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Abstract: This article proposes a two-phase hybrid method to train RBF neural networks for classi-
fication and regression problems. During the first phase, a range for the critical parameters of the
RBF network is estimated and in the second phase a genetic algorithm is incorporated to locate the
best RBF neural network for the underlying problem. The method is compared against other training
methods of RBF neural networks on a wide series of classification and regression problems from the
relevant literature and the results are reported.
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1. Introduction

In machine learning, many practical problems appear such as classification and regres-
sion problems. A good programming tool that can be used to tackle this problem is radial
basis function (RBF) networks [1]. These networks typically are expressed as a function:

y(x) =
k

∑
i=1

wiφ(‖x− ci‖) (1)

where −→x is the input pattern, the vector −→w is called the weight vector and y(x) is the
predicted value of the network. RBF networks are feedforward neural networks [2] with
three computational layers:

1. The input layer, where the problem is presented in the form of patterns to the neural
network.

2. The processing layer, where a computation is performed using the Gaussian process-
ing units φ(x). These units can have many forms in the relevant literature but the
most used form is the Gaussian function expressed as:

φ(x) = exp

(
− (x− c)2

σ2

)
(2)

The value φ(x) depends only on the distance of vector −→x from some other vector −→c ,
which typically is called centroid.

3. The output layer where the output of every function φ(x) is multiplied by a corre-
sponding weight value wi.

RBF networks have been used in many classification and regression problems from
the areas of physics [3–6], medicine [7–9], solution of differential equations [10,11], chem-
istry [12–14], economics [15–17], digital communications [18,19], etc. Furthermore, recently,
RBF networks have been used in more difficult problems such as the authentication as-
surance of meat products [20], trajectory tracking for electrohydraulic servo systems,
identification of geographical origin for foods [21], prediction of solution gas–oil ratio of
crude oil systems [22], prediction of occurrences of haloketones in tap water [23], health
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monitoring [24], etc. Because of the extensive use of RBF networks, many methods have
been proposed in the recent literature to enhance them. There are methods that parallelize
the RBF networks [25,26], methods that improve the initialization of the RBF parame-
ters [27–29], methods that alter the architecture of the network [30–32], methods aimed to
locate the best set of RBF parameters with global optimization techniques [33–35], etc. This
article transforms the problem of RBF training into an optimization problem and applies
a modified genetic algorithm technique to solve it. The global optimization problem is
defined as:

min(E(y)) =
m

∑
i=1

(y(xi)− ti)
2 (3)

where m is the total number of input patterns and ti is the output for pattern xi. The
suggested approach has two phases: firstly, reasonable bounds for the RBF parameters
are estimated using the k-means [36] algorithm and in the second phase, the modified
algorithm is used to solve the problem of Equation (3) inside the bounds located in the
first phase.

The rest of this paper is organized as follows: in Section 2 the proposed method is
described, in Section 3 the conducted experiments are listed and the proposed method is
compared against the traditional training of RBF networks and finally, in Section 4 some
conclusions are derived.

2. Method Description

The proposed method can be divided into two main phases: during the first phase, an
approximation for the bound of RBF parameters is made using the k-means algorithm; in
the second phase, the optimization problem is solved using a modified genetic algorithm.
These phases are outlined in detail in the following subsections.

2.1. Bound Location Phase

The proposed genetic algorithm has chromosomes with dimension (d + 1)× k, where
d is the dimension of the input problem, i.e., the dimension of the vector −→xi in Equation (3),
and k is the total number of processing units of the RBF network. The layout of each
chromosome is presented in Table 1. Every center−→ci in Equation (1) is a vector of dimension
d and an additional parameter is also reserved for the parameter σ of every φ(x) function.
The centroids and the corresponding variances are estimated using the k-means algorithm
that is described in Algorithm 1. The value σi for every φi(x) is calculated as:

σi =
d

∑
j=1

s2
ij (4)

After the estimation of ci and σi, the vectors
−→
L ,
−→
R with dimension (d + 1)× k are

constructed. These vectors will serve as the bounds for the chromosomes of the genetic
population. These vectors are constructed using the following procedure:

1. Set m = 0
2. Set F > 1
3. For i = 1..k do

(a) For j = 1..d do

i. Set Lm = −F× cij, Rm = F× cij

ii. Set m = m + 1

(b) EndFor
(c) Set Lm = −F× σi, Rm = F× σi
(d) Set m = m + 1

4. EndFor
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Table 1. The layout of the chromosomes in the proposed genetic algorithm.

c11 c12 ... c1d σ1 c21 c22 ... c2d σ2 ... ck1 ck2 ... ckd σk

Algorithm 1: The k-means algorithm.

1. Repeat

(a) Sj = {}, j = 1..k
(b) For every sample xi Do

i. Set j∗ = mink
i=1
{

D
(
xi, cj

)}
, where j∗ is the nearest center for sample xi.

ii. Set Sj∗ = Sj∗ ∪ {xi}.
(c) EndFor
(d) For every center cj Do

i. Set Mj = number of elements in Sj

ii. Update cj

cj =
1

Mj

Mj

∑
i=1

xi

(e) EndFor

2. Calculate the corresponding variances

s2
j =

∑
Mj
i=1

(
xi − cj

)2

Mj

3. Terminate when cj no longer changes.

2.2. Main Algorithm

The genetic algorithm used here is based on the algorithm denoted as GA(cr1, l) in the
Kaelo and Ali’s paper [37], with a modified stopping rule as proposed in [38]. The basic
steps of the main algorithm are given below:

1. Initialization Step

(a) Read the train set with m patterns of d dimension.
(b) Set k the number of nodes for the RBF network.

(c) Estimate the vectors
−→
L ,
−→
R using the procedure of Section 2.1.

(d) Initialize a genetic population of NC random chromosomes inside [L, R].
(e) Set the selection rate ps ∈ [0, 1], the mutation rate pM ∈ [0, 1] , iter = 0 and imax

the maximum number of generations.

2. Evaluation Step
For every chromosome g calculate the fitness fg using the procedure defined in
Section 2.3 .

3. Genetic operations step
During this step three genetic operations are performed: selection, crossover and
mutation.

(a) Selection procedure. Firstly, the chromosomes are sorted with relevance to their
corresponding fitness value. The best (1− ps) × Nc are transferred without
change to the next generation and the remaining ones are substituted by offspring
created through the crossover procedure. In the crossover procedure, the mating
parent are selected using a tournament selection for every parent. The tournament
selection is as follows:

i. Select a set of T > 2 chromosomes from the population.
ii. Return the chromosome with the best fitness value in that subset.
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(b) Crossover procedure. For every pair (z, w) of selected parents create two new
offspring z̃ and w̃:

z̃i = aizi + (1− ai)wi

w̃i = aiwi + (1− ai)zi (5)

with ai a random number and ai ∈ [−0.5, 1.5] [37]. This crossover scheme will be
able to better explore the search space of the train error.

(c) Mutation procedure. For every element of each chromosome, create a random
number r ∈ [0, 1]. If r ≤ pm, then change that element randomly. The mutation is
performed in a way similar to other approaches of genetic algorithms [38] and it
is described in Section 2.5.

(d) Replace the ps × Nc worst chromosomes in the population with the generated
offsprings.

4. Termination Check Step

(a) Set iter = iter + 1
(b) Terminate if the termination criteria of Section 2.4 are satisfied, else Goto Evalua-

tion Step.

2.3. Fitness Evaluation

In this step, a valid RBF network y(x) = ∑k
i=1 wiφ(‖x− ci‖), is created using the

chromosome g and is subsequently trained using the typical training procedure for RBF
networks. The main steps to calculate the fitness fg of a chromosome g are the following:

1. Decode the chromosome g to the parts (centers and variances) of the RBF network as
defined by the layout of Table 1.

2. Calculate the output vectors w1, ww, . . . , wk by solving the induced system of equa-
tions:

(a) Set W = wkj the matrix of k weights, Φ = φj(xi) and T = {ti}.
(b) Solve:

ΦT
(

T −ΦWT
)
= 0 (6)

WT =
(

ΦTΦ
)−1

ΦTT = Φ†T (7)

The matrix Φ† =
(
ΦTΦ

)−1ΦT is the pseudo-inverse of Φ, with

Φ†Φ = I (8)

3. Set fg =∑m
i=(y(xi)− ti)

2

2.4. Stopping Rule

Define as gbest the best chromosome in the population and define as σ(iter) the variance
of best fitness f

(
gbest

)
at generation iter. If fitness f

(
gbest

)
has not improved for a number

of generations, then probably the algorithm should terminate. Hence, the termination rule
is defined as:

iter≥ imax OR σ(iter) ≤ σ(klast)

2
(9)

where klast is the last generation where a new minimum was found.
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2.5. Mutation Procedure

Let w = (w1, w2, ..., wn) be the chromosome to be mutated. The proposed mutation
procedure modifies wi with probability pm and the resulting element w′i is given by

w′i =
{

wi + ∆(iter, Ri − wi), if t > 1
2 0

wi − ∆(iter, wi − Li), otherwise
(10)

where t is a random number with t ∈ [0, 1]. The function ∆(iter, y) is given by:

∆(iter, y) = y

1− r

(
1− iter

ITERMAX

)
b
 (11)

where r is a random number in [0, 1] and b controls the change of element wi. In the
proposed algorithm the value b = 5 was used.

3. Experiments

In order to evaluate the performance of the proposed method, comparative experi-
ments were performed on a series of well-known classification and regression datasets
from the relevant literature.

3.1. Experimental Setup

The RBF network was coded in ANSI C++, using the Armadillo library [39] and the
optimization was performed using the genetic optimization method of the optimization
package OPTIMUS, that is freely available from https://github.com/itsoulos/OPTIMUS/
(accessed on 18 January 2021). Furthermore, to have more reliability in the results the com-
monly used method of 10-fold cross-validation was used, which means that the original
data were randomly partitioned into 10 equally sized subsamples. Subsequently, 10 in-
dependent experiments were conducted: in each experiment one subsample was used
as the testing data and all the others as the training data. The average error on the test
data was the total test error. All the experiments were executed 30 times with different
initialization for the random generator each time. The random generator used was the
function drand48() of the C programming language. The execution environment was an
Intel Xeon E5-2630 multicore machine using the OpenMP library [40] for parallelization
and the Ubuntu Linux operating system. The parameters for the genetic algorithm are
displayed in Table 2. The parameters of the method were chosen so that there is a balance
between speed and efficiency of the method.

Table 2. Experimental parameters.

Parameter Value

k 10

Nc 200

ps 0.90

pm 0.05

F 3.0

imax 200

3.2. Experimental Datasets

The classification problems used for the experiments were found in most cases on two
Internet databases:

1. UCI dataset repository, https://archive.ics.uci.edu/ml/index.php (accessed on 18
January 2021)

https://github.com/itsoulos/OPTIMUS/
https://archive.ics.uci.edu/ml/index.php
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2. Keel repository, https://sci2s.ugr.es/keel/datasets.php (accessed on 18 January 2021)
[41].

The following classification datasets were used:

1. The Alcohol dataset, which is related to alcohol consumption [42].
2. The Appendicitis dataset, proposed in [43].
3. The Australian dataset [44], which refers to credit card applications.
4. The Balance dataset [45], which is used to predict psychological states.
5. The Cleveland dataset, used in various papers to detect heart disease [46,47].
6. The Dermatology dataset [48], which is used for differential diagnosis of erythe-

matosquamous diseases.
7. The Glass dataset, which contains glass component analysis and has been used in a

variety of papers [49,50].
8. The Hayes roth dataset [51].
9. The Heart dataset [52], used to detect heart disease.
10. The HouseVotes dataset [53], which is about votes in the U.S. House of Representa-

tives.
11. The Ionosphere dataset, which contains data from the Johns Hopkins Ionosphere

database and has been studied in a number of papers [54,55].
12. The Liverdisorder dataset [56], used to detect liver disorders in people using blood

analysis.
13. The Mammographic dataset [57], used to identify the severity of a mammographic

mass lesions.
14. The Parkinson dataset, which is composed of a range of biomedical voice measure-

ments from 31 people, 23 with Parkinson’s disease (PD) [58].
15. The Pima dataset [59], used to detect the presence of diabetes.
16. The Popfailures dataset [60], related to climate model simulation crashes.
17. The Regions2 dataset, which was created from liver biopsy images of patients with

hepatitis C [61].
18. The Ring dataset [62], a 20-dimension problem with two classes, where each class is

drawn from a multivariate normal distribution.
19. The Saheart dataset [63], used to detect heart disease.
20. The Segment dataset [64], which contains patterns from a database of seven outdoor

images (classes).
21. The Sonar dataset [65]. The task is to discriminate between sonar signals bounced off

a metal cylinder.
22. The Spiral dataset, which is an artificial dataset containing 1000 two-dimensional

examples that belong to two classes.
23. The Tae dataset [66], which concerns evaluations of teaching performance.
24. The Thyroid dataset, which concerns thyroid disease records [67].
25. The Wdbc dataset [68], which contains data from breast tumors.
26. The Wine dataset, used to detect through chemical analysis the origin of wines in

various research papers [69,70].
27. The EEG dataset from [71], which consists of five sets (denoted as Z, O, N, F and S),

each containing 100 single-channel EEG segments each lasting 23.6 s. With different
combinations of these sets the produced datasets are Z_F_S, ZO_NF_S, ZONF_S.

28. The Zoo dataset [72], where the task is to classify animals in seven predefined classes.

The regression datasets are in most cases available from the StatLib URL ftp://lib.stat.
cmu.edu/datasets/index.html (accessed on 18 January 2021):

1. The Abalone dataset [73], which can be used to obtain a model to predict the age of
abalone from physical measurements.

2. The Airfoil dataset, which is used by NASA for a series of aerodynamic and acoustic
tests [74].

https://sci2s.ugr.es/keel/datasets.php
ftp://lib.stat.cmu.edu/datasets/index.html
ftp://lib.stat.cmu.edu/datasets/index.html
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3. The Anacalt dataset [75], which contains information about the decisions taken by a
supreme court.

4. The BK dataset [76], used to estimate the points in a basketball game.
5. The BL dataset, which can be downloaded from StatLib and contains data from an

experiment on the effects of machine adjustments on the time it takes to count bolts.
6. The Concrete dataset, used to measure the concrete compressive strength [77].
7. The Housing dataset, taken from the StatLib library, which is maintained at Carnegie

Mellon University, and described in [78].
8. The Laser dataset, used in laser experiments. It has been obtained from the Santa Fe

Time Series Competition Data repository.
9. The MB dataset, available from Smoothing Methods in Statistics [77].
10. The NT dataset, which contains data from [79] that examined whether the true mean

body temperature is 98.6 F.
11. The Quake dataset, whose objective is to approximate the strength of a earthquake. It

has been obtained from the Bilkent University Function Approximation Repository.

3.3. Experimental Results

The results for the classification datasets are listed in Table 3 and for the regression
datasets the results are reported in Table 4. For the first case, the average classification
error is reported and for the case of regression datasets, the total test error is reported.
The column KRBF denotes the classic RBF training method, GRBF denotes the method
proposed in [80] and the column “proposed” denotes the proposed method. The KBF
simply consists of two phases: in the first phase, the centers and variances are estimated
through the k-means algorithm and in the second phase, a system of equations is solved to
obtain the weights wi of the RBF network.

From the experimental results, it is clear that the proposed method is significantly
superior to other methods in almost all datasets. In the proposed method, the appropriate
initialization interval was found for the parameters of RBF using k-means. A parallel
genetic algorithm was then applied to this previous value range, creating a variety of
neural networks. This combination of techniques obviously has very good results as it
combines a very efficient clustering method and an excellent optimization method that is
ideally parallelized. Of course, the new method requires much more execution time, due to
the presence of the genetic algorithm, but the parallel execution of the software drastically
reduces this time. Furthermore, in order to study the effectiveness of the selection of
parameter F an additional experiment was conducted, where the best fitness of the genetic
algorithm is plotted for the Wine problem. The outcome of this experiment is graphically
outlined in Figure 1. The graph shows that the behavior of the proposed method does
not change significantly for different values of the parameter F. Furthermore, the plot for
the Wine dataset of best, worst and average fitness for F = 3 is shown in Figure 2. An
additional experiment was performed to evaluate the effect of the parameter change k on
the results. In Figure 3, the plot for different values of k for the Housing dataset is outlined
and in Figure 4 the same experiment is shown for the Z_F_S classification dataset. Of
course, from the value k = 4 onwards, the error falls but not at the same rate. The proposed
value k = 10 was used in all datasets in order to have a balance between the speed and the
efficiency of the method. Finally, the classification performance was evaluated based on
two evaluation metrics: precision and recall for some datasets as shown in Table 5. In these
results, the precision of the proposed method showed the best classification performance
under different datasets. We found the same trends in recall metric in two of three datasets
(spiral and EEG datasets).
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Table 3. Classification error for different datasets.

Dataset KRBF GRBF Proposed

Alcohol 46.63% 52.30% 21.86%

Appendicitis 12.23% 16.83% 16.03%

Australian 34.89% 41.79% 22.97%

Balance 33.42% 38.02% 12.88%

Cleveland 67.10% 67.47% 51.75%

Dermatology 62.34% 61.46% 37.37%

Glass 50.16% 61.30% 49.16%

Hayes Roth 64.36% 63.46% 35.26%

Heart 31.20% 28.44% 17.80%

HouseVotes 6.13% 11.99% 3.67%

Ionosphere 16.22% 19.83% 10.33%

Liverdisorder 30.84% 36.97% 28.73%

Mammographic 21.38% 30.41% 17.25%

Parkinsons 17.42% 33.81% 17.37%

Pima 25.78% 27.83% 24.00%

Popfailures 7.04% 7.08% 5.44%

Regions2 38.29% 39.98% 25.81%

Ring 21.65% 50.36% 2.09%

Saheart 32.19% 33.90% 29.38%

Segment 59.68% 54.25% 39.44%

Sonar 27.85% 34.20% 19.62%

Spiral 44.87% 50.02% 18.98%

Tae 60.07% 61.78% 52.44%

Thyroid 10.52% 8.53% 7.12%

Wdbc 7.27% 8.82% 5.29%

Wine 31.41% 31.47% 8.67%

Z_F_S 13.16% 23.37% 4.21%

ZO_NF_S 9.02% 22.18% 4.17%

ZONF_S 4.03% 17.41% 2.18%

ZOO 21.93% 33.50% 9.00%

Table 4. Regression error for different datasets.

Dataset KRBF GRBF Proposed

Abalone 2559.48 4161.66 1960.22

Airfoil 5.49 18.15 0.58

Anacalt 11.628 5.58 0.003

BK 0.17 0.21 0.23

BL 0.05 0.019 0.0009

Concrete 1.15 1.50 0.52
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Table 4. Cont.

Dataset KRBF GRBF Proposed

Housing 2884.09 4784.50 693.22

Laser 2.35 6.94 1.04

MB 11.33 2.44 0.63

NT 72.14 0.22 0.09

Quake 15.36 171.43 7.86
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Table 5. Comparison of precision and recall between the traditional RBF and the proposed method
for some datasets.

Dataset Precision KRBF Recall KRBF Precision
Proposed Recall Proposed

Housevotes 90.61% 95.60% 96.44% 94.25%

Spiral 55.53% 55.93% 82.93% 84.66%

ZONF_S 92.76% 87.23% 97.27% 94.55%

4. Conclusions

A two-phase method was proposed in this article to train RBF neural networks for
classification and regression problems. Firstly, a commonly used clustering method was
used to estimate an interval for the critical parameters of the neural network. Subsequently,
a parallel genetic algorithm was incorporated to locate the best RBF network with good
generalization capabilities. The used algorithm was coded using ANSI C++ and open
source libraries such as the Armadillo library and the OpenMP library for parallelization.
Future research may include:

1. Using parallel methods for the k-means clustering phase of the method.
2. Dynamic selection of k in k-means algorithm.
3. More advanced stopping rules for the genetic algorithm.
4. Replacing the genetic algorithm with other optimization methods such as particle

swarm optimization, ant colony optimization, etc.
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