
����������
�������

Citation: Hong, K.H.; Lee, B.M. A

Deep Learning-Based Password

Security Evaluation Model. Appl. Sci.

2022, 12, 2404. https://doi.org/

10.3390/app12052404

Academic Editors: Andrea Prati,

Carlos A. Iglesias, Luis Javier

García Villalba and

Vincent A. Cicirello

Received: 12 January 2022

Accepted: 24 February 2022

Published: 25 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Deep Learning-Based Password Security Evaluation Model
Ki Hyeon Hong 1 and Byung Mun Lee 2,*

1 Department of IT Convergence, Gachon University, Seongnam-si 13120, Korea; yjs03075@gachon.ac.kr
2 Department of Computer Engineering, Gachon University, Seongnam-si 13120, Korea
* Correspondence: bmlee@gachon.ac.kr; Tel.: +82-31-750-4756

Abstract: It is very important to consider whether a password has been leaked, because security can no
longer be guaranteed for passwords exposed to attackers. However, most existing password security
evaluation methods do not consider the leakage of the password. Even if leakage is considered,
a process of collecting, storing, and verifying a huge number of leaked passwords is required, which
is not practical in low-performance devices such as IoT devices. Therefore, we propose another
approach in this paper using a deep learning model. A password list was made for the proposed
model by randomly extracting 133,447 words from a total of seven dictionaries, including Wikipedia
and Korean-language dictionaries. After that, a deep learning model was created by using the three
pieces of feature data that were extracted from the password list, as well as a label for the leakage.
After creating an evaluation model in a lightweight file, it can be stored in a low-performance device
and is suitable to predict and evaluate the security strength of a password in a device. To check the
performance of the model, an accuracy evaluation experiment was conducted to predict the possibility
of leakage. As a result, a prediction accuracy of 95.74% was verified for the proposed model.

Keywords: authentication; deep learning model; information security; IoT; password security strength

1. Introduction

The use of passwords is an important authentication method to protect user infor-
mation in the field of information security [1,2]. When users choose passwords, security
and convenience mutually conflict [3,4]. For example, while a password that is composed
in a complicated manner by combining uppercase and lowercase letters, numbers, and
special symbols, such as “Qw3@lv53”, is safe since it cannot be easily inferred by other
users, it is inconvenient to use because it cannot be easily remembered by the user. On the
contrary, while a password that combines regular patterns or easily inferred words, such as
“abcdefg123”, can be easily remembered by the user, it cannot perform the authentication
function properly due to low security. Therefore, convenience and security must be appro-
priately considered when users select passwords, and websites or systems that provide the
existing authentication functions should evaluate the security of the passwords that are
selected by the users and improve security with appropriate feedback [5,6].

Currently, the most frequently used password security evaluation method is the
evaluation indicator presented by the National Institute of Standards and Technology
(NIST). To evaluate security, it analyzes the complexity of passwords according to the
combinations formed by uppercase and lowercase letters, numbers, and special symbols [7].
In addition, a study on password security by Concordia University presented the zxcvbn
evaluation indicator, which evaluates security by categorizing a list of passwords that
are frequently used by general users [8]. However, existing password security evaluation
indicators like these do not take the leakage of passwords into account. A password attacker
can select various attack models [9]. For example, a dictionary attack is a method in which
cracking is attempted by building a dictionary of letter strings that are likely to be selected
as passwords [10,11]. While existing leaked password lists are good data for creating
dictionaries, they can be seen as being vulnerable to dictionary attacks. In this respect, even

Appl. Sci. 2022, 12, 2404. https://doi.org/10.3390/app12052404 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12052404
https://doi.org/10.3390/app12052404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4397-8741
https://orcid.org/0000-0003-1156-2300
https://doi.org/10.3390/app12052404
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12052404?type=check_update&version=1

Appl. Sci. 2022, 12, 2404 2 of 17

if the complexity of a password that is selected by a user is high, an attacker can easily crack
it if the password has already been leaked. Therefore, whether a password has actually
been leaked must also be considered to evaluate password security reliably [12].

However, to verify whether there has been a leak, vast amounts of leaked password
data must be collected and stored. This is problematic for low-performance computing
environments or terminals since they lack the memory capacity, and handling such a
large volume of data will result in a performance drop. This method also has a structural
weakness because password attackers can analyze the database that is stored in one place to
determine the password selection tendencies of the users [13]. In addition, if a new leaked
password occurs, there is the inconvenience of having to manage it. To solve this problem,
a new password security prediction method that can determine whether a password has
been leaked is needed. Among them, the deep learning-based evaluation model learns the
weights of the model by using the features that are extracted from the training data, and
the learned weights are used to predict the results of new data that were not used during
training [14,15]. In particular, since data used for training is not required in the prediction
process, there is no need to collect or store vast amounts of leaked password data, and the
same level of security can be guaranteed in a low-performance computing environment.
In addition, when only the trained model is used, there will not be any significant effect
even if the performance of the processor is low. Furthermore, it is impossible for an attacker
to analyze the password selection tendencies of the users with the learned weight.

Therefore, this paper proposes a security evaluation model that predicts whether a
password selected by a user has been leaked by using deep learning. This model is divided
into a process in which the model learns by collecting the features of passwords and whether
they have actually been leaked, and a process of predicting whether a password selected
by a user has been leaked. The feature data for training are the security evaluation scores
that were extracted from existing password security evaluation indicators, and information
about whether the passwords were leaked is obtained from the leaked password data. The
weight of the trained model is used to predict whether the password selected by a user
has been leaked. The reliability of the security evaluation model is confirmed through an
accuracy evaluation experiment in which the model predicts whether there has been a leak,
and this is compared with the results of predicting leakage with existing password security
evaluation indicators.

In Section 2 of this paper, existing password security evaluation methods are consid-
ered, and deep learning-based evaluation models are examined. Section 3 presents a deep
learning-based password security evaluation model and defines the feature data and label
data for learning, and the learning method. In Section 4, experiments to verify the accuracy
of the evaluation model are carried out and the results are analyzed. The conclusion is
drawn in Section 5, the last section.

2. Related Studies
2.1. The Cracking Process and Method of the Password Attacker

In a typical system, a password selected by a user is converted into a hash value
through a hashing algorithm and then stored [16]. Afterwards, when the user inputs
the same password, an authentication process is performed to verify whether the user
is a registered user. If the hash value matches, it is approved, but if it does not match,
authentication is rejected. Since an inverse function for the hashing algorithm does not exist,
the password cannot be inferred from the converted hash value [17]. Therefore, a password
attacker must attempt all cases to infer the user’s password. Figure 1 shows the brute-force
attack process in which an attacker attempts all cases to crack a user’s password. However,
since the brute-force attack can take a lot of time as the password length becomes longer
and the number of possibilities increases significantly, the attacker may attempt a variety
of methods.

Appl. Sci. 2022, 12, 2404 3 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 18

password attacker must attempt all cases to infer the user’s password. Figure 1 shows the
brute-force attack process in which an attacker attempts all cases to crack a user’s
password. However, since the brute-force attack can take a lot of time as the password
length becomes longer and the number of possibilities increases significantly, the attacker
may attempt a variety of methods.

Figure 1. Brute-force password cracking process.

Since it is difficult to memorize passwords that are composed completely randomly,
users tend to set passwords by using words in the dictionary and adding or deleting
several letters, numbers, and special symbols [18]. In some cases, individual users may
reuse previously used passwords, and they may also select passwords based on
personally identifiable information (PII) using keywords that only they know, or their
date of birth [19,20]. Since passwords like these are easier to predict than randomly
composed letter strings, they can lead to a decrease in security. Therefore, an attacker may
exploit this by building a list of passwords a user frequently uses, and attempt cracking
based on this [21,22]. This is the targeted guessing attack, and existing leaked passwords
can be abused by attackers to create user-specific password lists [20].

Ultimately, since password attackers can attempt cracking by employing a variety of
methods, selecting a password directly after becoming fully familiar with the security
guidelines for passwords is not an easy task for users [23]. Therefore, a password
evaluation indicator that can evaluate how safe a password is in advance is needed.

2.2. Existing Security Evaluation Methods and Their Limitations
For the password security evaluation indicator, security must be evaluated by

considering the password selection tendencies of the user, and this is carried out as shown
in Figure 2. Here, the security evaluation score of the password selected by the user is
predicted through addition and deduction indicators for security. For example, the most
frequently used method at present is lower and uppercase letters, digits, and symbols
(LUDS), and it is a method in which the requirement for the number of times letters,
numbers, and special symbols are used is reflected. Indicators such as password length
and variety of combinations belong to addition indicators since they make the password
more complicated, and patterns in which letters continue sequentially or repeat, such as
“AAA” and “123”, belong to deduction indicators since they make the password simple
[7].

Like this, the password security evaluation score drawn from the password security
evaluation indicators in Figure 2 can be classified into a password with strong security
and a password with weak security by determining whether a certain standard is satisfied.
For example, the password “Pass123word!” is classified as a password with strong
security from the fact that it contains uppercase letters, lowercase letters, numbers, and
special symbols and satisfies the LUDS requirement. In addition, if numbers or special
symbols are put between words, as in “Pass123word!”, it is classified as being very secure
in zxcvbn by determining that there is no word that coincides with the words in the dictionary.

However, a security evaluation method like the one in Figure 2 does not check
whether the password has been leaked no matter how high its security evaluation score

Figure 1. Brute-force password cracking process.

Since it is difficult to memorize passwords that are composed completely randomly,
users tend to set passwords by using words in the dictionary and adding or deleting several
letters, numbers, and special symbols [18]. In some cases, individual users may reuse previ-
ously used passwords, and they may also select passwords based on personally identifiable
information (PII) using keywords that only they know, or their date of birth [19,20]. Since
passwords like these are easier to predict than randomly composed letter strings, they can
lead to a decrease in security. Therefore, an attacker may exploit this by building a list
of passwords a user frequently uses, and attempt cracking based on this [21,22]. This is
the targeted guessing attack, and existing leaked passwords can be abused by attackers to
create user-specific password lists [20].

Ultimately, since password attackers can attempt cracking by employing a variety
of methods, selecting a password directly after becoming fully familiar with the security
guidelines for passwords is not an easy task for users [23]. Therefore, a password evaluation
indicator that can evaluate how safe a password is in advance is needed.

2.2. Existing Security Evaluation Methods and Their Limitations

For the password security evaluation indicator, security must be evaluated by con-
sidering the password selection tendencies of the user, and this is carried out as shown
in Figure 2. Here, the security evaluation score of the password selected by the user is
predicted through addition and deduction indicators for security. For example, the most
frequently used method at present is lower and uppercase letters, digits, and symbols
(LUDS), and it is a method in which the requirement for the number of times letters, num-
bers, and special symbols are used is reflected. Indicators such as password length and
variety of combinations belong to addition indicators since they make the password more
complicated, and patterns in which letters continue sequentially or repeat, such as “AAA”
and “123”, belong to deduction indicators since they make the password simple [7].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 18

was evaluated to be. In order to check whether a password has been leaked, it is necessary
to collect and store existing leaked passwords and compare them with the password
selected by the user. However, storing a leaked password list like this can be limiting in
low-performance environments, and since new leaked passwords that occur must be
added to the list, it is inconvenient. In addition, since the original string cannot be inferred
from the hashed data, encrypting and storing the passwords is limiting for methods that
evaluate the security of passwords based on the original letter strings such as zxcvbn or
Levenshtein distance. In this regard, there is room for an attacker to analyze the stored
leaked password list and abuse it to determine the password selection tendencies of the
users. In order to solve this problem, a new evaluation method to determine whether a
password has been leaked is needed.

Figure 2. Existing password security evaluation process.

2.3. Use Cases of Using Passwords in Low-Performance IoT Sensors
Sensor devices used in IoT services such as smart homes and smart healthcare

transmit the data they collect and user information to a central server. In a smart home
example like the one in Figure 3, data measured by a human detection sensor and gas
detection sensor are transmitted to a server through a home gateway [24]. If gas is detected
or an abnormal situation occurs when there is no one in the smart home, the gas valve
must be closed automatically by the smart home gateway. Since the sensor data that was
measured at the gateway must be transmitted between the gateway and the server in a
secure session, authentication that can be mutually trusted is required. One of the
methods is to use the password provided by the smart home user. When the gateway
sends the hashed password to the server together with the sensor data, the server will
identify the gateway and create a secure session using a password. Since session security
is closely related to password security in this case, security evaluation of the password is
important.

However, a problem can occur if the gateway has to send a password to the server to
evaluate the security of the password. If a password attacker intercepts a message
containing the password of a smart home gateway, a secure session between the gateway
and the server cannot be guaranteed. In this respect, although the security of passwords
must be evaluated at the gateway, there is a limit in building a leaked password database
in a low-performance IoT environment. Therefore, a security evaluation model that takes
this into consideration is needed.

Figure 2. Existing password security evaluation process.

Like this, the password security evaluation score drawn from the password security
evaluation indicators in Figure 2 can be classified into a password with strong security
and a password with weak security by determining whether a certain standard is satisfied.
For example, the password “Pass123word!” is classified as a password with strong security
from the fact that it contains uppercase letters, lowercase letters, numbers, and special
symbols and satisfies the LUDS requirement. In addition, if numbers or special symbols
are put between words, as in “Pass123word!”, it is classified as being very secure in zxcvbn
by determining that there is no word that coincides with the words in the dictionary.

Appl. Sci. 2022, 12, 2404 4 of 17

However, a security evaluation method like the one in Figure 2 does not check whether
the password has been leaked no matter how high its security evaluation score was evalu-
ated to be. In order to check whether a password has been leaked, it is necessary to collect
and store existing leaked passwords and compare them with the password selected by the
user. However, storing a leaked password list like this can be limiting in low-performance
environments, and since new leaked passwords that occur must be added to the list, it is
inconvenient. In addition, since the original string cannot be inferred from the hashed data,
encrypting and storing the passwords is limiting for methods that evaluate the security
of passwords based on the original letter strings such as zxcvbn or Levenshtein distance.
In this regard, there is room for an attacker to analyze the stored leaked password list and
abuse it to determine the password selection tendencies of the users. In order to solve
this problem, a new evaluation method to determine whether a password has been leaked
is needed.

2.3. Use Cases of Using Passwords in Low-Performance IoT Sensors

Sensor devices used in IoT services such as smart homes and smart healthcare transmit
the data they collect and user information to a central server. In a smart home example
like the one in Figure 3, data measured by a human detection sensor and gas detection
sensor are transmitted to a server through a home gateway [24]. If gas is detected or an
abnormal situation occurs when there is no one in the smart home, the gas valve must be
closed automatically by the smart home gateway. Since the sensor data that was measured
at the gateway must be transmitted between the gateway and the server in a secure session,
authentication that can be mutually trusted is required. One of the methods is to use the
password provided by the smart home user. When the gateway sends the hashed password
to the server together with the sensor data, the server will identify the gateway and create
a secure session using a password. Since session security is closely related to password
security in this case, security evaluation of the password is important.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 18

Figure 3. Low-performance IoT-based smart home service.

2.4. Evaluation Model Using the Deep Learning Technique
Deep learning is a technique that is mainly used to predict results from feature data

by using ANN (artificial neural networks) [25]. ANN process information by imitating the
learning process of the human brain, and they are implemented by stacking perceptrons
in multiple layers so that they can function like neurons [26]. For learning, the weights of
the perceptron are updated by using the differential value of the optimization function
and the loss function to find the minimum over the entire region [27]. This process is
learned in a hidden layer, and it is useful for solving problems that require predicting
results for new data by finding and generalizing the patterns in the training data. The
result learned by using artificial neural networks is also referred to as an evaluation
model. The evaluation model is created during the training process and is used during
the prediction process, as shown in Figure 4.

Figure 4. Deep learning training, and prediction process: (a) training process for a model; (b)
prediction process using a model.

Figure 4a shows the process of training a model by extracting features from the
training data and the validation data, and it is divided into a data preprocessing process
and model training process. The data preprocessing process extracts predefined feature
points from the data, and these are used for model training through normalization. The
model training process consists of model training and model evaluation, and the weights
and structure of the evaluation model are stored. These are used in the model predicting
process shown in Figure 4b. After extracting features from data that were not used for
training, normalization is carried out. At this point, a result is predicted by using the

Figure 3. Low-performance IoT-based smart home service.

However, a problem can occur if the gateway has to send a password to the server
to evaluate the security of the password. If a password attacker intercepts a message
containing the password of a smart home gateway, a secure session between the gateway
and the server cannot be guaranteed. In this respect, although the security of passwords
must be evaluated at the gateway, there is a limit in building a leaked password database
in a low-performance IoT environment. Therefore, a security evaluation model that takes
this into consideration is needed.

2.4. Evaluation Model Using the Deep Learning Technique

Deep learning is a technique that is mainly used to predict results from feature data
by using ANN (artificial neural networks) [25]. ANN process information by imitating the
learning process of the human brain, and they are implemented by stacking perceptrons in
multiple layers so that they can function like neurons [26]. For learning, the weights of the

Appl. Sci. 2022, 12, 2404 5 of 17

perceptron are updated by using the differential value of the optimization function and the
loss function to find the minimum over the entire region [27]. This process is learned in a
hidden layer, and it is useful for solving problems that require predicting results for new
data by finding and generalizing the patterns in the training data. The result learned by
using artificial neural networks is also referred to as an evaluation model. The evaluation
model is created during the training process and is used during the prediction process,
as shown in Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 18

Figure 3. Low-performance IoT-based smart home service.

2.4. Evaluation Model Using the Deep Learning Technique
Deep learning is a technique that is mainly used to predict results from feature data

by using ANN (artificial neural networks) [25]. ANN process information by imitating the
learning process of the human brain, and they are implemented by stacking perceptrons
in multiple layers so that they can function like neurons [26]. For learning, the weights of
the perceptron are updated by using the differential value of the optimization function
and the loss function to find the minimum over the entire region [27]. This process is
learned in a hidden layer, and it is useful for solving problems that require predicting
results for new data by finding and generalizing the patterns in the training data. The
result learned by using artificial neural networks is also referred to as an evaluation
model. The evaluation model is created during the training process and is used during
the prediction process, as shown in Figure 4.

Figure 4. Deep learning training, and prediction process: (a) training process for a model; (b)
prediction process using a model.

Figure 4a shows the process of training a model by extracting features from the
training data and the validation data, and it is divided into a data preprocessing process
and model training process. The data preprocessing process extracts predefined feature
points from the data, and these are used for model training through normalization. The
model training process consists of model training and model evaluation, and the weights
and structure of the evaluation model are stored. These are used in the model predicting
process shown in Figure 4b. After extracting features from data that were not used for
training, normalization is carried out. At this point, a result is predicted by using the

Figure 4. Deep learning training, and prediction process: (a) training process for a model; (b) prediction
process using a model.

Figure 4a shows the process of training a model by extracting features from the
training data and the validation data, and it is divided into a data preprocessing process
and model training process. The data preprocessing process extracts predefined feature
points from the data, and these are used for model training through normalization. The
model training process consists of model training and model evaluation, and the weights
and structure of the evaluation model are stored. These are used in the model predicting
process shown in Figure 4b. After extracting features from data that were not used for
training, normalization is carried out. At this point, a result is predicted by using the
weights and structure of the evaluation model, which uses the features extracted from the
training data. The predicted results are classified according to the classification criteria and
output as the final prediction result.

Since a large amount of training data is required in the learning process like the one
shown in Figure 4a, there is a limit to carrying it out in an IoT environment with low storage
capacity and processing performance. Therefore, it is more appropriate to perform the
learning process of the evaluation model in a high-performance computing environment.
Additionally, when using the trained model that is generated as a result of learning, it can
be separated from the learning process [28], as shown in Figure 4b. If this method is used,
the concealment of the training data is guaranteed and the limitation of the IoT device can
also be solved.

In particular, since the weight of the trained hidden layer is a numerical matrix that
cannot be interpreted, it is impossible to infer from the original data [29]. The weights of the
artificial neural network are initialized randomly, and training is carried out by reducing the
error between the prediction result of the training data and the label data, which is the result
that must be predicted. Therefore, depending on the random initialized weights, different
weights can result even from the same training data, and it can be seen as converging a
vast amount of training data into relatively few weights. In this respect, the weights of
the artificial neural networks guarantee the concealment of the result prediction, and it

Appl. Sci. 2022, 12, 2404 6 of 17

is also appropriate to use the evaluation model in low-performance environments such
as browsers and small IoT devices. Therefore, a security evaluation model that predicts
whether a password selected by a user has been leaked by using deep learning will be
proposed in this paper.

3. Methodology

The proposed deep learning-based password security evaluation model predicts
whether passwords have been leaked by using artificial neural networks. This is divided
into the process of training a model on a server with low performance restrictions, as shown
in Figure 5a, and the process of predicting leakage from a low-performance IoT device by
using the trained evaluation model as shown in Figure 5b. Figure 5 is largely classified into
four phases consisting of data selection, feature extraction for model training, evaluation
model training, and leaked password prediction.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 18

weights and structure of the evaluation model, which uses the features extracted from the
training data. The predicted results are classified according to the classification criteria
and output as the final prediction result.

Since a large amount of training data is required in the learning process like the one
shown in Figure 4a, there is a limit to carrying it out in an IoT environment with low
storage capacity and processing performance. Therefore, it is more appropriate to perform
the learning process of the evaluation model in a high-performance computing
environment. Additionally, when using the trained model that is generated as a result of
learning, it can be separated from the learning process [28], as shown in Figure 4b. If this
method is used, the concealment of the training data is guaranteed and the limitation of
the IoT device can also be solved.

In particular, since the weight of the trained hidden layer is a numerical matrix that
cannot be interpreted, it is impossible to infer from the original data [29]. The weights of
the artificial neural network are initialized randomly, and training is carried out by
reducing the error between the prediction result of the training data and the label data,
which is the result that must be predicted. Therefore, depending on the random initialized
weights, different weights can result even from the same training data, and it can be seen
as converging a vast amount of training data into relatively few weights. In this respect,
the weights of the artificial neural networks guarantee the concealment of the result
prediction, and it is also appropriate to use the evaluation model in low-performance
environments such as browsers and small IoT devices. Therefore, a security evaluation
model that predicts whether a password selected by a user has been leaked by using deep
learning will be proposed in this paper.

3. Methodology
The proposed deep learning-based password security evaluation model predicts

whether passwords have been leaked by using artificial neural networks. This is divided
into the process of training a model on a server with low performance restrictions, as
shown in Figure 5a, and the process of predicting leakage from a low-performance IoT
device by using the trained evaluation model as shown in Figure 5b. Figure 5 is largely
classified into four phases consisting of data selection, feature extraction for model
training, evaluation model training, and leaked password prediction.

Figure 5. Phases of the proposed method: (a) training process for model on server; (b) prediction
process using a model on IoT device.

In Phase 1 of Figure 5, a list of passwords for training the evaluation model is collected
and a leaked password database is defined. In Phase 2, feature data and label data are
defined and extracted for training the evaluation model. The point to consider at this time
is that it must be possible to extract the feature data identically for all password lists, and
each feature must not have any associations. In Phase 3, the password security evaluation
model is built and trained by using a deep learning-based artificial neural network model.
In order to select the evaluation model that was built, the model is trained by classifying
the data into training data, validation data, and test data and the performance is checked.
In the last phase, the leaked password criterion is defined to predict whether the password
selected by the user has been leaked, and the result is classified and returned.

Since Figure 5a,b are structurally separated, Figure 5b no longer requires a password
list for training the evaluation model. By doing this, it is possible to prevent a password
attacker from inferring a user’s password that had been used for the training by using an
IoT device. Additionally, since the weights of the evaluation model that is already trained
are used in Figure 5b, it is a model that is appropriate for low-performance environments.

In addition, the weight of Figure 5a may be received periodically to update the
evaluation model. For example, even if the weight (weights.bin) of the evaluation model
(model.json) is leaked to the password attacker in Figure 5b, the updated evaluation model

Appl. Sci. 2022, 12, 2404 7 of 17

can be requested and received from Figure 5a. This updated evaluation model continuously
learns the weight from Figure 5a each time a password leak occurs. In this case, since the
initial weight of the learned weight is different from that of the training data, a model with
a completely different weight than the evaluation model that was leaked to the attacker
is learned as the result. Therefore, Figure 5b can receive the weight of this evaluation
model and evaluate the password security with the model with a weight that is completely
different from the leaked evaluation model.

3.1. Phase 1: Data Source
3.1.1. Password List

First, the password list is extracted that will be used as training data as the primitive
password data before the feature data for training the evaluation model. The passwords
included in the password list should be composed by considering the actual password
selection tendencies of the user. However, it is illegal to collect the actual passwords of
users and build lists, and there is potential for an adverse security impact. To solve this
problem, the password list is built with a two-step process as shown in Figure 6.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 18

Figure 6. Process of creating a password list.

However, PII-based passwords are not considered in this study. PII-based passwords
vary for each individual, and there is a risk of personal information leakage if they are
built into a dictionary. In addition, since the extracted feature data are different, an
evaluation model with different weights for each individual will be trained. Therefore,
the password list does not consider targeted guessing, and it is limited to only trawling
guessing from Korean-language-based password users among universal English-
speaking and non-English-speaking users.

3.1.2. Leaked Password Database
The deep learning-based evaluation model performs supervised learning to learn the

weights of the model by using the feature data and label data, which is the prediction
result. Therefore, collecting whether the passwords have been leaked, which is the goal of
the prediction, is important. However, it is very difficult to collect leaked passwords by
obtaining passwords directly from existing users. Therefore, an existing leaked password
database that is provided is imported and used instead [31]. Among them, “Have I Been
Pwned” hashes and stores passwords that have been leaked by attackers from various
websites around the world [31]. If this is used, the number of times a password selected
by a user has been leaked can be easily verified, and whether it has been leaked is labeled.

It is impossible to obtain the password of the leaked original from the hashed leaked
password database. As shown in Figure 6, the password in the password list is hashed,
and whether the corresponding password matches the hashed value of the leaked
password database is checked. If there is a matching hash value, it is labeled as a leaked
password, and if there is no matching hash value, it is labeled as a password that has not
been leaked.

3.2. Phase 2: Password Feature Extraction
The feature data and label data are extracted by using the password list and the

leaked password database. This is as shown in Figure 7. Step 1 in Figure 7 is the process
of generating a password feature matrix by using the password list. Each data in the
password list acquires a feature score according to a defined feature criterion. It is
composed of a matrix, and it is used as feature data for model training. For example,
“password 123” in Figure 7 has only lowercase letters and numbers among uppercase
letters, lowercase letters, numbers, and special symbols, and the feature score is 1 because
the letters and numbers were not mixed and used. In addition, the feature score of zxcvbn
is zero because it used the word “password” that is included in the password dictionary
and the consecutive numbers “123”. Finally, since the Levenshtein distance with the
original letter string “password” is 3 because the number “123” is included, the feature
score is 1.

Step 2 is the process of extracting the label data, which is the prediction target of the
evaluation model, by using the password list and the leaked password database. The
password from which the feature data has been extracted should be composed as one data
set with the label data, and just like the feature data, there should be no empty value. Since
the leaked password database has been hashed, whether there is a hash value that matches

Figure 6. Process of creating a password list.

Step 1 in Figure 6 is a process of randomly extracting words after building dictionaries
with words that users frequently use as passwords. The password dictionary includes a list
of frequently used English words in Wikipedia, a list of American movies and TV programs,
a list of password statistics frequently used by users, a list of first and last names frequently
used by Americans, and a list of keyboard patterns that are easy to remember. This was
obtained from zxcvbn, an evaluation indicator that evaluates the password security of
actual English-speaking users [23]. However, zxcvbn does not consider the password
selection tendencies of non-English language speaking users. To solve this problem, a list
of Korean nouns and a list of male and female names frequently used by Koreans were
added in a password dictionary in this paper [30].

However, PII-based passwords are not considered in this study. PII-based passwords
vary for each individual, and there is a risk of personal information leakage if they are
built into a dictionary. In addition, since the extracted feature data are different, an eval-
uation model with different weights for each individual will be trained. Therefore, the
password list does not consider targeted guessing, and it is limited to only trawling guess-
ing from Korean-language-based password users among universal English-speaking and
non-English-speaking users.

3.1.2. Leaked Password Database

The deep learning-based evaluation model performs supervised learning to learn the
weights of the model by using the feature data and label data, which is the prediction
result. Therefore, collecting whether the passwords have been leaked, which is the goal of
the prediction, is important. However, it is very difficult to collect leaked passwords by
obtaining passwords directly from existing users. Therefore, an existing leaked password
database that is provided is imported and used instead [31]. Among them, “Have I Been
Pwned” hashes and stores passwords that have been leaked by attackers from various

Appl. Sci. 2022, 12, 2404 8 of 17

websites around the world [31]. If this is used, the number of times a password selected by
a user has been leaked can be easily verified, and whether it has been leaked is labeled.

It is impossible to obtain the password of the leaked original from the hashed leaked
password database. As shown in Figure 6, the password in the password list is hashed, and
whether the corresponding password matches the hashed value of the leaked password
database is checked. If there is a matching hash value, it is labeled as a leaked password,
and if there is no matching hash value, it is labeled as a password that has not been leaked.

3.2. Phase 2: Password Feature Extraction

The feature data and label data are extracted by using the password list and the
leaked password database. This is as shown in Figure 7. Step 1 in Figure 7 is the process of
generating a password feature matrix by using the password list. Each data in the password
list acquires a feature score according to a defined feature criterion. It is composed of a
matrix, and it is used as feature data for model training. For example, “password 123” in
Figure 7 has only lowercase letters and numbers among uppercase letters, lowercase letters,
numbers, and special symbols, and the feature score is 1 because the letters and numbers
were not mixed and used. In addition, the feature score of zxcvbn is zero because it used the
word “password” that is included in the password dictionary and the consecutive numbers
“123”. Finally, since the Levenshtein distance with the original letter string “password” is 3
because the number “123” is included, the feature score is 1.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 18

is verified by hashing the password from which features have been extracted. If there is a
matching hash value, it is labeled as a leaked password, and if there is no matching hash
value, it is labeled as a password that has not been leaked. This is composed as a password
label matrix, and it is a prediction result with a value of 0 or 1.

Figure 7. Process of extracting password features.

3.2.1. Step 1: Feature Data Extraction
The feature data should have no empty values for all passwords in the password list.

In addition, each feature should not be related to each other since learning may become
biased if each feature is related. In this paper, existing password security evaluation
indicators are used to extract features. This is shown in Table 1. For example, the LUDS
requirement evaluates security with a combination of uppercase letters, lowercase letters,
numbers, and special symbols, and zxcvbn evaluates security based on frequently used
passwords. In addition, Levenshtein distance evaluates security based on the number of
letters that are different between the original letter string and the selected letter string. In
this respect, it can be seen that each password security evaluation indicator evaluates
security by analyzing one password with a different criterion.

Table 1. Password feature data list.

Feature Description Score

LUDS requirement
Combination of uppercase letters, lowercase letters,

numbers, and special symbols 0–4

zxcvbn point List of frequently used passwords 0–4

Levenshtein distance Difference between the original letter string and
the comparison letter string 0–1

The security evaluation score that is extracted with the security evaluation indicators
is converted into a numeric form to be used as input data for the evaluation model. If
Table 1 is examined, the LUDS requirement and zxcvbn are expressed in five steps, from
0 to 4, and the Levenshtein distance is expressed in two steps of 0 and 1. This follows the
security evaluation classification criterion proposed by each security evaluation indicator.
For example, the LUDS requirement classifies the security evaluation scores into five steps
by using the addition and deduction indicators. zxcvbn measures the complexity of
combining dictionary words with uppercase letters, lowercase letters, numbers, and
special symbols and classifies them into five steps. Since Levenshtein distance is defined
as the distance between two letter strings, it has a value of 0 or higher. However, if a large
value is reflected as it is without a threshold in the model training process, distorted
results may be obtained by being sharply biased to one side and affecting other values.
Therefore, preprocessing that normalizes the values of the Levenshtein distance is needed.
Since a password with a distance of 3 or more was classified as having strong security in

Figure 7. Process of extracting password features.

Step 2 is the process of extracting the label data, which is the prediction target of
the evaluation model, by using the password list and the leaked password database. The
password from which the feature data has been extracted should be composed as one data
set with the label data, and just like the feature data, there should be no empty value. Since
the leaked password database has been hashed, whether there is a hash value that matches
is verified by hashing the password from which features have been extracted. If there is a
matching hash value, it is labeled as a leaked password, and if there is no matching hash
value, it is labeled as a password that has not been leaked. This is composed as a password
label matrix, and it is a prediction result with a value of 0 or 1.

3.2.1. Step 1: Feature Data Extraction

The feature data should have no empty values for all passwords in the password list.
In addition, each feature should not be related to each other since learning may become
biased if each feature is related. In this paper, existing password security evaluation
indicators are used to extract features. This is shown in Table 1. For example, the LUDS
requirement evaluates security with a combination of uppercase letters, lowercase letters,
numbers, and special symbols, and zxcvbn evaluates security based on frequently used
passwords. In addition, Levenshtein distance evaluates security based on the number of
letters that are different between the original letter string and the selected letter string.

Appl. Sci. 2022, 12, 2404 9 of 17

In this respect, it can be seen that each password security evaluation indicator evaluates
security by analyzing one password with a different criterion.

Table 1. Password feature data list.

Feature Description Score

LUDS requirement Combination of uppercase letters, lowercase
letters, numbers, and special symbols 0–4

zxcvbn point List of frequently used passwords 0–4

Levenshtein distance Difference between the original letter string
and the comparison letter string 0–1

The security evaluation score that is extracted with the security evaluation indicators is
converted into a numeric form to be used as input data for the evaluation model. If Table 1
is examined, the LUDS requirement and zxcvbn are expressed in five steps, from 0 to 4,
and the Levenshtein distance is expressed in two steps of 0 and 1. This follows the
security evaluation classification criterion proposed by each security evaluation indicator.
For example, the LUDS requirement classifies the security evaluation scores into five
steps by using the addition and deduction indicators. zxcvbn measures the complexity
of combining dictionary words with uppercase letters, lowercase letters, numbers, and
special symbols and classifies them into five steps. Since Levenshtein distance is defined as
the distance between two letter strings, it has a value of 0 or higher. However, if a large
value is reflected as it is without a threshold in the model training process, distorted results
may be obtained by being sharply biased to one side and affecting other values. Therefore,
preprocessing that normalizes the values of the Levenshtein distance is needed. Since a
password with a distance of 3 or more was classified as having strong security in an existing
example that studied the security of passwords by using the Levenshtein distance, in this
paper, a distance less than 3 is defined to be 0 and a distance of 3 or more is defined to
be 1 [32,33].

3.2.2. Step 2: Label Data Extraction

The password security evaluation model predicts whether the password selected by a
user has been leaked. Therefore, it is classified into either a password that has been leaked
or a password that has not been leaked, and the criteria are shown in Table 2. According to
the leaked password database, for example, “password123” in Figure 7 is a password with
very low security, with a hash value that has been leaked 126,927 times [31]. Label data for
this can be seen as 0 according to Table 2. In contrast, since the password “Passwordq123”
does not have a matching hash value, the label data is set to 1.

Table 2. Password label data list.

Label Description

0 A password that has been leaked one or more times
1 A password that has not been leaked

Since the collected feature data and label data are simple numerical matrices, it is
impossible to infer the original password before extraction. Therefore, even if a password
attacker steals the password matrix that is used for training, the user’s password cannot be
inferred, and there is no need to store the original passwords for training.

3.3. Phase 3: Building a Password Evaluation Model with Deep Learning

A deep learning-based password security evaluation model is built by using the
feature data of the password that was built with the above procedure and the label data
that includes whether there has been a leak. The model is suitable for low-spec IoT
environments, and it must be impossible for an attacker who has obtained the weights and

Appl. Sci. 2022, 12, 2404 10 of 17

structures of the trained model to analyze any information. Therefore, a fully connected
neural network, which is frequently used to predict results with a simple structure and a
small number of operations, is selected. The fully connected neural network is composed
of an input layer for inputting the feature data, a hidden layer for performing the actual
prediction, and an output layer for outputting the prediction results, as shown in Figure 8.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 18

Figure 8. Structure of password evaluation model with deep learning.

In general, the choice of hyperparameters such as the depth, activation function, and
optimization function of the hidden layer is important to train an excellent evaluation
model with a fully connected neural network. In order to check the accuracy of the trained
evaluation model and select a model, the feature data and label data are separated into
70% training data, 20% validation data, and 10% test data as shown in Table 3. In the
model training process of Figure 5, the training data and validation data are used to
update the weights of the evaluation model and to determine the degree of learning. The
trained evaluation model uses the test data to check and determine whether the evaluation
model is properly trained.

Table 3. Data separation for deep learning.

Data Separation (%) Number of Data
Training data 70 93,415

Validation data 20 26,688

Test data 10 13,344
Total 100 133,447

To this end, 68,582 passwords that have been leaked and 64,865 passwords that have
not been leaked were obtained with the processes in Figures 6 and 7. Based on Table 3,
they were classified into 93,415 training data, 26,688 validation data, and 13,344 test data.

3.4. Phase 4: Classification of Predicted Results
The prediction result that was preprocessed through the sigmoid function of Figure

8 is the probability of password leakage between 0 and 1. A password that has been leaked
will be closer to 0, and a password that has not been leaked will be closer to 1. The criterion
for a password that has been leaked is a real number value between 0 and 1, and it is
important data that determines whether the password has been leaked. For example, if
the leaked password criterion is 0.1, most passwords are classified as not having been
leaked. On the contrary, if the leaked password criterion is 0.9, most passwords will be
classified having been leaked. Therefore, it is necessary to determine the criterion for the
passwords that have been leaked by evaluating the evaluation model that has actually
been trained.

The selection of the model structure and the hyperparameters and deciding the
criterion for the leaked passwords like this are important factors for improving the

Figure 8. Structure of password evaluation model with deep learning.

The input layer of the password security evaluation model in Figure 8 receives the
three pieces of feature data in Table 1 as input. They are used to learn the weights of the
hidden layer, and the weights are updated by comparing the password leakage probability
that was predicted as the result with whether the password has been leaked, which is the
label data. For this, the prediction result of the evaluation model is normalized from 0 to 1,
which is the range of the label data. This is solved by applying the sigmoid function to the
result that is returned to the output layer.

In general, the choice of hyperparameters such as the depth, activation function, and
optimization function of the hidden layer is important to train an excellent evaluation
model with a fully connected neural network. In order to check the accuracy of the trained
evaluation model and select a model, the feature data and label data are separated into
70% training data, 20% validation data, and 10% test data as shown in Table 3. In the model
training process of Figure 5, the training data and validation data are used to update the
weights of the evaluation model and to determine the degree of learning. The trained
evaluation model uses the test data to check and determine whether the evaluation model
is properly trained.

Table 3. Data separation for deep learning.

Data Separation (%) Number of Data

Training data 70 93,415
Validation data 20 26,688

Test data 10 13,344
Total 100 133,447

To this end, 68,582 passwords that have been leaked and 64,865 passwords that have
not been leaked were obtained with the processes in Figures 6 and 7. Based on Table 3, they
were classified into 93,415 training data, 26,688 validation data, and 13,344 test data.

Appl. Sci. 2022, 12, 2404 11 of 17

3.4. Phase 4: Classification of Predicted Results

The prediction result that was preprocessed through the sigmoid function of Figure 8
is the probability of password leakage between 0 and 1. A password that has been leaked
will be closer to 0, and a password that has not been leaked will be closer to 1. The criterion
for a password that has been leaked is a real number value between 0 and 1, and it is
important data that determines whether the password has been leaked. For example, if the
leaked password criterion is 0.1, most passwords are classified as not having been leaked.
On the contrary, if the leaked password criterion is 0.9, most passwords will be classified
having been leaked. Therefore, it is necessary to determine the criterion for the passwords
that have been leaked by evaluating the evaluation model that has actually been trained.

The selection of the model structure and the hyperparameters and deciding the crite-
rion for the leaked passwords like this are important factors for improving the performance
of the model. This is verified through experiments, and the excellence of the addition-
ally optimized evaluation model compared to the existing password security evaluation
methods will be confirmed.

4. Experiment and Evaluation
4.1. Data Preprocessing and Experiment Setup

In order to confirm the performance of the proposed evaluation model, the password
list is collected and preprocessed according to the process in Figure 9. Figure 9a generates a
password based on a word dictionary as shown in Figure 6. The password generated at
this time was created by the user by transforming a word from the dictionary according
to the existing research [34]. Figure 9b is the result of extracting the features from the
password list that were collected in Figure 9a and labeling them like the process in Figure 7.
For example, since “q1w2e3r4” in the password list is included in the password dictionary
that is frequently used by users, the evaluation score of zxcvbn is zero. However, since
lowercase letters and numbers were used alternately, the security evaluation score is 3
because it satisfies the LUDS requirements, and the security evaluation score is 1 because it
satisfies the Levenshtein distance since it is not included in the English word dictionary.
In addition, if the corresponding feature is input to the evaluation model, the expected
output is equal to 0 since it is a password that has been leaked. Figure 9c classifies the
password matrix extracted from Figure 9b as shown in Table 3. This is 70% training data,
20% validation data, and 10% test data, and the entire process of Figure 9 was performed in
advance for the experiment. There are no overlapping passwords among the training data,
validation data, and test data in the experiment process. In addition, k-fold cross validation
was used to prevent the evaluation model from learning while being biased toward specific
training data. For example, after evenly dividing the entire data into 10 parts, 70% of them
are used as training data, 20% are used as verification data, and 10% is used as test data.
The training data and verification data are changed for each epoch. In each epoch, the
average accuracy and the average loss value are defined as the accuracy and loss value of
the evaluation model.

The trained model can use models such as ANN, decision tree, and random forest.
However, the decision tree is not suitable for models that evaluate the security of passwords
because the classification criterion of each feature is not concealed. In addition, the random
forest, which gathers classification results by varying the combinations of features, is not
suitable for training this evaluation model, which has defined the number of features to be 3.
Therefore, in this evaluation model, ANN, which is more suitable for learning, was used.

The evaluation model is trained, and the performance is checked by using the collected
and classified data as in the process of Figure 9. Hyperparameters such as the depth of
the hidden layer, the number of nodes, the activation function, and the optimization
function in the learning process are very important factors because they directly affect the
performance of the model. Therefore, they were defined as in Table 4 for the selection of
the hyperparameters.

Appl. Sci. 2022, 12, 2404 12 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 18

performance of the model. This is verified through experiments, and the excellence of the
additionally optimized evaluation model compared to the existing password security
evaluation methods will be confirmed.

4. Experiment and Evaluation
4.1. Data Preprocessing and Experiment Setup

In order to confirm the performance of the proposed evaluation model, the password
list is collected and preprocessed according to the process in Figure 9. Figure 9a generates
a password based on a word dictionary as shown in Figure 6. The password generated at
this time was created by the user by transforming a word from the dictionary according
to the existing research [34]. Figure 9b is the result of extracting the features from the
password list that were collected in Figure 9a and labeling them like the process in Figure
7. For example, since “q1w2e3r4” in the password list is included in the password
dictionary that is frequently used by users, the evaluation score of zxcvbn is zero.
However, since lowercase letters and numbers were used alternately, the security
evaluation score is 3 because it satisfies the LUDS requirements, and the security
evaluation score is 1 because it satisfies the Levenshtein distance since it is not included
in the English word dictionary. In addition, if the corresponding feature is input to the
evaluation model, the expected output is equal to 0 since it is a password that has been
leaked. Figure 9c classifies the password matrix extracted from Figure 9b as shown in
Table 3. This is 70% training data, 20% validation data, and 10% test data, and the entire
process of Figure 9 was performed in advance for the experiment. There are no
overlapping passwords among the training data, validation data, and test data in the
experiment process. In addition, k-fold cross validation was used to prevent the
evaluation model from learning while being biased toward specific training data. For
example, after evenly dividing the entire data into 10 parts, 70% of them are used as
training data, 20% are used as verification data, and 10% is used as test data. The training
data and verification data are changed for each epoch. In each epoch, the average accuracy
and the average loss value are defined as the accuracy and loss value of the evaluation
model.

The trained model can use models such as ANN, decision tree, and random forest.
However, the decision tree is not suitable for models that evaluate the security of
passwords because the classification criterion of each feature is not concealed. In addition,
the random forest, which gathers classification results by varying the combinations of
features, is not suitable for training this evaluation model, which has defined the number
of features to be 3. Therefore, in this evaluation model, ANN, which is more suitable for
learning, was used.

Figure 9. Process of preprocessing the password list and example (red box): (a) password list; (b)
password matrix; (c) classification of data.
Figure 9. Process of preprocessing the password list and example (red box): (a) password list;
(b) password matrix; (c) classification of data.

Table 4. Hyperparameter list.

Hyperparameter Description Element

Depths Depth of the hidden layer 1, 2, 3, 4, 5
Number of nodes Number of nodes in each hidden layer 1, 2, 4, 8, 16, 32

Activation Function Activation function of the hidden layer ReLu
Optimizer Optimizer for backpropagation Adam
Dropout Dropout of the hidden layer 0

The depth of the hidden layer in Table 4 was limited from 1 to 5 to train models that
are suitable for low-performance environments. In addition, 1, 2, 4, 8, 16, and 32 nodes were
used in each hidden layer. Additional factors for training the model include an activation
function, an optimization function, and a dropout. For the activation function, “ReLu”
was used. “ReLu” outputs 0 when the input data is negative and 1 when it is positive,
and it has an advantage in training speed due to the simple calculation. “ReLu” may lose
the learned weight when the hidden layer becomes deeper, or the input data is 0 because
differentiation becomes impossible. However, since the depth of the hidden layer was
limited to 5 in the training process for this model, the risk of this is low. “Adam” was used
as the optimization function. Dropout was not used because a small number of nodes were
used in each hidden layer.

4.2. Comparison with Previous Method and Model Selection

The performance of the evaluation models that were trained by using the hyperpa-
rameters in Table 4 was compared and analyzed. To this end, after classifying the trained
models according to the depth of the hidden layer, the average of the learning times, loss
values, and classification accuracy were compared. To train the evaluation model, a desktop
computer loaded with Windows 10, with an Intel(R) Core (TM) i7-10700 CPU, 16 GB of
memory, and an NVIDIA GeForce GTX 1660 graphics card GPU was used. For the learning
environment platform, @tensorflow/tfjs 3.7.0 was used in Node.js 14.15.3. As shown in
Table 5, the training time, loss value, and accuracy that were measured in the training
process experiment were obtained.

Table 5. Performance table of the evaluation model according to the depth of the hidden layer.

Depths Time (ms) Loss (MSE) Accuracy (%)

1 58,692.666 0.076 87.443
2 89,923.305 0.085 85.91
3 116,020.203 0.089 84.877
4 164,500.302 0.109 80.587
5 185,474.527 0.179 65.651

Appl. Sci. 2022, 12, 2404 13 of 17

The training time in Table 5 is the time to execute 20 epochs. The loss value and
accuracy of the evaluation model were calculated with the loss value and accuracy of the
verification data by considering the overfitting that occurs during the training process.
This is the average value of the k-fold cross-validation result that was performed in each
epoch. It was the shortest with an average of 58,692.666 ms when the depth of the hidden
layer was 1, and the training time increased as the depth of the hidden layer increased.
In addition, it was confirmed that the smaller depth of the hidden layer resulted in smaller
loss values in the training process. Accuracy is the accuracy of classifying passwords that
have been leaked as low security passwords and those that have not been leaked as high
security passwords. If the accuracy in Table 5 is examined, the classification accuracy was
the highest when the classification criterion was 0.5, and the best average classification
accuracy, 87.443%, was shown when the depth of the hidden layer was 1. Figure 10 displays
the data of Table 5 in graph form.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 18

addition, it was confirmed that the smaller depth of the hidden layer resulted in smaller
loss values in the training process. Accuracy is the accuracy of classifying passwords that
have been leaked as low security passwords and those that have not been leaked as high
security passwords. If the accuracy in Table 5 is examined, the classification accuracy was
the highest when the classification criterion was 0.5, and the best average classification
accuracy, 87.443%, was shown when the depth of the hidden layer was 1. Figure 10
displays the data of Table 5 in graph form.

Figure 10. Performance graph of the evaluation model according to the depth of the hidden layer:
(a) learning time according to the depth of the hidden layer; (b) loss according to the depth of the
hidden layer; (c) accuracy according to the depth of the hidden layer.

If Figure 10a is examined, the training time tends to increase as the depth of the
hidden layer increases. However, it was confirmed that an increase in training time did
not positively affect the performance of the evaluation model and that the performance of
the model decreased, as shown in Figure 10b for the loss value and Figure 10c for the
accuracy. This is assumed to be due to excessive training during the model training
process or because the weights became lost due to the deep hidden layers.

In order to determine the number of nodes for the best model in Figure 10 with a
hidden layer depth of 1, the training time, loss value, and accuracy of the evaluation model
were compared according to the number of nodes. They are as shown in Table 6, where
the training time was the shortest, but the accuracy was confirmed to be 50% when the
number of nodes was 1 because learning was not carried out. In addition, when the
number of nodes was 16 and 32, the classification accuracy was the best at 94.937%. By
considering the training time as well, the hyperparameters of the evaluation model were
selected for the depth of the hidden layer of 1 and 16 as the number of nodes that are
included in the hidden layer.

Table 6. Performance table of the evaluation model according to the number of nodes.

Number of Nodes Time (ms) Loss (MSE) Accuracy (%)
1 29,442 0.25 50
2 43,968 0.0423 94.934

4 55,314 0.0426 94.926
8 61,121 0.0422 94.926

16 78,198 0.0422 94.937
32 84,113 0.0422 94.937

4.3. Experiment Results and Performance Evaluation
In order to verify the performance of the password security evaluation model that

was selected earlier, the classification accuracy was compared with the existing password

Figure 10. Performance graph of the evaluation model according to the depth of the hidden layer:
(a) learning time according to the depth of the hidden layer; (b) loss according to the depth of the
hidden layer; (c) accuracy according to the depth of the hidden layer.

If Figure 10a is examined, the training time tends to increase as the depth of the
hidden layer increases. However, it was confirmed that an increase in training time did
not positively affect the performance of the evaluation model and that the performance
of the model decreased, as shown in Figure 10b for the loss value and Figure 10c for the
accuracy. This is assumed to be due to excessive training during the model training process
or because the weights became lost due to the deep hidden layers.

In order to determine the number of nodes for the best model in Figure 10 with a
hidden layer depth of 1, the training time, loss value, and accuracy of the evaluation model
were compared according to the number of nodes. They are as shown in Table 6, where the
training time was the shortest, but the accuracy was confirmed to be 50% when the number
of nodes was 1 because learning was not carried out. In addition, when the number of
nodes was 16 and 32, the classification accuracy was the best at 94.937%. By considering
the training time as well, the hyperparameters of the evaluation model were selected for
the depth of the hidden layer of 1 and 16 as the number of nodes that are included in the
hidden layer.

4.3. Experiment Results and Performance Evaluation

In order to verify the performance of the password security evaluation model that
was selected earlier, the classification accuracy was compared with the existing password
security evaluation indicators. The security evaluation score according to each security
evaluation method and whether the passwords have actually been leaked were compared
by using the test data of Table 3. They are as shown in Table 7.

Appl. Sci. 2022, 12, 2404 14 of 17

Table 6. Performance table of the evaluation model according to the number of nodes.

Number of Nodes Time (ms) Loss (MSE) Accuracy (%)

1 29,442 0.25 50
2 43,968 0.0423 94.934
4 55,314 0.0426 94.926
8 61,121 0.0422 94.926
16 78,198 0.0422 94.937
32 84,113 0.0422 94.937

Table 7. Comparison for password security evaluation performance.

Index Leak or Not Security Evaluation Score Count

Proposed evaluation
model

Leaked password Weak 8351
Strong 179

Not leaked password Weak 389
Strong 4425

Zxcvbn point

Leaked password

Very weak 488
Weak 7611

Average 428
Strong 3

Very strong 0

Not leaked password

Very weak 0
Weak 713

Average 657
Strong 784

Very strong 2660

LUDS requirement

Leaked password

Very weak 7643
Weak 751

Average 122
Strong 12

Very strong 2

Not leaked password

Very weak 470
Weak 492

Average 791

Strong 617
Very strong 2444

Levenshtein distance
Leaked password Weak 1484

Strong 7046

Not leaked password Weak 46
Strong 4768

The test data in Table 7 used 4814 passwords that have not been leaked and
8530 passwords that have been leaked. When the security of a password is evaluated, if a
password that has been leaked is evaluated as a password that has not been leaked it may
cause the user to mistake a password that has been leaked to have high security. Therefore,
the number of passwords that were leaked was given a bit more consideration when the
test data was collected.

In Table 7, the evaluation model proposed in this paper classified 8351 out of
8530 passwords that have been leaked as having weak security. It also classified 4425 out
of 4814 passwords that have not been leaked as having strong security. This is classification
accuracy of 95.74%. However, for Levenshtein distance in Table 7, only 1484 passwords that
have been leaked were classified as weak security passwords, and 4768 of the passwords
that have not been leaked were classified as ones with strong security. Since the classification

Appl. Sci. 2022, 12, 2404 15 of 17

accuracy was 46.85%, it was confirmed that the Levenshtein distance had lower reliability
compared to the proposed evaluation model.

However, it is difficult to directly compare the zxcvbn scores and LUDS requirements
in Table 7 with the proposed evaluation model because they are not binary classification
models that classify passwords as those with weak security and strong security. For example,
the LUDS requirement classifies security into five steps from 0 to 4. At this time, if the
criterion for the low security passwords is 1, the LUDS requirement in Table 7 classifies
8394 of the leaked passwords as low security passwords and 3852 of the passwords that
have not been leaked as high-security passwords, with a classification accuracy of 91.77%.
However, if the criterion is set to 2, it has a classification accuracy of 86.75%. To solve this
problem, the recovery operation characteristic (ROC) curve was compared. The ROC curve
is a method of evaluating the performance of the trained model by using the sensitivity to
judge an answer as the correct answer and the specificity to judge an answer as the wrong
answer. This is as shown in Figure 11.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 18

models that classify passwords as those with weak security and strong security. For
example, the LUDS requirement classifies security into five steps from 0 to 4. At this time,
if the criterion for the low security passwords is 1, the LUDS requirement in Table 7
classifies 8394 of the leaked passwords as low security passwords and 3852 of the
passwords that have not been leaked as high-security passwords, with a classification
accuracy of 91.77%. However, if the criterion is set to 2, it has a classification accuracy of
86.75%. To solve this problem, the recovery operation characteristic (ROC) curve was
compared. The ROC curve is a method of evaluating the performance of the trained model
by using the sensitivity to judge an answer as the correct answer and the specificity to
judge an answer as the wrong answer. This is as shown in Figure 11.

Figure 11. Password security evaluation ROC curve.

Figure 11 shows the ROC curves for the evaluation model proposed in this paper, the
zxcvbn score, the LUDS requirements, and the security evaluation score of Levenshtein
distance. Since the x and y axes are 1, the ROC curve has a maximum area of 1. It can be
seen that the wider area of the ROC curve reflects better performance of the binary
classification. The proposed evaluation model displayed the best binary classification
performance at 0.975, and it was 0.938 for the LUDS requirement, 0.922 for the zxcvbn
score, and 0.582 for the Levenshtein distance, which was verified to be the lowest binary
classification performance.

Through this, it was confirmed that the proposed password security evaluation
model evaluated the security of a password by considering whether the password has
actually been leaked and that it was effective for dictionary attacks by password attackers.
Additionally, since the evaluation model proposed in this study extracts features
regardless of the password length or complexity and predicts whether a password was
leaked, the time complexity is O (1). Therefore, the password security evaluation model
is suitable for low-performance IoT devices.

5. Conclusions
In the field of information security, user authentication is an important factor for

protecting personal information. Since passwords must be remembered by users,
convenience and security must be appropriately guaranteed. However, the existing
password security evaluation methods are very vulnerable to dictionary attacks by
password attackers because they do not consider passwords that have been leaked. In
addition, collecting and storing a vast quantity of leaked passwords puts limitations on using
them in low-performance computing environments, and managing new leaked passwords is
cumbersome.

Therefore, in this paper, a feature matrix was extracted by collecting passwords that
have been leaked and those that have not been leaked. The feature matrix is a security

Figure 11. Password security evaluation ROC curve.

Figure 11 shows the ROC curves for the evaluation model proposed in this paper, the
zxcvbn score, the LUDS requirements, and the security evaluation score of Levenshtein
distance. Since the x and y axes are 1, the ROC curve has a maximum area of 1. It can
be seen that the wider area of the ROC curve reflects better performance of the binary
classification. The proposed evaluation model displayed the best binary classification
performance at 0.975, and it was 0.938 for the LUDS requirement, 0.922 for the zxcvbn
score, and 0.582 for the Levenshtein distance, which was verified to be the lowest binary
classification performance.

Through this, it was confirmed that the proposed password security evaluation model
evaluated the security of a password by considering whether the password has actu-
ally been leaked and that it was effective for dictionary attacks by password attackers.
Additionally, since the evaluation model proposed in this study extracts features regardless
of the password length or complexity and predicts whether a password was leaked, the
time complexity is O (1). Therefore, the password security evaluation model is suitable for
low-performance IoT devices.

5. Conclusions

In the field of information security, user authentication is an important factor for pro-
tecting personal information. Since passwords must be remembered by users, convenience
and security must be appropriately guaranteed. However, the existing password security
evaluation methods are very vulnerable to dictionary attacks by password attackers because
they do not consider passwords that have been leaked. In addition, collecting and storing
a vast quantity of leaked passwords puts limitations on using them in low-performance
computing environments, and managing new leaked passwords is cumbersome.

Appl. Sci. 2022, 12, 2404 16 of 17

Therefore, in this paper, a feature matrix was extracted by collecting passwords that
have been leaked and those that have not been leaked. The feature matrix is a security
evaluation score that is extracted by using the existing password security evaluation
methods, and a security evaluation model that takes this as the input and predicts whether
a password has been leaked was proposed. For performance evaluation, an experiment was
conducted to compare the accuracy of classifying leaked passwords between the existing
password security evaluation models and the proposed security evaluation model. As a
result, it was confirmed that the proposed evaluation model had the highest classification
accuracy. In addition, the evaluation model proposed in this paper structurally separates
the training process and the security evaluation process so that password attackers cannot
obtain any information by using the evaluation model, and it is suitable for evaluating
security in low-performance environments.

However, personal information-based passwords or passwords reused by individual
users were not considered in this study. In addition, since passwords that have been leaked
more than once were classified as passwords with low security, passwords that have been
leaked by accident were not processed. To improve this, it should be possible to add
a password matrix that considers individual password selection trends by considering
targeted guidance. In addition, three may be too small for the number of features to predict
whether there was leakage. In this study, three small features were used to predict whether
a password had been leaked in a low-performance IoT environment. By extracting a wider
variety of password features, the accuracy of the proposed model can be increased. If this
is supplemented, it will be possible to learn and provide a password security evaluation
model suitable for individuals.

Author Contributions: K.H.H. and B.M.L. conceived and designed the experiments; K.H.H. per-
formed the experiments; K.H.H. and B.M.L. analyzed the data; K.H.H. wrote the paper. K.H.H.
and B.M.L. have read and approved the final manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Ministry of SMEs and Startups grant number S2957039.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in https://github.com/
KiHyeon-Hong/Password_security_test (accessed on 22 November 2021).

Acknowledgments: This work was supported by the Technology Development Program funded by
the Ministry of SMEs and Startups (MSS, Korea) (Grant No. S2957039).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jerry, M.; Weining, Y.; Min, L.; Ninghui, L. A study of probabilistic password models. In Proceedings of the 2014 IEEE Symposium

on Security and Privacy, Berkeley, CA, USA, 18–21 May 2014; pp. 689–704.
2. Naiakshina, A.; Danilova, A.; Tiefenau, C.; Herzog, M.; Dechand, S.; Smith, M. Why do developers get password storage wrong?

A qualitative usability study. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
Dallas, TX, USA, 30 October–3 November 2017; pp. 311–328.

3. Chang, D.; Jati, A.; Mishra, S.; Sanadhya, S.K. Cryptanalytic time-memory trade-off for password hashing schemes. Int. J. Inf.
Secur. 2019, 18, 163–180. [CrossRef]

4. Woods, N.; Siponen, M. Improving password memorability, while not inconveniencing the user. Int. J. Hum.-Comput. Stud. 2019,
128, 61–71. [CrossRef]

5. Furnell, S. Assessing website password practices—Over a decade of progress? Comput. Fraud. Secur. 2018, 2018, 6–13. [CrossRef]
6. Furnell, S. An assessment of website password practices. Comput. Secur. 2007, 26, 445–451. [CrossRef]
7. Castelluccia, C.; Dürmuth, M.; Perito, D. Adaptive password-strength meters from Markov models. In Proceedings of the

Symposium on Network and Distributed System Security, San Diego, CA, USA, 5–8 February 2012.
8. Carnavalet, X.D.C.D.; Mannan, M. A large-scale evaluation of high-impact password strength meters. ACM Trans. Inf. Syst. Secur.

2015, 18, 1–32. [CrossRef]

https://github.com/KiHyeon-Hong/Password_security_test
https://github.com/KiHyeon-Hong/Password_security_test
http://doi.org/10.1007/s10207-018-0405-5
http://doi.org/10.1016/j.ijhcs.2019.02.003
http://doi.org/10.1016/S1361-3723(18)30063-0
http://doi.org/10.1016/j.cose.2007.09.001
http://doi.org/10.1145/2739044

Appl. Sci. 2022, 12, 2404 17 of 17

9. Florencio, D.; Herley, C.; Van Oorschot, P.C. An administrator’s guide to internet password research. In Proceedings of the 28th
Large Installation System Administration Conference, Seattle, WA, USA, 9–14 November 2014; pp. 44–61.

10. Kyaw, A.K.; Sioquim, F.; Joseph, J. Dictionary attack on Wordpress: Security and forensic analysis. In Proceedings of the 2015
Second International Conference on Information Security and Cyber Forensics, Cape Town, South Africa, 15–17 November 2015;
pp. 158–164.

11. Bošnjak, L.; Sreš, J.; Brumen, B. Brute-force and dictionary attack on hashed real-world passwords. In Proceedings of the
2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (Mipro),
Opatija, Croatia, 21–25 May 2018; pp. 1161–1166.

12. Wheeler, D.L. Zxcvbn: Low-budget password strength estimation. In Proceedings of the 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, 10–12 August 2016; pp. 157–173.

13. Kontaxis, G.; Athanasopoulos, E.; Portokalidis, G.; Keromytis, A.D. Sauth: Protecting user accounts from password database
leaks. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, Berlin, Germany,
4–8 November 2013; pp. 187–198.

14. Kang, M.; Kwon, H.; Park, J.H.; Kang, S.; Lee, Y. Deep-Asymmetry: Asymmetry Matrix Image for Deep Learning Method in
Pre-Screening Depression. Sensors 2020, 20, 6526. [CrossRef] [PubMed]

15. Namozov, A.; Im, C.Y. An efficient deep learning algorithm for fire and smoke detection with limited data. Adv. Electr. Comput.
Eng. 2018, 18, 121–128. [CrossRef]

16. Hu, G. On password strength: A survey and analysis. In Proceedings of the International Conference on Software Engineer-
ing, Artificial Intelligence, Networking and Parallel/Distributed Computing, Kanazawa, Japan, 26–28 June 2017; Springer:
Cham, Switzerland; pp. 165–186.

17. Blocki, J.; Datta, A. CASH: A cost asymmetric secure hash algorithm for optimal password protection. In Proceedings of the 2016
IEEE 29th Computer Security Foundations Symposium, Lisbon, Portugal, 27 June–1 July 2016; pp. 371–386.

18. Yu, X.; Liao, Q. User password repetitive patterns analysis and visualization. Inf. Comput. Secur. 2016, 24, 93–115. [CrossRef]
19. Wang, D.; Wang, P.; He, D.; Tian, Y. Birthday, name and bifacial-security: Understanding passwords of Chinese web users.

In Proceedings of the 28th USENIX Security Symposium, USENIX Security 19, Santa Clara, CA, USA, 14–16 August 2019;
pp. 1537–1555.

20. Wang, D.; Zhang, Z.; Wang, P.; Yan, J.; Huang, X. Targeted online password guessing: An underestimated threat. In Proceedings
of the 2016 ACM SIGSAC conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016.

21. Shen, C.; Yu, T.; Xu, H.; Yang, G.; Guan, X. User practice in password security: An empirical study of real-life passwords in the
wild. Comput. Secur. 2016, 61, 130–141. [CrossRef]

22. Yıldırım, M.; Mackie, I. Encouraging users to improve password security and memorability. Int. J. Inf. Secur. 2019, 18, 741–759.
[CrossRef]

23. Doucek, P.; Pavlíček, L.; Sedláček, J.; Nedomova, L. Adaptation of password strength estimators to a non-English environment-the
Czech experience. Comput. Secur. 2020, 95, 101757. [CrossRef]

24. Park, Y.T.; Sthapit, P.; Pyun, J.Y. Smart digital door lock for the home automation. In Proceedings of the TENCON 2009–2009 IEEE
Region 10 Conference, Singapore, 23–26 November 2009; pp. 1–6.

25. Hitaj, B.; Gasti, P.; Ateniese, G.; Perez-Cruz, F. Passgan: A deep learning approach for password guessing. In Proceedings
of the International Conference on Applied Cryptography and Network Security, Bogota, Colombia, 5–7 June 2019; Springer:
Cham, Switzerland; pp. 217–237.

26. Al-Mahasneh, A.J.; Anavatti, S.G.; Garratt, M.A. The development of neural networks applications from perceptron to deep
learning. In Proceedings of the 2017 International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial
Automation (ICAMIMIA), Surabaya, Indonesia, 12–14 October 2017; pp. 1–6.

27. Lo, J.T.H.; Gui, Y.; Peng, Y. Solving the local-minimum problem in training deep learning machines. In Proceedings of the Interna-
tional Conference on Neural Information Processing, Guangzhou, China, 14–18 November 2017; Springer: Cham, Switzerland;
pp. 166–174.

28. Kalra, S.; Sood, S.K. Secure authentication scheme for IoT and cloud servers. Pervasive Mob. Comput. 2015, 24, 210–223. [CrossRef]
29. Aggarwal, A.; Lohia, P.; Nagar, S.; Dey, K.; Saha, D. Black box fairness testing of machine learning models. In Proceedings of the

2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Tallinn, Estonia, 26–30 August 2019; pp. 625–635.

30. Hong, K.H.; Kang, U.G.; Lee, B.M. Enhanced Evaluation Model of Security Strength for Passwords Using Integrated Korean and
English Password Dictionaries. Secur. Commun. Netw. 2021, 2021, 3122627. [CrossRef]

31. Have I Been Pwned. Available online: https://haveibeenpwned.com/Passwords (accessed on 27 December 2021).
32. Ma, W.; Campbell, J.; Tran, D.; Kleeman, D. Password entropy and password quality. In Proceedings of the 2010 Fourth

International Conference on Network and System Security, Melbourne, VIC, Australia, 1–3 September 2010; pp. 583–587.
33. Ma, W.; Campbell, J.; Tran, D.; Kleeman, D. A conceptual framework for assessing password quality. Int. J. Comput. Sci. Netw.

Secur. 2007, 7, 179–185.
34. Golla, M.; Dürmuth, M. On the accuracy of password strength meters. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp. 1567–1582.

http://doi.org/10.3390/s20226526
http://www.ncbi.nlm.nih.gov/pubmed/33203085
http://doi.org/10.4316/AECE.2018.04015
http://doi.org/10.1108/ICS-06-2015-0026
http://doi.org/10.1016/j.cose.2016.05.007
http://doi.org/10.1007/s10207-019-00429-y
http://doi.org/10.1016/j.cose.2020.101757
http://doi.org/10.1016/j.pmcj.2015.08.001
http://doi.org/10.1155/2021/3122627
https://haveibeenpwned.com/Passwords

	Introduction
	Related Studies
	The Cracking Process and Method of the Password Attacker
	Existing Security Evaluation Methods and Their Limitations
	Use Cases of Using Passwords in Low-Performance IoT Sensors
	Evaluation Model Using the Deep Learning Technique

	Methodology
	Phase 1: Data Source
	Password List
	Leaked Password Database

	Phase 2: Password Feature Extraction
	Step 1: Feature Data Extraction
	Step 2: Label Data Extraction

	Phase 3: Building a Password Evaluation Model with Deep Learning
	Phase 4: Classification of Predicted Results

	Experiment and Evaluation
	Data Preprocessing and Experiment Setup
	Comparison with Previous Method and Model Selection
	Experiment Results and Performance Evaluation

	Conclusions
	References

