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Abstract: In this paper, we offer a numerical study on heated non-Newtonian fluid with a Newtonian
heating effect towards thermally stable stretching surfaces. A comparative analysis for two stretched
surfaces, namely, plate and cylinder, is offered. The Casson fluid model is considered to be a non-
Newtonian fluid model. By applying the suitable set of transformations, the non-linear coupled PDEs
are transformed into non-linear ODEs. It is difficult to obtain the exact solution of such non-linear
differential equations; therefore, we used the shooting method along with Runge–Kutta scheme.
The influence of pertinent flow variables on velocity and temperature is presented through graphs.
Notably from the results, heat generation parameters, Newtonian heating, and magnetic parameters
enhanced the temperature profile, whereas Casson fluid and magnetic field parameters reduced the
fluid velocity. It is also observed that increases in fluid temperature were more influenced at the
cylindrical surface as compared with the flat plate. Moreover, we obtained remarkable results for
the heat transfer rate by imposing Newtonian heating conditions at the surface; tables are used to
present variations in the skin friction coefficient and Nusselt number at the thermally stable surfaces.

Keywords: Newtonian heating; heat sink/source; cylindrical/flat surface; shooting method; MHD

1. Introduction

Analysis of heat transfer phenomena in fluid mechanics has showed that it has a vital
role in many engineering and technological processes, such as glass fiber manufacturing,
plastic sheeting, and food processing, to name a few. Heat transfer mechanisms have appli-
cable uses in our daily life, through conduction, convection, and radiation. Particularly, heat
transfer analysis in Newtonian and non-Newtonian fluid models has gained great interest
from many researchers in recent years, due to their wide range of applications in industry.
Mostly, scientists have focused on the study of the boundary layer flow of both fluid models
and the heat transfer analysis by including linear, nonlinear, exponential, hyperbolic, and
cylindrical stretching surfaces; Crane [1], for instance, introduced the concept of a boundary
layer towards stretching sheet taking with linear velocity. He also obtained an exact solution
for the flow equation in this problem. Gupta and Gupta [2] presented a heat transfer study
along with mass transfer aspects subject to stretching sheets, having applications in polymer
processing. The temperature distribution in a viscous incompressible fluid flow induced
by the stretching of a sheet that emerges through a slit into the stream was investigated
by Dutta et al. [3]. The sheet velocity was proportional to its distance from the slit, and
it was subjected to a constant heat flux. It was discovered that when the Prandtl number
rises, the temperature at a given location falls. The temperature of the stretched sheet is
calculated for multiple Prandtl numbers for a given surface heat flow. The heat transfer
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happening in the laminar boundary layer on a linearly stretched, continuous surface sub-
jected to suction or blowing was investigated by Char [4]. Two scenarios were considered:
a sheet with a predetermined wall temperature, and a sheet with a predetermined heat
flux. Kummer’s functions were used to express the findings. The answers were reduced
to the reported findings under certain circumstances. Additionally, the findings of an
impermeable stretched plate with varying wall heat flux were acquired. Finally, the impacts
of the Prandtl number, the suction or blowing parameter, the temperature parameter, and
the heat flux parameter on the temperature distribution were thoroughly studied. The flow
and heat transfer properties of a viscous fluid across a nonlinearly extending sheet were
investigated by Vajravalu [5]. The flow and heat transfer equations of the conservation of
momentum, mass, and energy were partially decoupled using a similarity transformation
that was distinct from the linearly stretched sheet issue. Using a fourth-order Runge–Kutta
integration strategy, the fundamental nonlinear differential equation for the velocity field
and the differential equation with a variable coefficient for the temperature field were
numerically solved. A table and graphs were used to display the numerical data for the
flow and heat transfer characteristics. Furthermore, it was demonstrated that heat flowed
from the stretched sheet to the fluid at all times. Radiation influences on the boundary
layer flow and heat transfer of a viscous fluid across an exponentially stretched sheet
were investigated by Sajid and Hayat [6]. The convergent series expressions of velocity
and temperature were determined using the homotopy analysis method (HAM). Graphs
were used to lend a physical explanation to these expressions. The effects of Prandtl and
radiation numbers on temperature were discovered to be diametrically opposed. The
problem of laminar fluid flow in a nanofluid caused by the stretching of a flat surface was
quantitatively studied by Khan and Pop [7]. This is the first paper on nanofluid stretching
sheets. The Brownian motion and thermophoresis effects are accounted for in the nanofluid
model. The Prandtl number, Lewis number, Brownian motion number, and thermophoresis
number all play a role in the similarity solution. Tables and graphs were used to show
the variance in the reduced Nusselt and reduced Sherwood values. The reduced Nus-
selt number was discovered to be a decreasing function of each dimensionless number,
but the reduced Sherwood number was found to be an increasing function of the higher
Prandtl number. In addition, heat transfer in non-Newtonian fluids is also acknowledged
by researchers, such as the boundary layer flow of Sisko fluid across a stretched cylinder,
which was investigated by Malik et al. [8]. In heat transmission, the combined effects of
variable thermal conductivity and viscous dissipation were postulated. Using appropriate
transformations, the modeled boundary layer partial differential equations were trans-
formed into ordinary differential equations. The Runge–Kutta–Fehlberg technique was
used to numerically solve these nonlinear ordinary differential equations. By comparing
the computed findings with those in the available literature, the correctness of the results
was confirmed. Graphs were created to analyze the impact of flow parameters on velocity
and temperature profiles. The impact of all physical factors on the skin friction coefficient
and local Nusselt number was examined in tabular and graphical form. The numerical
solution of mixed convection tangent hyperbolic fluid flow towards stretched cylindrical
surface with heat transfer issues was the focus of Rehman et al. [9]. The fluid flow was
achieved by ensuring that there was no slippage. Partial differential equations were used
to simulate the flow regime features. Partial differential equations were transformed into
linked non-linear ordinary differential equations via a similarity transformation. To forecast
numerical results, a computer approach was used. The effects of flow control factors such as
mixed convection, thermal stratification, and solutal stratification on velocity, temperature,
and concentration were investigated and the graphical results are shown. The influence
of non-linear surface radiation on Casson-dusty particle suspension flow across a vertical
wavy cone was investigated by Siddiqa et al. [10] as a heat transfer boundary layer analysis.
To represent the contribution of surface radiative heat flow, the Stefan–Boltzmann law was
used in the boundary conditions. To change the governing equations into non-dimensional,
non-conserved form, appropriate sets of transformations were utilized; then, a numerical
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approach was used to acquire the solutions. The numerical findings were shown visually
as a function of non-dimensional parameters. The results were compared with those found
in the literature, and they were found to be in good agreement. The effects of non-linear ra-
diation on heat transmission in MHD Casson nanofluid along a thin needle were examined
by Souayeh et al. [11]. The issue was theoretically simulated, with the thermo-diffuso and
diffuso-thermo effects taken into consideration. There were two sorts of surfaces treated
here: fixed needle and moving needle. Using similarity variables, the Prandtl boundary
layer equations were encapsulated and numerically solved. The effects of various material
properties on momentum, temperature, and species concentration, as well as values relating
to engineering considerations such as the skin friction coefficient, rate of energy transfer,
and Sherwood number, were calculated and graphed. We assessed recent attempts on
heat transfer development in Newtonian and non-Newtonian fluid models with various
physical effects in [12–30].

Notably, individual studies on flat and cylindrical surfaces are reported on Casson
fluid flow with various physical effects, and it seems difficult to conclude the compari-
son because of different solution techniques and assumptions. Therefore, in this study,
we offer a comparative analysis of Casson fluid flow over both plate and cylindrical sur-
faces with the presence of a Newtonian heating effect. More specifically, we consider a
simultaneous magnetized convective flow of Casson fluid over the two different heated
stretching surfaces. The Runge–Kutta scheme with a shooting approach was used to solve
the altered governing equations numerically. The computations were performed using
MATLAB software. Furthermore, graphs were also used to illustrate the impact of emerg-
ing parameters on velocity and fluid temperature. Moreover, the numerical results are
displayed in tabular form of heat transfer rate and skin friction for plate and cylindrical
surfaces. One can extend the idea to study the numerous non-Newtonian fluid models
having engineering standpoints.

2. Mathematical Formulation

We considered the two-dimensional convective flow of non-Newtonian fluid past
a stretching cylinder. The Casson fluid model is taken in this case as a non-Newtonian
fluid. The magnetic field B0 is induced along the radial direction of the cylinder. Moreover,
the Newtonian heating condition is also imposed at the surface. We assumed that the
temperature at the cylindrical surface was higher than the temperature outside the surface
(i.e., ambient temperature), where T > T∞. The geometry of problem is given in Figure 1.
For viscous cases, the basic conservation equations, continuity, momentum, and thermal
energy are taken as.

div V= 0, (1)

ρ
DV
Dt

=
→
∇.T + µ

→
∇2V + J× B, (2)

ρcp
dT
dt

= K1∇
2T. (3)

With the following assumptions:

• For axisymmetric flow, there is no tangential velocity (uθ = 0);
• Taking velocity field as V = [v(x, r), 0, u(x, r)];
• Approximation of the boundary layer is incorporated here; accordingly, the pressure

gradient is zero along the flow p = p0, and variation in velocity along the radial direc-
tion is much smaller than in the axial direction, and the scale analysis for momentum
equation with boundary layer theory is defined as: u� v, ∂u

∂r >> ∂u
∂x , ∂v

∂x , ∂v
∂r ⇒

∂p
∂r = 0.
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Figure 1. Geometry of the problem.

By using all the above assumptions and approximation, Equations (1)–(3), with the
assumption of Casson fluid, can be reduced to the following component form:

∂(r u)
∂x

+
∂(r v)

∂r
= 0, (4)

u
∂u
∂x

+ v
∂u
∂r

= υ

(
1 +

1
β

)(
∂2u
∂r2 +

1
r

∂u
∂r

)
− σ

B0
2

ρ
u + gβ∗T(T − T∞), (5)

u
∂T
∂x

+ v
∂T
∂r

=
K1

ρcp

(
∂2T
∂r2 +

1
r

∂T
∂r

)
+

Q0

ρcp
(T − T∞). (6)

Here, u is the xcomponent of velocity and v is the rcomponents of velocity taken
along axial direction and radial direction, respectively, υ denotes the kinematic viscos-
ity, σ indicates electric conductivity, and ρ is the fluid density. B0 represents the mag-
netic field constant, g is used for the gravitational acceleration, Q0 represents the heat
generation/absorption coefficient, and β∗T indicates the thermal expansion coefficient.
β, T, T∞ represent the Casson fluid parameter, surface temperature, and ambient tempera-
ture, respectively.

The BCs for the considered model are:

u = uw = U0x
L , v = 0, ∂T

∂r = −hsT, at r = R,

u→ 0, T → ∞, as r → ∞,
(7)

where u(x) = U0x
L is the linear velocity of the stretching cylinder, U0 denotes the reference

velocity, L is referred to as the characteristic length, hs indicates the heat transfer coefficient,
and R represents the radius of the cylinder.

The relationship of the stream function ψ with the velocity components is defined as:

u =
1
r

∂ψ

∂r
, v = −1

r
∂ψ

∂x
, (8)

Now, to transform governing Equations (4)–(6) into nonlinear ODEs, we introduced
suitable set of transformations [31], defined as:

u(x) = U0x
L f ′(η), v = − R

r

√
U0υ

L f (η),

η = r2−R2

2R
(U0

υL )
1
2 , θ(η) = T−T∞

T∞
,

(9)

where f (η) and θ(η) represent the dimensionless velocity and temperature, respectively.
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Thus, the continuity Equation (4) is satisfied identically. By inserting Equation (9) into
Equations (5) and (6), we obtained:

f f ′′ − ( f ′)2
+

(
1 +

1
β

)
[(1 + 2Kη) f ′′′ + 2K f ′′ ] + λθ − γ2 f ′ = 0, (10)

(1 + 2Kη)θ′′ + 2Kθ′ + Pr( f θ′ + Hpθ) = 0. (11)

Boundary conditions are transformed as:

f (0) = 0, f ′(0) = 1, θ′(0) = −γ1[1 + θ(0)] , (12)

f ′(∞)→ 0, θ(∞)→ 0. (13)

Here, K, λ, Pr, γ, Gr, γ1, and Hp denote the curvature parameter, mixed convection
parameter, Prandtl number, magnetic field parameter, Grashof number, Newtonian heating
parameter, and heat generation/absorption parameters, respectively. The mathematical
relations for such involved parameters are:

K = 1
R

√
υL
U0

, λ = Gr
Re2

x
, Pr = υcp

K1
, γ =

√
σB2

0L
ρU0

,

Gr =
gβ∗T T∞x3

υ2 , γ1 = hs(
√

υL
U0

), Hp = LQ0
U0ρcp

,
(14)

Skin friction is the physical quantity that occurs when a fluid exerts a friction drag on
a surface; this drag force is referred to as skin friction. It is described as:

Ĉ f =
2τw

ρU2 , (15)

where Ĉ f is the skin friction and τw is the shear stress, which is directly proportional to the
velocity gradient at the surface (r = R). It is defined as:

τw = µ

(
1 +

1
β

)(
∂u
∂r

)
r=R

. (16)

A physical quantity that calculates the rate of heat transfer at the surface is defined as:

N̂ux =
xqw

K1(T − T∞)
, (17)

where N̂ux denotes Nusselt number, qw heat flux at the surface, which is proportional to
temperature gradient at surface (r = R). It is expressed as follows:

qw = −K1

(
∂T
∂r

)
r=R

. (18)

By use of transformations, the dimensionless form of these quantities are:

1
2

Ĉ f Rex
1/2 = (1 +

1
β
) f ′′ (0), (19)

N̂uxRex
−1/2 = −θ′(0). (20)

3. Numerical Scheme

The reduced equations for the fluid flow over the stretching cylinder are non-linear
and highly coupled in nature. An analytical solution of these equations is difficult to find.
To derive an approximate solution to the problem, a numerical technique is used: the
shooting method with the Runge–Kutta fourth-fifth algorithm. For implementation of
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shooting method, one should convert the boundary value problem into the initial value
problem. The reduce initial value problem is further converted into a system of first-order
differential equations and then solved by choosing missing conditions as an initial guess.
Therefore, the suitable transformations are used to obtained initial value problem. Here,
the first-order differential system is obtained by the following procedure:

f = m1, d f
dη = f ′ = m′1 = m2, d2 f

dη2 = f ′′ = m2
′ = m3,

d3 f
dη3 = f ′′′ = m3

′, θ = m4,
dθ
dη = θ′ = m4

′ = m5.
(21)

After putting the set of Equation (21) into Equations (10)–(13), we have:

dm1
dη = m1

′ = m2,

dm2
dη = m2

′ = m3,

dm3
dη = m3

′ =
(m2)

2−m1m3−(1+ 1
β )2Km3−λm4+γ2m2

(1+ 1
β )(1+2Kη)

,

dm4
dη = m4

′ = m5,
dm5
dη = m5

′ = −2Km5−Pr(m1m5+Hpm4)
(1+2Kη)

.

(22)

The corresponding BCs as follows:

m1(0) = 0,

m2(0) = 1,

m3(0) = U1

m4(0) = θ(0) = U2

m5(0) = −γ1(U2 + 1).

(23)

To solve the above system of Equation (22), the values of U1 and U2 are unknown;
therefore, by taking a suitable initial guess, the convergent numerical solution is obtained.
It is important to note that if the boundary residuals are less than the tolerance error 10−6,
the calculated solution converges. If the computed results do not satisfy this requirement,
the initial estimates are changed using Newton’s technique, and the procedure is repeated
until the solution fulfills the specified convergence threshold.

4. Results and Discussion

In this study, Casson fluid, as a non-Newtonian fluid model, is considered simultane-
ously over stretched flat and cylindrical surfaces. The mixed convection, magnetic field,
heat generation, heat absorption, and Newtonian heating are the physical effects assessed
in this analysis. The mathematical modeling resulted with the following physical parame-
ters: the Casson fluid parameter β, curvature parameter K, mixed convection parameter λ,
magnetic parameter γ, Newtonian heating parameter γ1, and heat generation/absorption
parameter Hp. The numerical observations are concluded in terms of line graphs.

These figures have been plotted to examine the Casson fluid flow over a plate (zero
curvature) and cylindrical surface (non-zero curvature). Mathematically, K = 0 denotes
the flat surface, and K = 0.5 denotes the cylindrical surface. Figure 2 indicates the impact
of the Casson fluid parameter β on the velocity profile f ′(η) over a stretched cylindrical
surface. It is observed that the increments in parameter β = 0.1, 0.3 and 0.7 cause declines
in fluid velocity. By physically increasing the Casson fluid parameter, the viscosity of fluid
increases, and as a result, the fluid becomes more viscous, and consequently, the velocity
reduces significantly.

The impact of parameter K on velocity f ′(η) over a cylindrical surface is depicted in
Figure 3. It is evident from the figure that increments in parameter K = 0.1, 0.3 and 0.7 lead
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to an increase in fluid velocity, and an increase in the thickness of the boundary layer is also
observed. Here, higher values in the curvature parameter reduce the radius of curvature;
hence, Casson fluid particles have less interaction with the stretched surface. Such reduced
interactions will offer less resistance to fluid particles, and as a result, the velocity shows a
higher magnitude.

Figure 2. Effect of β on f ′(η).

Figure 3. Effect of K on f ′(η).
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Figure 4 shows that the rising value of the magnetic field parameter γ = 0.1, 0.5 and 0.9
causes a reduction in the magnitude of fluid velocity f ′(η), for both the stretched plate and
cylindrical cases. This is due to the resistive force, named Lorentz force, which is enhanced
when the magnetic field parameter is increased. This force offers resistance to the fluid
flow, and consequently, velocity reduces. It is also observed that for the flow field over
a cylindrical surface, the velocity magnitude is higher in strength as compared with the
velocity of fluid over a flat surface. Figures 5–11 illustrate the effects of physical parameters
on temperature θ(η). Figure 5 reveals that fluid temperature θ(η) rises for increments in
curvature parameter K = 0.1, 0.3 and 0.7. This is because we noticed that for higher values
of curvature parameter, the contact surface area reduces, and the resistance offered by the
cylindrical surface reduces. This leads to an increase in the velocity of particles. The kinetic
energy has a direct impact on the higher velocity. The higher velocity corresponds to a
larger kinetic energy. The large value of average velocity results in higher temperature.

The impacts of Prandtl numbers Pr = 1.2, 1.4 and 1.6 on the temperature profile for the
plate and cylinder is presented in Figure 6. It is evident from the figure that variation in the
Prandtl number causes a reduction in fluid temperature θ(η), and a decline in the thermal
boundary layer thickness is also observed for both the plate and cylinder. Here, the higher
value of the Prandtl number causes a reduction in the thermal conductivity of fluid, and
hence, the temperature profile for both the cylindrical and flat surface reduces significantly.
It is observed from Figure 7 that increments in values of the parameter γ = 0.1, 0.7 and 1.0
render an increase in temperature θ(η). When the magnetic field increases, the Lorentz
force increases. The resistance offered by the magnetic field causes particles to produce
heat energy as a result, and the temperature for fluid flow over a flat and cylindrical
surface increases. The impact of the Newtonian heating parameter γ1 on temperature
profile is illustrated in Figure 8 for both flat and cylindrical surfaces. We observed that the
Newtonian heating parameter has a direct impact on the temperature profile. Furthermore,
it is seen that the magnitude of the temperature profile is higher for cylindrical surfaces as
compared with a flat plate for increasing values of the parameter γ1. Newtonian heating
enhances the fluid temperature for both surfaces.

Figure 4. Effect of γ on f ′(η) for plate/cylinder.
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Figure 5. Effect of K on θ(η).

Figure 6. Effect of Pr on θ(η) for plate/cylinder.

Figures 9 and 10 demonstrate the impact of Hp+ = 0.1, 0.2, 0.3 (heat generation)
parameter and Hp− = −0.1, −0.2, −0.3 (heat absorption) parameter on temperature profile
for both cylindrical and flat plate cases. From Figure 9, we observed that higher values of
heat generation parameters produce heat energy, and as a result, the temperature of the fluid
enhances. Such a trend is similar in the case of the flat and cylindrical surfaces. Figure 10
depicts the impact of heat absorption parameters on fluid temperature. We noticed that the
temperature of Casson fluid over a flat and cylindrical surface decreases the function of the
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heat absorption parameter. This is because higher values of heat absorption parameters
cause low heat energy and as a results temperature drops.

Figure 11 represents the impact of variations in the Casson fluid parameter β = 0.1, 0.3,
0.7 on temperature profile; with an increase in parameter β, the temperature of fluid over a
cylinder increases.

Figure 7. Effect of γ on θ(η) for plate/cylinder.

Figure 8. Effect of γ1 on θ(η) for plate/cylinder.
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Figure 9. Effect of Hp+ on θ(η) for plate/cylinder.

Figure 10. Impact of Hp− on θ(η) for plate/cylinder.

Tables 1 and 2 analyze the impacts of emerging parameters on skin friction coefficient
for plate and cylindrical surfaces, respectively. Particularly, Table 1 reports the skin friction
coefficient variations at the flat surface for different values of mixed convection parameter
λ and Casson fluid parameter β, and the magnetic field parameter γ. We noticed that the
skin friction coefficient tends to decrease (in an absolute sense) for positive values of the
Casson fluid parameter and the mixed convection parameter. Furthermore, the outcomes
are in contrast for a magnetic field parameter γ that is for higher values of magnetic field
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parameter the skin friction coefficient enhances. Table 2 shows the impact of the Casson
fluid parameter, mixed convection, and magnetic field parameter on the skin friction
coefficient at the cylindrical surface. We observed that for both the positive Casson fluid
parameter and mixed convection parameter, the skin friction coefficient declines, whereas
the opposite is the case for magnetic field parameter. From both Tables 1 and 2, we have
seen that the magnitude for cylindrical surface is enlarged as compared with flat plate.

The influences of the Prandtl number, heat generation and heat absorption parameters,
and the Newtonian heating parameter on heat transfer rate on both flat plate and cylindrical
surfaces are presented in Tables 3 and 4, respectively, with a fixed Casson fluid parameter
β = 0.3, mixed convection parameter λ = 0.1, and magnetic field parameter γ = 0.3.
From Tables 3 and 4, we seen that the heat transfer rate for both the plate and cylinder
increases significantly (in an absolute sense) for higher values of Hp+ and Newtonian
heating parameter γ1, whereas Pr and Hp− have a reducing impact on the heat transfer
rate. Table 5 presents comparative values of Nusselt number with the existing literature.
We found an excellent match that validates the present results.

Figure 11. Impact of β on θ(η).

Table 1. Variation in skin friction for the plate.

β λ γ Skin Friction Coefficient

0.1 0.1 0.3 −3.4705

0.2 0.1 0.3 −2.5500

0.25 0.1 0.3 −2.3260

0.3 1.0 0.3 −2.0772

0.3 3.0 0.3 −1.8909

0.3 5.0 0.3 −1.7115

0.3 0.1 0.1 −2.0833

0.3 0.1 0.5 −2.3177

0.3 0.1 0.9 −2.79001
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Table 2. Variation in skin friction for the cylinder.

β λ γ Skin Friction Coefficient

0.1 0.1 0.3 −5.8949

0.2 0.1 0.3 −3.7782

0.25 0.1 0.3 −3.3305

0.3 1.0 0.3 −2.9356

0.3 3.0 0.3 −2.7484

0.3 5.0 0.3 −2.5703

0.3 0.1 0.1 −2.9403

0.3 0.1 0.5 −3.1821

0.3 0.1 0.9 −3.6765

Table 3. Variation in Nusselt number for the plate.

Pr Hp+ Hp− γ1 −θ
′
(0)

1.2 0.1 0.1 0.1 −0.1170
1.4 0.1 0.1 0.1 −0.1153
1.6 0.1 0.1 0.1 −0.1140
1.2 0.1 0.1 0.1 −0.1170
1.2 0.2 0.1 0.1 −0.1199
1.2 0.3 0.1 0.1 −0.1247
1.2 0.1 −0.1 0.1 −0.1163
1.2 0.1 −0.2 0.1 −0.1124
1.2 0.1 −0.3 0.1 −0.1115
1.2 0.1 0.1 0.10 −0.1170
1.2 0.1 0.1 0.13 −0.1603
1.2 0.1 0.1 0.15 −0.1918

Table 4. Variation in Nusselt number for the cylinder.

Pr Hp+ Hp− γ1 −θ
′
(0)

1.2 0.1 0.1 0.1 −0.1140

1.4 0.1 0.1 0.1 −0.1128

1.6 0.1 0.1 0.1 −0.1119

1.2 0.1 0.1 0.1 −0.1140

1.2 0.2 0.1 0.1 −0.1170

1.2 0.3 0.1 0.1 −0.1236

1.2 0.1 −0.1 0.1 −0.1111

1.2 0.1 −0.2 0.1 −0.1102

1.2 0.1 −0.3 0.1 −0.1095

1.2 0.1 0.1 0.10 −0.1140

1.2 0.1 0.1 0.13 −0.1547

1.2 0.1 0.1 0.15 −0.1839
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Table 5. Nusselt number comparison with existing results.

Pr Present Outcomes Mukhopadhyay [32] Bidin and Nazar [33]

1.0 0.9544 0.9547 0.9547

3.0 1.4702 1.4714 1.4714

3.0 1.8952 1.8961 1.8961

5. Conclusions

Non-Newtonian fluid passed through stretching surfaces has been investigated nu-
merically. The comparative impacts of flow variables on velocity and temperature profiles
are analyzed for both flat plate and cylindrical surfaces. We observed that Casson fluid
velocity results in a declining nature towards the magnetic field parameter because of
enhancements in the Lorentz force. Such results hold for both flat plate and cylindrical
surfaces. The temperature of fluid exerts a direct relationship towards Newtonian heating,
magnetic field, and heat generation parameters, whereas the opposite is the case for the
Prandtl number and heat absorption parameters. The variation magnitude for the cylindri-
cal surface is significant as compared with a flat plate. The skin friction coefficient leads to
a decrease for the cylinder as well as a flat plate with an increase in Casson fluid and mixed
convection parameters. The local Nusselt number decreases for large values of Prandtl
number, whereas it increases for the Newtonian heating parameter. Collectively, the effects
of parameters on fluid flow over the cylinder are more prominent than the plate.
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Nomenclature

V Velocity field
ρ Fluid density
p Fluid pressure
D/Dt Material time derivative
u, v Velocity components (dimensional)
x, r Cylindrical coordinates (dimensional)
υ Kinematic viscosity
B0 Magnetic field constant
β Casson fluid parameter
σ Fluid electrical conductivity
g Gravitational acceleration
β∗T Thermal expansion coefficient
T Fluid temperature (dimensional)
T∞ Ambient temperature
K1 Thermal conductivity
cp Specific heat capacity at constant pressure
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Q0 Heat generation/absorption coefficient
U0 Reference velocity
R Radius of cylinder
ψ Stream function
L Characteristic length
θ(η) Fluid temperature (dimensionless)
f ′(η) Fluid velocity (dimensionless)
K Curvature parameter
λ Mixed convection parameter
γ Magnetic field parameter
Pr Prandtl number
Hp+ Heat generation parameter
Hp− Heat absorption parameter
γ1 Newtonian heating parameter
Gr Grashof number
hs Heat transfer coefficient
τw Shear stress
µ Dynamic viscosity
qw Heat flux at surface
Abbreviations
PDEs Partial differential equations
ODEs Ordinary differential equations
MHD Magnetohydrodynamics
HAM Homotopy analysis method
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