vt − 2A1Ho tan α + 2A1u tan α

)n
− Patm

]
tan α (2)

FSCM = 2A2

 Pso2

(
A2h2

A2h2+2A2

√
(R+r)2−H2

o−2A2

√
(R+r)2−u2

)n

−Patm

 u√
(R + r)2 − u2

(3)

in which n is the ratio of specific heat capacity, R and r are the radii of the semicircular cam
and roller in m, Patm is the ambient pressure in Pa, while Pso is the pressure in cylinder at
the undeformed position in Pa, the area of piston is denoted by A in m2, h is the working
stroke length of piston in m as denoted in Figure 1a, Vt is the volume of the auxiliary
tank, u is the relative displacement between the base and load plate. It is noted that
parameters that are representative for pneumatic springs 1 and 2 are noted by subscripts
“1”and “2”, respectively.

As described above, the load plated is only supported through the pressure which is
generated by the LBM. Hence, it is necessary to determine the relationship between the
pressure in cylinder 1 and the weight of the isolated object as expressed by Equation (4),
meaning that thanks to this relation, the system can obtain the desired equilibrium position.

Pep1 =
Mg

2A1 tan ϕ
+ Patm (4)
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in which the pressure (Pep1) of the cylinder 1 at the equilibrium position is determined as follows:

Pep1 = Pso1

(
A1h1 + Vt

A1h1 + Vt − 2A1Ho tan α

)n
(5)

To ensure the load-bearing capacity in the expected working region |u| ≤ Ho, the
initial pressure Pso1 of the LBM must be larger than one. This indicates that the working
parameters of the cylinder 1 must satisfy the following condition:

2A1Ho tan α

A1h1 + Vt
< 1− 1(

Pep1
)1/n (6)

For instance, Ho = 73.5 mm and A1 = 0.0095 m2, through Equations (4)–(6), the relationship
between the weight of the isolated load and the initial volume for which the pressure in the
cylinder 1 is always higher than one as shown in Figure 2. It can be seen that either increasing
the initial pressure or reducing the tank volume will result in an increase in the isolated load.
However, the effect of these parameters on the isolated load is different. Specifically, the isolated
load is almost increased gradually according to the growth of the initial pressure as observed in
Figure 2b, created by a cutting section Vt = 0.01 m3. Meanwhile, the Figure 2c cut by a section at
Pso1 = 2 bar indicated that the isolated mass can be remarkably varied, as there is a change of the
tank volume in the region of less than 0.05 m3.

Figure 2. (a) The relationship between the initial volume and pressure in cylinder 1 for Ho = 73.5
mm and A1 = 0.0095 m2. (b) Effect of the initial pressure Pso1 on the isolated mass and Vt = 0.01 m3,
(c) Effect of tank volume Vt of the isolated mass and Pso1 = 2 bar.

Similarly, the pressure in cylinder of the SCM must be always larger than one for the
remaining function of correcting the dynamic stiffness of the SCM. The working region of
the SCM is predicted as following:

|u| ≤ uL_SCM =

√√√√√√(R + r)2 −

A2h2 + 2A2

√
(R + r)2 − H2

o −Vep2

(
Pep2
Patm

)1/n

2A2


2

(7)
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herein Pep2 and Vep2 are denoted as the pressure and volume in the cylinder 2 at the
equilibrium position.

2.2. Stiffness Analysis

Taking a derivation of Equation (1) versus dimensionless displacement û, the vertical
stiffness is expressed in the form of dimensionless as following:

K̂s = 4n
V̂n

ep1(V̂cy1+V̂t)
n

tan2 α

(V̂cy1+V̂t−2Ĥo tan α+2û tan α)
n+1 +

2Â√
1−û2

[
P̂atm − µV̂n

ep2

(
V̂cy2

V̂cy2+2Â
√

1−Ĥ2
o−2Â
√

1−û2

)n](
1

1−û2

)
+ û2

1−û2

4nµÂ2V̂n
ep2V̂n

cy2(
V̂cy2+2Â

√
1−Ĥ2

o−2Â
√

1−û2
)n+1

(8)

in which

K̂S = KSb
A1Pd1

Â = A2
A1

; Ĥo =
Ho

R+r ; P̂atm = Patm
Pd1

; û = u
R+r ;

V̂cy1 =
Vcy1

A1(R+r) ; Vcy1 = A1h1; V̂cy2 =
Vcy2

A1(R+r) ; Vcy2 = A2h2;

V̂t =
Vt

A1(R+r) ; V̂ep1 =
Vep1

Vcy1+Vt
; V̂ep2 =

Vep2
Vcy2

; F̂LBM = FLBM
A1Pep1

; µ =
Pep2
Pep1

.

In order to simplify the dynamic analysis in the next section, the restoring force given
by Equation (1) can be expressed approximately (Fap) by expanding the Taylor series around
the wanted equilibrium position u = 0 as below:

Fap = Fo + a1u + a2u2 + a3u3 + a4u4 + a5u5 + O(u6) (9)

herein,
Fo = 2A1

[
Pso1

(
A1h1+Vt

A1h1+Vt−2A1 Ho tan α

)n
− Patm

]
tan α

an = 1
n

(
dFLBM

n

dun + dFSCM
n

dun

)∣∣∣
u=0

n = 1, 2, 3, 4, 5 (10)

The original elastic force given by Equation (1) and its approximated form expressed
by Equation (9) are compared as in Figure 3a. The former is denoted by the solid line, while
the latter is drawn by the dot line. It is interesting to see that the curve of Equation (1) is
approximated to 5th order through expanding Taylor series, which is in good agreement
with the other. Furthermore, the error percentage of the approximated curve is lower
than 4% compared with the exact solution, as shown in Figure 3b. As observed, at the
equilibrium position, the error is equal to zero, but when moving away from this position,
error is increased. Indeed, within û = −0.5÷ 0.5, the slope of the force curve is very low.
Meanwhile, out of this region, the slope is increased significantly as shown in Figure 3a,
indicating that the rate of changing error within û = −0.5÷ 0.5 is also very low, outside
it is developed strongly. This means that the 5th order polynomial is suitable for small
amplitude oscillation. This approximated solution will be used for analyzing the primary
resonance response of the proposed system.

Figure 4a shows the dynamic stiffness surface in the space V̂t, û, K̂s in which the
pressure ratio µ is 1.83, and other parameters include V̂cy1 = 1.875; V̂cy2 = 0.248. It
revealed that the stiffness of the QZSPVI is strongly affected by the auxiliary tank volume
Vt of the load-bearing mechanism. Reducing the value of Vt will increase the value of the
system stiffness. Simultaneously, the asymmetric level of the stiffness curve around the
equilibrium position is also developed. This is seen clearly in Figure 4b, and created by
cutting sections at V̂t = 7.892, 13.153, 26.306 (types of lines are presented in the top-right
corner panel). Furthermore, because of the asymmetry of the stiffness curve, the system can
not achieve the lowest stiffness at the equilibrium position (u = 0). As observed, for the 1st
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dimensionless value of the tank volume, the position defined by ûls at which the stiffness
achieving the lowest value is approximated 0.084 and the value of ûls can be reduced to
0.034 and 0.09 as the auxiliary tank volume is grown to 13.153 and 26.306, respectively.

Figure 3. (a) Comparison between of the original (solid line) and 5th order approximated (dot line)
curve of the elastic force; (b) The error percentage between the exact solution and approximation one.

Figure 4. (a) The vertical stiffness surface in the space
(
V̂t, û, K̂s

)
for pressure ratio µ = 1.83; (b) The

dynamic stiffness curves for different values of dimensionless tank volume given in the right top
corner panel.

The lowest stiffness position can be predicted by differentiating Equation (9) to second
order versus the displacement as expressed in Equation (11), and then it equals zero. It can
be seen that this position will be asymptotic to the wanted equilibrium position when the
auxiliary tank volume V̂t is large enough, as shown in Figure 5.

2a2 + 6a3u + 12a4u2 + 20a5u3 = 0 (11)

In addition, from Equation (8) for Pe1 = 2 bar, by setting Ks = 0, the relationship
between the pressure ratio and the auxiliary tank volume for which the pressure in cylinder
of the SCM will be calculated is marked in Figure 6a. The pressure ratio curve is formed
by cutting sections at the various values of the auxiliary tank volume V̂t as shown in
Figure 6b, in which the values of V̂t and the notation for line types are noted in the middle
of the panel. It can be observed that in the case of V̂t = 34.198, at the extremum point
A corresponding to the pressure ratio µ = 0.905, the oscillation system can obtain the
quasi-zero stiffness at only one position ûA = 0.008 but µ > 0.905, there may exist two
positions at which the stiffness is also nearly equal to zero such as at point A1 (û = 0.381)
and point A2 (û = −0.364) for µ = 1.2. It is shown that lessening the volume V̂t leads to
the increase of the pressure ratio. For instance, V̂t = 21.045, 13.153, and 7.982, the lowest
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pressure ratios to obtain quasi-zero stiffness are 1.096, 1.379, and 1.834 are marked by
the extremum point such as B, C, and D, respectively. The slope of the stiffness curve
at points A(ûA = 0.008), B(ûB = 0.021), C(ûC = 0.046), D(ûD = 0.083) is nearly equal to
zero as depicted in Figure 6c (all parameters are the same as in Figure 6b). Meanwhile, for
other positions (A1, A2, etc.) these are nonzero, indicating that for the value of µ at extreme
points of the pressure ratio curve, the dynamic stiffness is equal to zero and obtains the
minimum value in the expected working region. This result is also confirmed in Figure 7a,
herein the values of µ and annotation of the line types are given in the top right corner
panel of the figure.

Figure 5. The influence of auxiliary tank volume V̂t on the minimum stiffness position.

Figure 6. (a). The quasi-zero stiffness surface in the space (V̂t, û, µ); (b). The pressure ratio curve for
various values of V̂t; (c). Slope of stiffness curve in dimensionless form.
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Figure 7. Stiffness curve for different values of µ given in the panel of figure: (a) Quasi-zero stiffness
at position (û = 0.008; 0.021; 0.046; 0.083); (b) Arbitrary stiffness.

As mentioned above, points may exist where the stiffness of the QZSPVI is quasi-zero
but the slope of the stiffness curve is nonzero. For example, for µ = 1.2,V̂t = 34.198, the
system has quasi-zero stiffness at the position A1 (û = 0.381) and A2 (û = −0.364) (seen in
Figure 6b), but at which the slope of the stiffness curve is larger than zero at A2 and smaller
than zero at A1 (seen in Figure 6c). The result is an area from the position A1 to A2 in which
the dynamic stiffness of the QZSPVI is negative, as shown by a dot line in Figure 7b. On
the aspect of isolation, this case is not suitable for designing an isolated model due to its
unstableness. Besides, if the pressure ratio is chosen so that its value is smaller than that
at the extremum point of the pressure ratio curves, the stiffness of the system is always
larger than zero as exhibited in the Figure 7b herein, the value of µ is chosen 0.7 (solid line),
0.8 (dashed line), and 1.05 (dash-dot line), while the dimensionless value of the auxiliary
tank volume is 34.198. Furthermore, it is interesting to note that the region d in which the
dynamic stiffness of the QZSPVI is smaller than that of the EPVI (plotted by dash-dot-dot
line) is increased according to the increase in the pressure ratio.

3. Dynamic Analysis
3.1. Primary Frequency—Amplitude Relation

Considering that the load plate is acted by a harmonic force with the amplitude Fe
and frequency ω, the motion of the load plate is expressed as following:

M
..
u + C

.
u−

(
a1u + a2u2 + a3u3 + a4u4 + a5u5

)
= Fe cos(ωt) (12)

By introducing parameters as following:

û = u
uo

; ω2
n = − a1

M ; Ω = ω
ωn

; τ = ωnt; ξ = C
2ωn M ;

αn = − anun−1
o

Mω2
n

; uo =
Fe
−a1

∣∣∣
ω=0;ai=0(i=2,3,...,5)

In dimensionless form, Equation (12) is rewritten as below:

û′′ + 2ξû′ + û +
5

∑
n=2

αnûn = cos(Ωτ) (13)

where the number of primes denote the order of differentiation with respect to dimension-
less time τ

In order to find the solution in the neighborhood of the equilibrium position û = 0,
we let û = εx̂

x′′ + 2ε4ξ̃x′ + x +
5

∑
n=2

αnεn−1xn = ε4k̃ cos(Ωτ) (14)

herein ε << 1, and ε4ξ̃x′ = ξ x̂′; cos(Ωτ) = ε4kcos(Ωτ).



Appl. Sci. 2022, 12, 2378 10 of 25

By applying the multi-scale method, the approximated solution of Equation (14) is
obtained as following:

x̂(τ, ε) = x̂o(To, T1, T2, T3, T4) + εx̂1(To, T1, T2, T3, T4) + ε2 x̂2(To, T1, T2, T3, T4)
+ε3 x̂3(To, T1, T2, T3, T4) + ε4 x̂4(To, T1, T2, T3, T4) + . . . + O(ε5)

(15)

in which Ti = εiτ (i = 0, 1, 2, 3, 4). Substituting Equation (15) into Equation (14) and
letting Ω = 1 + ε2σ then equating the coefficient of εo, ε1, ε2, ε3, ε4 on both sides of the
equation, yields

εoD2
o x̂o + x̂o = 0

ε1D2
o x̂1 + x̂1 = −2DoD1 x̂o − α1 x̂o

ε2D2
o x̂2 + x̂2 = −2DoD1 x̂1 − 2DoD2 x̂o − D2

1 x̂o − α1 x̂o x̂1 − α2 x̂3
o

ε3D2
o x̂3 + x̂3 = −2DoD1 x̂2 − 2DoD2 x̂1 − 2DoD3 x̂o

−2D1D2 x̂o − D2
1 x̂1 − α1

(
x̂2

1 + 2x̂o x̂2
)
− 3α2 x̂2

o x̂1 − α3 x̂4
o

ε4D2
o x̂4 + x̂4 = −2DoD1 x̂3 − 2DoD2 x̂2 − 2DoD3 x̂1 − 2DoD4 x̂o − 2D1D2 x̂1 − 2D1D3 x̂o

−2ξ̃Do x̂o − D2
1 x̂2 − D2

2 x̂o − α1(2x̂o x̂3 + 2x̂1 x̂2)− 3α2
(

x̂2
o x̂2 + x̂o x̂2

1
)

−4α3 x̂3
o x̂1 − α4 x̂5

o + K̃ cos(To + σT2)

(16)

where Dn
i = ∂n

dTi
n i = 1, 2, 3, 4; n is the order of the differentiation

The general solution of the first equation in Equation (16) is expressed as below:

x̂o = Â(T1,T2,T3,T4,)eiTo + Â(T1,T2,T3,T4,)e−iTo (17)

where Â is an unknown complex amplitude and Â is the complex conjugate of A.
Substituting Equation (17) into the second equation in Equation (16), we obtain the following:

D2
o x̂1 + x̂1 = −2D1 ÂeiTo i− α1

(
Â2e2iTo + 2ÂÂ + A2e−2iTo

)
+ 2D1 Âe−iTo i (18)

In order to obtain the periodic solution of Equation (18), imaginary terms in the right
side of Equation (18) must be zero. Namely,

D1 Â = 0; D1 Â = 0⇒ Â ∈ (T2, T3, T4) (19)

In the same way of the solution for ε1-order equation, from ε2, ε3, and ε4 order equa-
tions, we have:

2D2 Âi = 10α2
1 Â2 Â
3 − 3α2 Â2 Â; 2D2 Âi = − 10α2

1 ÂÂ
2

3 + 3α2 ÂÂ
2

2D3 Âi = 0

2D4 Âi = −2ξ̃ Ai +
(

10α2
1

6 −
3α2

2

)2
Â3 Â

2
− α1

(
26α1α2

12 − 1172α3
1

216 −
28α3

3

)
Â3 Â

2

−α2

(
1926α2

1
216 + 3α2

8

)
Â3 Â

2
− 56α1α3

3 Â3 Â
2
− 10α4 Â3 Â

2
+ K̃

2 eiσT2

(20)

The case in which the complex amplitude can be expressed as Â = 1
2 âeiβ, Â = 1

2 âe−iβ

with a and β are real, then separating the real and imaginary parts, the differential equation
for amplitude and frequency of Equations (19) and (20) are expressed as below:

D1 â = 0; âD1β = 0

D2 â = 0; âD2β = 3α2 â3

8 − 10α2
1 â3

24
D3 â = 0; âD3β = 0
D4 â = −ξ̃ â + 1

2 K̃ sin(σT2 − β)

âD4β = −
(

10α2
1

6 −
3α2

2

)2
1
25 â5 + α1

(
26α1α2

12 − 1172α3
1

216 −
28α3

3

)
1
25 â5

+α2

(
1926α2

1
216 + 3α2

8

)
1
25 â5 + 56α1α3

3
1
25 â5 + 10α4

25 â5 − 1
2 K̃ cos(σT2 − β)

(21)
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In addition, the differentiation of a and β with respect to dimensionless time τ is
presented as below:

â′ = da
dτ = εD1 â + ε2D2 â + ε3D3 â + ε4D4 â

β′ = dβ
dτ = εD1β + ε2D2β + ε3D3β + ε4D4β

(22)

From Equation (21), Equation (22) is rewritten as the following:

â′ = −ξ̃ε4 â + 1
2 ε4K̃ sin(σT2 − β)

âβ′ = 3α2
8 ε2 â3 − 10α2

1
24 ε2 â3 +

(
10α2

1
6 −

3α2
2

)2
1
25 ε4 â5

+ε4α1

(
26α1α2

12 − 1172α3
1

216 −
28α3

3

)
1
25 ε4 â5

+α2

(
1926α2

1
216 + 3α2

8

)
1
25 ε4 â5 + 56α1α3

3
1
25 ε4 â5

+ 10α4
25 ε4 â5 − ε4 K̃

2 cos(σT2 − β)

(23)

Recalling û = εx̂, and by letting γ = σT2 − β, Equation (23) is expressed with respect
to âu as below:

â′u = −ξ âu +
1
2 K sin γ

âuγ′ = âuσ− G(α1, α2)â3
u − F(α1, α2)â5

u +
K
2 cos γ

(24)

with âu = εa, G(α1, α2) =

(
3α2

8 −
10α2

1
24

)
;

F(α1, α2) =

 −
(

10α2
1

6 −
3α2

2

)2
1
25 + ε4α1

(
26α1α2

12 − 1172α3
1

216 −
28α3

3

)
1
25

+α2

(
1926α2

1
216 + 3α2

8

)
1
25 +

56α1α3
3

1
25 +

10α4
25

 (25)

The solution of Equation (13) is:

û = âu cos(Ωτ − γ) (26)

As the amplitude and phase are unchanged, the steady state motion will occur, mean-
ing that

1
2 K sin γ = ξ âu
K
2 cos γ = G(α1, α2)â3

u + F(α1, α2)â5
u − âuσ

(27)

The frequency–response relationship of Equation (14) is obtained as follows:

(ξ âu)
2 +

(
G(α1, α2)â3

u + F(α1, α2)â5
u − âuσ

)2
=

1
4

K2 (28)

From Equation (28), we have:

σ1,2 =
G(α1, α2)â3

u + F(α1, α2)â5
u ±

√
1
4 K2 − (ξ âu)

2

au
(29)

The peak amplitude (âup) and frequency (σp) are calculated as below:

âup = 1
2ξ K

σp =
G(α1,α2)â3

up+F(α1,α2)â5
up

aup

(30)
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Considering âuo&γo along with a set of steady state solutions and its neighborhood
are determined by introducing small variations âu1&γu1 as follows:

âu = âuo + âu1
γ = γuo + γu1

(31)

To accomplish the stable analysis, Equation (24) is rewritten as

â′uo = −ξ(âuo + âu1) +
1
2 K sin(γuo + γu1)

γ′ = σ− G(α1, α2)(âuo + âu1)
2 − F(α1, α2)(âuo + âu1)

4

+ K
2(âuo+âu1)

cos(γuo + γu1)
(32)

Based on Routh–Hurwitz criterion for nonlinear system, the stability of the steady
state solution depending on the eigenvalues λ is determined as below:∣∣∣∣∣ −ξ − λ G(α1, α2)â3

u + F(α1, α2)â5
u − âuσ

−2G(α1, α2)âuo − 4F(α1, α2)â3
uo − K

2â2
uo

cos γuo −ξ − λ

∣∣∣∣∣ = 0 (33)

The unstable region of the steady state motion above is obtained as follows:

ξ2 +

(
2G(α1, α2)âuo + 4F(α1, α2)â3

uo
+ K

2â2
uo

cos γuo

)(
G(α1, α2)â3

u + F(α1, α2)â5
u − âuσ

)
< 0 (34)

3.2. Transmissibility for Force Excitation

The case of the QZSPVI is subjected to a harmonic forcing excitation F = Fe cos(ω).
Through the LBM, SCM, and air damping, the force is transmitted to the base and can be
written in dimensionless form as below:

Ft = 2ξû′ + û +
5

∑
n=2

αnûn (35)

It reveals that the transmitted force depends on the velocity and position of the load
plate given in Equation (26). This force may be rewritten as:

F̂t = −2ξauΩ sin(Ωτ − γ) +

(
âu +

3α3 â3
u

4
+

7α5 â5
u

8

)
cos(Ωτ − γ) (36)

The maximum force is transmitted to the base, being:

F̂tmax =

√
(−2ξ âuΩ)2 +

(
âu +

3α3 â3
u

4
+

7α5 â5
u

8

)2

(37)

The transmissibility for forcing excitation is defined as below:∣∣∣∣TF

∣∣∣∣= ∣∣∣∣ F̂tmax

F̂e

∣∣∣∣ (38)

herein from Equation (4), the non-dimensional magnitude of the excited force F̂e = 1

4. Numerical Simulation
4.1. Influence of Parameters on the Force Transmitted Curve

In this section, the effects of the pressure ratio and volume of auxiliary tank on the force
transmissibility of the QZSPVI are investigated. Firstly, the pressure ratio will be studied. Mean-
while, a set of parameters of the isolation system comprising of ξ = 0.1; Â = 0.16; V̂t = 13.153;
Ĥo = 0.53 is given, simultaneously at the equilibrium position, the pressure Pep1 of the LBM is
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set at the value of 1.85 bar, for which the weight of the isolated load is 122.41 kg. As observed in
Figure 8, the dynamic stiffness (denoted by the solid line) of the QZSPVI for various values of µ
within 1.350 to 1.377 is always smaller than that of the EPVI (exhibited by the dashed line) when
the position of the load plate is in the working region (|û| < Ĥo). Especially, when µ = 1.379, the
minimum stiffness of the QZSPVI is nearly equal to zero and it will be increased according to reduc-
tion in the pressure ratio. The result is the force transmitted curves shown in Figure 9 (the detailed
annotation of the type of lines and the chosen values of µ are presented in the left-upper corner
panel of the figure). It can be argued that the nonlinearity of the proposed model bends the force
transmitted curves to the left or the right depending on the pressure ratio. In the case of µ = 1.379,
the curve is bent to the left, indicating that this is the case of the soft nonlinear system. Reducing
the pressure ratio will lead to reducing the soft nonlinearity to become the hard nonlinearity. As
observed, the amplitude–frequency curve is bent to the right for µ = 1.370. However, the bending
level of the response curve to the right may be lessened as there is a lessening in the pressure ratio
such as µ = 1.360, µ = 1.350, and even trends no bending for µ = 0, as shown in Figure 9. This
is evident because the pressure of the stiffness corrected mechanism will be reduced according
to the reduction in the value of µ, meaning that the effects of this mechanism on the dynamic
stiffness of the QZSPVI become light, and hence, the peak amplitude is increased. Furthermore, the
increase of the pressure ratio will broaden the isolation region of the hardening system toward the
low frequency as plotted in Figure 10. On the other hand, the comparison between the proposed
system with the EPVI in which the SCM is removed is shown in Figure 10. It is noteworthy to
observe that the suppression of the force transmissibility from the load plate to the base of the
QZSPVI is better than the EPVI, meaning that isolation region and vibration attenuated ratio of the
former is larger than those of the latter.

Figure 8. The stiffness curve of the QZSPVI for ξ = 0.1; Â = 0.16; V̂t = 13.153; Ĥo = 0.53, Pe1 = 1.85
bar, and different values of µ.

Figure 9. Force transmissibility of the QZSPVI for various values of µ and the same other parameters
as in Figure 8 (the details of types of lines are presented in panel).
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Figure 10. Comparing force transmissibility of the QZSPVI and EPVI for various values of µ and the
same other parameters as in Figure 8 (the details of types of lines are presented in panel).

As analyzed above, the amplitude–frequency response of the proposed system can
be soft or hard depending on the peak frequency σp. Indeed, this value is negative corre-
sponding to the response curve bending to the left. Contrastingly, the bending to the right
appeared for the positive value of σp. Figure 11 shows the influence of the pressure ratio on
the peak frequency of the QZSPVI for the same parameters as in Figure 8. It is interesting
to see that if the pressure ratio is larger than 1.376, the value of σp is negative, indicating
that the response curve is bent to the left as confirmed in Figure 9. Meanwhile, the bending
of the curve to the right occurred for µ < 1.376 due to σp > 0.

Secondly, the dimensionless volume of the auxiliary tank of the load-bearing mech-
anism is set at the values 7.892; 14.460; 18.814; 24.992; 39.453; 47.358, while the other
values for the pressure ratio are the same as in the first case. In this case, the pressure
ratio is calculated through Equation (8) as shown in Figure 12 for which in the working
region, the minimum stiffness of the QZSPVI will be nearly equal to zero, as depicted in
Figure 13. It is noteworthy to see that the asymmetry of the system around the equilib-
rium position is reduced according to the increase in the volume of the auxiliary tank,
indicating that the position at which the dynamic stiffness is quasi-zero moves towards the
equilibrium position.

Figure 11. Effect of the pressure ratio on the peak frequency σp of the QZSPVI for the same parameters
as in Figure 8.
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Figure 12. The relation of pressure ratio versus the auxiliary tank volume, the same other parameters
as in the first case.

Figure 13. The dynamic stiffness curve of the QZSPVI for the different values of the auxiliary tank
volume as annotated in Figure. Meanwhile, the pressure ratio is calculated as in Figure 9.

In this case, the peak frequency and amplitude curve, with respect to the tank volume
of the QZSPVI having the dynamic stiffness curves shown in Figure 13, is presented in
Figure 14. It can be seen that if the dimensionless volume of the auxiliary tank is larger
than 21.24 and smaller than 43.85 the value of σp is positive, but this value is negative
because the volume of auxiliary tank is out of this range, as shown in Figure 14a. Besides,
increasing the tank volume will lead to a lessening in the peak amplitude as observed in
Figure 14b, while this may have no appearance in the peak frequency. For instance, with
V̂t = 13.5 the value of σp is around −10.5, but if V̂t = 13.6, this value is nearly equal to −21.
Furthermore, as the dimensionless volume of the auxiliary tank is changed from 43.83 (at
point A) to 43.88 (at point B), the value of σp is changed suddenly from positive to negative.
Simultaneously, the peak amplitude is decreased remarkably. In addition, it is essential
to note that increasing the auxiliary tank volume will extend the region isolation toward
low frequency, as shown in Figure 15. This indicates that improving the symmetry of the
stiffness curve will increase the effectiveness of suppressing the force transmissibility from
the load plate to the base.
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Figure 14. The peak frequency curve (a) and peak amplitude curve (b) of the QZSPVI for the same
parameters as in Figure 13.

Figure 15. Force transmissibility of the QZSPVI for various values of V̂t including 7.89; 14.46, 18.41,
24.99, 39.45, and the same other parameters as in Figure 14 (The annotation of line types indicated in
panel of figure).
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The effect of nonlinearity in dynamic characteristic, the amplitude–frequency curve,
can be bent as analyzed above, which indicates the appearance of the down (JD) and up (JU)
jump frequency as expressed in Figure 16. Herein, the values of µ and V̂t are given in the
right-top corner panel, and the other parameters are the same as in Figure 13. The points on
the response curve lying between JD and JU are unstable solutions because these points are
in the unstable region calculated by Equation (34). When the down jump frequency which
is also the peak frequency σp moves closely to zero, the phenomenon of the frequency jump
may be neglected, meaning that all points on the amplitude–frequency curve are stable as
numerically simulated by the dashed line in Figure 16. Likewise, the stable branches of
the proposed model with various values of µ and V̂t are denoted in Figures 10 and 15. The
detailed annotation for line types is presented in the lower-left and upper-left corner of
Figures 10 and 15, respectively.

Figure 16. The stability of the response curve.

4.2. Complex Dynamic Response

Because of the nonlinear dynamic characteristic, as well as the existence of the relative
sliding between the piston and cylinder, analyzing the complex behavior of the proposed
system is needed. First of all, the sliding friction model (Fsf) given by Armstrong 1991 [34]
is presented as the following:

Fs f = Fc + (Fs − Fc)e−(v/vs)
ns
+ σv (39)

in which Fc is the Coulomb friction force, Fs is the static friction force, vs. is the Stribeck
velocity, v is the relative velocity between two contacting surfaces, σ is the viscous friction
coefficient, and ns is the exponent of the Stribeck curve.

In order to identify parameters of the friction model of a cylinder, instead of experi-
menting, a virtual model of a cylinder shown in Figure 17 is built through AMEsim software.
This method ensures the accuracy and reduces the time because the environment of a virtual
model is similar to an actual model. For instance, the heat exchange exists between the air
in the cylinder and surrounding environment, the dead volume of the cylinder, frictional
phenomenon, etc. Herein, the cylinder used for identification has the piston diameter of
80 mm, rod diameter of 32 mm, stroke length of 300 mm, and the dead volume at two ends
of 50 cm3, whilst the parameters for simulation are given in Table 1. During the simulated
process, the cylinder is fixed, meanwhile the speed of load attached at the end of the rod is
controlled to track the constant value through introducing a PID controller. Simultaneously,
its acceleration is measured by an accelerometer. In this identification, the frictional force
between the cylinder and piston is not measured directly, and it is calculated as follows:

Fs f =

{
F1 − F2 − Fe f for Extending
F2 − F1 − Fe f for Retracting

(40)
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Figure 17. Virtual test-rig of pneumatic cylinder.

In this calculation, due to constant velocity, the inertia force is ignored, Fef is the
external force, F1 = P1A and F2 = P2(A − a) in which A, a are the areas of the piston and rod,
P1 and P2 are the air pressure in chamber as denoted in Figure 17, which are measured by
two pressure sensors.

Table 1. Parameters for simulation.

Parameter Original Value

Atmosphere pressure 1 bar
Specific heat ratio 1.4

Thermal exchange coefficient 500 J/mm2/K/s
External temperature 293.15 K

External force 100 N
Source pressure 5 bar
Velocity of load 0.003; 0.006; 0.01; 0.015; 0.02; 0.03; 0.05; 0.1; 0.15; 0.2; 0.25 m/s

Then, genetic algorithms, including three operations—reproduction, crossover, and
mutation, as shown in Figure 18, are employed to determine optimal values of the friction
model given in Equation (39). This work aims to minimize the cost function expressed
by Equation (41). As observed in Figure 19, after 30 iterations, the cost function con-
verges to zero.

J =
1
2∑

(
Fi

ms f
− Fi

s f

)2
(41)

in which Fmsf is the friction force measured at ith constant velocity, and Fsf is the friction
force calculated by Equation (40). The best values of the friction model are given in Table 2.



Appl. Sci. 2022, 12, 2378 19 of 25

Figure 18. Low chart of the genetic algorithm.

Figure 19. The value of cost function with respect to iteration.

Table 2. Values of friction force model.

Parameter Extending Retracting

Fc 4.338 −3.904
Fs 11.655 −9.906
vs 0.4961 −0.372
σ 23.7 23.356
n 0.681 0.681
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Figure 20 shows the friction force characteristic of the pneumatic cylinder model in
which the solid line denotes the identified curve for extending stroke, whilst the reverse
stroke, that is the retracting, is exhibited by the dashed line. It is noteworthy to see that
the identified results match well with the simulated ones marked by the square and circle
points according to the extending and retracting stroke, respectively. The friction force in
the extending stroke is larger than the retracting one.

Figure 20. Steady-state friction force characteristic.

Accordingly, the dynamic equation of the system is rewritten as below:

M
..
u + C

.
u = 2Fs − 2Fs f 1sign(

.
u) tan α

+2Fs f 2sign(u
.
u) u√

(R+r)2−u2
−Mg + Fe cos(ωt) (42)

where Fsf1 and Fsf2 are calculated by Equation (39), and Fs is determined by Equation (1).
First of all, the amplitude–frequency curves obtained by multi-scale method and

fourth-order Runge–Kutta algorithm are compared, as shown in Figure 21. Herein, the
frequency of the excited force is swept up slowly from 0 to 10 Rad/s (denoted by the
dashed line). In contract to slowly reducing the frequency of 10 Rad/s to 0, the amplitude–
frequency curve is exhibited by the dot line. It can be seen that although the down jump
point has a difference between two methods due to approximate error and exiting sliding
friction between the piston and cylinder, two curves are still in good agreement.

Figure 21. Multi-scale method compared with numerical integration.

Next, the complex behavior of the proposed system will be investigated through the
numerical integration for Equation (42) using a fourth-order Runge–Kutta algorithm with
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various initial conditions, including velocity and position. The bifurcation diagram of
Equation (42) for V̂t = 7.89, µ = 1.834, ω changed from 1 to 10 rad/s and the same other
parameters as in Figure 8. The value of û is determined by using Poincare map with the
period T = 2π/ω. The simulated result is plotted in Figure 22, showing that if the initial
condition is zero for both of the position and velocity, the dynamic response of the system
(denoted by filled circles) will be period-2 oscillation as the excited frequency is within
2.2–2.6 rad/s. However, out of this range the solution is period-1 periodic. Meanwhile, the
response marked by squares is realized by sweeping the parameter ω from 1 to 10 rad/s,
for which the initial position and velocity are set at zero only for the first parameter ω and
the final state of the system will be considered as the initial condition for the next value
of ω. In this case, the oscillation transformed from period-1 to period-3 periodic occurred
with ω around of 4 and 8 rad/s. Hence, it revealed from this figure that depending on the
initial condition, the dynamic response of the system can be bifurcated at A (1.9 rad/s),
B (2.8 rad/s), and C (4 rad/s), meaning that in the parameter ω < 1.9, only a period-1
solution exists, but 1.9 < ω < 2.8 two cases for two period-1 or period-2 solutions may
appear. However, if the parameter is within B and C, there are two cases for period-1
periodic oscillation, and after C the dynamic behavior of the system can be a period-1 or
period-3 solution.

Furthermore, in order to obtain the solution of the dynamic response, the family of
the initial conditions named the attractor–basin phase portrait affecting on the dynamic
response will be detected in the three cases following. In the first study case, the parameter
ω is taken account into at value of 2.4 rad/s, while other parameters are simultaneously
set as in Figure 22. As shown in Figure 22, it can be seen that the period-1 or period-2
solution may exist depending on the initial condition. It is interesting to see that in the
attraction basin depicted in Figure 23, the attractor region of the period-1 oscillation is
greater than that of the period-2 one. This means that the ability to obtain period-1 steady
dynamic response is higher. Additionally, the vibration ability of the period-1 oscillation
plotted in Figure 24b is higher than that of period-2 one depicted in Figure 24a, in which
the initial position and velocity of the first solution is zero but the second one is obtained
for uo = 20 mm and

.
uo = 0.2 m/s, meanwhile, the fixed points calculated by Poincare

section are annotated by filled circles.

Figure 22. Bifurcation diagram of Equation (42) for V̂t = 7.89, µ = 1.834, ω changed from 1 to 10 rad/s
and the same.
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Figure 23. Attractor–basin phase portrait for ω = 2.4 rad/s, other parameters set as in Figure 22.

Figure 24. Phase orbit of Equation (42) for ω = 2.4 rad/s and uo = 0 and
.
uo = 0(a) uo = 20 mm and

.
uo = 0.2 m/s (b).

In the second study case, suppose that ω = 6 rad/s and other parameters are not
changed. In this case, the dynamic response of the QZSPVI can be period-1 or period-
3 solution. As depicted in Figure 25, the possibility of appearing in the period-1 steady
response is reduced because the region of attractors for which the period-1 solution occurred
is narrower than that in the first case. Furthermore, in this case as shown in Figure 26
(the detailed annotation of line types is presented in right-top corner panel of each figure),
the vibration level of the period-1 solution (Figure 26b) is lower than that of the period-3
one (Figure 26a). Both solutions also revealed that the vibration of the system occurs at a
position which drifted away from the equilibrium position (u = 0).

Figure 25. Attraction basin for ω = 6 rad/s and the same for other parameters as in Figure 22.
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Figure 26. The phase orbits of the system for V̂t = 7.89; 26.30 and uo = −20 mm and
.
uo = −0.05 m/s

(a); uo = 0 and
.
uo = 0 (b).

In the third study case, the dimensionless volume of the auxiliary tank is increased to
the value of 26.30, but other parameters and frequency are the same as in the second case.
To guarantee that the minimum stiffness is nearly zero, the pressure ratio is calculated at a
value of 0.997. The result is that the area of the period-1 solution is expanded compared
with the second case, as shown in Figure 27. Similar to the second case, the amplitude and
velocity of the period-1 solution are reduced compared with the period-3 oscillation as
shown in Figure 26 in which the phase orbits are drawn by the dashed line. Meanwhile,
the fixed point is annotated by squares. This case confirms that the position at which the
load plate oscillates around was moved to the equilibrium position.

Figure 27. Attraction basin for ω = 6rad/s, µ = 0.997, and V̂t = 26.30, the same other parameters as in
Figure 22.

5. Conclusions

A pneumatic vibration isolation model with quasi-zero stiffness characteristic was
studied and analyzed in this paper. The dynamic stiffness of the QZSPVI was determined
and numerically calculated. Analysis results indicated that the stiffness curve is asym-
metrical around the equilibrium position and its asymmetry may be reduced according
to the increase in the volume of the auxiliary tank. The condition for which the minimum
stiffness obtains quasi-zero value was analyzed. Besides, the expected working region in
which the pressure in the stiffness correction mechanism is always positive was obtained.
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The spring force curve was approximated through expanding Taylor series to order-5. By
using multi-scale methods, the force transmissibility of the QZSPVI was then analyzed in
detail, showing that the transmitted curve may be bent to the left or the right depending on
the auxiliary tank volume and the pressure ratio. Furthermore, the stability of the analysis
response was also studied.

In addition, parameter bifurcation analysis of the QZSPVI had been realized through
numerical integration from the original dynamic equation. Simultaneously, fixed points
had been also calculated by using a Poincare map. The result proved that the system could
occur in period-1, period-2, or period-3 of oscillation depending on the initial conditions.
Under given excited frequencies, the attractor–basin phase portrait had been detected.

From these analysis results, we confirmed that the lower the stiffness, the larger the
isolation region toward the low frequency. The bigger the volume of the tank is, the higher
isolation effectiveness is. Additionally, the basin of initial conditions to occur in the non-
resonance solution is extended according to reduction in the stiffness. This model can
be applied effectively in the field of low frequency vibration isolation system, having a
high isolated load such as platform for vibration sensitive instruments, an isolated seat for
vehicles, mount of engine, and so forth.
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