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Abstract: The complexity of changeable marine backgrounds makes ship detection from satellite
remote sensing images a challenging task. The ubiquitous interference of cloud and fog led to
missed detection and false-alarms when using imagery-based optical satellite remote sensing. An
off-shore ship detection method with scene classification and a saliency-tuned YOLONet is proposed
to solve this problem. First, the image blocks are classified into four categories by a density peak
clustering algorithm (DPC) according to their grayscale histograms, i.e., cloudless areas, thin cloud
areas, scattered clouds areas, and thick cloud areas. Secondly, since the ships can be regarded as
salient objects in a marine background, the spectral residue saliency detection method is used to
extract prominent targets from different image blocks. Finally, the saliency tuned YOLOv4 network is
designed to quickly and accurately detect ships from different marine backgrounds. We validated the
proposed method using more than 2000 optical remote sensing images from the GF-1 satellite. The
experimental results demonstrated that the proposed method obtained a better detection performance
than other state-of-the-art methods.

Keywords: optical satellite image; ship detection; convolutional neural networks; deep learning

1. Introduction

Optical remote sensing images have attracted increasing attention, due to their wide
imaging range and high resolution [1]. In existing studies, panchromatic (Pan) images are
a data source that have been most widely studied. Thanks to its ability to uncover subtle
information, it has been continuously developed in military and civilian applications [2,3],
i.e., geological analysis, city planning, and military reconnaissance.

However, it is still difficult to detect ships from remote sensing images due to complex
and changeable marine backgrounds. Furthermore, huge waves and different types of
clouds and fog all can reduce the accuracy of detection, as shown in Figure 1. Clouds may
cast shadows on the target, thus substantially changing the illumination of the surface.
Scattered clouds and big waves may also become false alarms and confuse the detector.
As a consequence, solving how to increase the detection of the target ship and reduce the
interference of cloud and fog is the key to improving the ship detection performance.

In general, ship detection methods include the following steps: (i) image preprocessing,
(ii) image feature extraction, and (iii) target ship detection. Early in the development of
object detection, many methods focused on how to extract more features from the image
and ignored the impact of image quality. However, the success of image processing
relies upon the production of accurate imagery along with effective human interpretation.
Consequently, the three aspects of ship detection all are important.
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Figure 1. Marine scenes under different types of interference, namely, cloudless areas (with no waves
and big waves), scattered clouds areas, thin cloud areas, and thick cloud areas. The images in the first
column are the original panchromatic images from the GF-1 dataset. Ship targets are displayed in
red boxes. The histograms of the grayscale statistics are illustrated in the second column. The last
column contains images that show the heat maps representing the visual saliency of each scene.
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1.1. Preprocessing Methods for Ship Detection

As noted earlier, remote sensing images have diverse backgrounds and complex
spatial structures. Thus, different methods of image preprocessing are often required before
various tasks can be performed [4,5], including image sharpening processing, contrast
enhancement and cloud removal processing, etc. In [6], an N-D probability density function
matching technique for the preprocessing of multitemporal images is introduced in the
remote sensing domain. It can retain the data correlation structure after the probability
density function matching. In addition, Ref. [7] designed a preprocessing technique to
enhance the local information of the original image data. A new image structure represented
by a fuzzy function is utilized to encode the information into an image. Ref. [8] proposed
a preprocessing algorithm that both smooths noise and enhances edges. It consists of an
improved adaptive spatially-weighted filter that can achieve both of the above functions.
In [9], image preprocessing steps such as filtering, upsampling, and band registration
were standardized by providing references. These steps suggest that preprocessing is an
important part of many applications based on remote sensing images.

Although there are many preprocessing methods for different tasks, scene classification
is still the most basic method. It can mine more targeted and valuable information, and
save us from using one method to solve all problems [10]. Hence, target ship detection
could benefit from this significant progress. Traditionally, scene classification methods
based on object recognition are approaches that require prior information about the objects.
In [11], a multifeature fusion probabilistic topic model for high spatial resolution remote
sensing imagery is devised in order to classify scenes. In this method, the complementary
features can be effectively combined and appropriate low-level feature descriptions can be
provided for the semantic representations. It is interesting and superior to single-features
methods.

Furthermore, deep learning-based methods have became the choice for solving many
computer vision and remote sensing problems [12]. The authors of [13] have devised a
key region or location capturing method. This method can be combined with different
CNN models and prevent confusion of different categories. On the other hand, in [14],
a density peak clustering algorithm (DPC) is proposed for preprocessing hyperspectral
image classification. By using a density peak clustering algorithm, the HSI pixels are
automatically subdivided into smaller classes, and the within-class difference caused by
spectral variation is reduced. In addition, we observed that image blocks in different scenes
have different grayscale histograms, as illustrated in Figure 1. This intuitive mapping
relationship provides us with an idea. We take the gray histograms of all image patches as
the input and then use the DPC algorithm to classify different scenes. This can quickly and
effectively classify different scenes.

1.2. Ship Detection Using Feature Engineering

In the process of image processing, feature extraction and target detection are often
integrated in the same algorithm. In addition, in the early stages of development, most
of object detection methods are implemented by utilizing visual features (such as color,
texture, local binary pattern, spatial relationships, etc.). In [15], a semisupervised model is
presented to distinguish between ships and nonships. Besides common shape and texture
features, this article also adds local multiple patterns to enhance feature representation.
Reference [16] proposes a new detection method. It analyzes whether the sea surface is
uniform through two features, and uses a new linear function to select candidate regions.
Based on this, it can ignore non-candidate regions to reduce calculation time and achieve
fast detection.

In [17], a robust algorithm is proposed. It combined a visual attention model with a
local binary pattern (CVLBP), and was analyzed in complementary ways. This method
can reduce the sensitivity of clouds and illumination, as well as having a better detection
effect. Furthermore, in order to increase the separability between ships and background,
reference [18] proposed to rearrange the spatially adjacent pixels in the vicinity of ships into
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a vector, so that it can be endowed with some contextual information. At the same time,
histograms of oriented gradients (HOGs) are used to validate real ships out of a selection of
candidates. In addition, aiming to deal with complex scenes, a contour refinement and the
improved generalized Hough transform (GHT)-based ship detection scheme are proposed
in [19]. It can achieve a more accurate ship detection by repairing damaged bow contours
and removing any erroneous candidates. However, these methods often rely upon one or
more handcraft features, and they cannot find deep semantic information, so it is difficult
to achieve better detection results.

In addition, since ships are often conspicuous in the background of the ocean, their
salient characteristics have provided us with another research idea. We can detect the
regions that represent the scene as auxiliary features for finding a ship. For example, Ref.
[20] propose a spectral residual (SR) approach for visual saliency detection. It converts the
input image to the spectral domain, and finds the spectral residual to obtain a saliency map.
In [21], a context-aware saliency detector (CASD) was designed. The main design principle
is that the context of the dominant objects is just as essential as the objects themselves.
They are simple to implement, fast in processing speed, and can show good performance.
However, for some complex ocean scenes the acquired saliency map may contain scattered
clouds or ocean waves, so it can only be used as a reference.

1.3. Ship Detection Using Convolutional Neural Networks

With the extensive research of deep learning methods in recent years, convolutional
neural networks have been increasingly used in the field of object detection [22,23]. Convo-
lutional neural networks can automatically extract deep abstract features that are difficult
to represent by hand design, so they show advantages compared to traditional machine
learning algorithms. At the same time, it can also reduce manual participation and save
labor costs. We describe these CNN methods from two aspects: region-based (two-stage)
frameworks and unified (one-stage) frameworks [24]. The region-based framework is a
two-stage cascading network. One is used to generate object proposals, and the other
determines whether the desired object exists. When the successful application of deep
CNNs in image classification was transferred to object detection it resulted in the first
region-based CNN (RCNN) detector and showed good performance [25]. In spite of achiev-
ing high object detection quality, the RCNN still has some drawbacks. Subsequently, a
series of improved algorithms were derived, such as SPPNet [26], Fast RCNN [27], Faster
RCNN [28], and DeFRCN [29]. In addition, the authors of [30] developed an attention mask
R-CNN to detection ships. It can accurately segment ships at the pixel level by adding a
bottom-up structure to the FPN structure of a Mask R-CNN. In [31], a novel deep CNN
with a hierarchical selective filtering layer is proposed to detect ships with various scales.
It shows a high detection accuracy and strong robustness.

Nevertheless, region-based approaches are still slow and hard to optimize, and com-
putationally expensive for current mobile/wearable devices. Therefore, researchers have
begun to design unified detection strategies. This is different from two-stage frameworks,
because one stage detection frameworks have a single method that does not separate the
process of the detection proposal. All the computation will be encapsulated in a single
CNN, thus making optimization easier [24]. Commonly used one-stage object detection
algorithms are, DetectorNet [32], SSD [33], and YOLO series [34–37]. Compared to the
methods of R-CNN series, YOLO turns the object detection problem into a regression
problem. Given the input image, YOLO is able to directly return the bounding box of the
target and its classification category at multiple positions of the image utilizing regression
algorithm. YOLO is a convolutional neural network that can predict multiple box positions
and categories at the same time. It can achieve end-to-end target detection and recognition.
The fast speed of YOLO is its greatest strength. The optimized YOLO network can output
multi-scale feature maps and has accurate target detection performance. Moreover, in [38],
a new and improved approach CornetNet is proposed to detect objects. The paired top-left
and bottom-right keypoint is utilized to substitute a set of anchor boxes. In [39], a improved
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model named YOLOF is proposed. They designed two key components, dilated encoder
and uniform matching, which make the method achieve considerabled effectiveness. Con-
sequently, after comprehensive consideration, we improved the YOLOv4 network model
to obtain refined ship detection results.

After the aforementioned research, we propose a saliency-tuned offshore ship detection
method. We used a density peak clustering algorithm [14] as the first preprocessing step in
order to classify the image blocks of different scenes. We use different saliency methods
(e.g., SR [20], CASD [21], and a histogram-based contrast method (HC) [40]) to detect the
saliency of each scene image. In view of image characteristics in different scenes, different
saliency algorithms have different advantages and can obtain better detection results for
different scene images. Then, the saliency detection results are used as the third channels
and stacked with the original panchromatic image. They are treated as input data and
fed into the subsequent network. Moreover, we added the disentangled non-local (DNL)
module [41] into the different layers of the YOLOv4 network. The DNL module is an
improved self-attention mechanism module, which can dig out the attention area and
boundary information through pairwise and unary operators and enhance a network’s
ability to detect salient objects in an image. Finally, the extracted features are sent to the
detection head to complete the detection of an offshore ship.

The main contributions of this paper are as follows: First, a DPC algorithm is intro-
duced for scene classification of image blocks. Second, because ships can be regarded as
anomaly objects, different saliency detection methods (e.g., SR, HC, and CASD) are used to
extract prominent objects from different marine backgrounds. The above-mentioned first
step preprocessing operation can reduce the intra-class difference of each sea surface scene
category, and the second step can enhance the characteristics of the target ship. Finally, the
DNL-added YOLONet is proposed to integrate the salient features of the target effectively;
therefore, better detection results can be obtained. Compared with YOLO, DNL-added
YOLONet enhances the ability of network context modeling by introducing an attention
mechanism. We have also produced a batch of ship data sets based on the panchromatic
image data from the South China Sea. For the problem of an insufficient number of ship tar-
gets in thick cloud and scattered cloud images, an experiment creating simulation samples
was carried out to obtain sufficient training samples.

The remainder of this paper is organized as follows. The proposed ship detection
framework is described in Section 2. The experiments and analysis are discussed in
Section 3. The conclusion is drawn in Section 4.

2. Methodology

Our ship detection approach is implemented based on an DNL-added YOLONet
framework with a preprocessing module. As shown in Figure 2, all image patches are
divided to different classes by DPC algorithm according to their gray-histogram. Then we
use scene-adapted saliency detection method to capture the salient targets of image blocks
in different background. Next, integrate the saliency maps with image blocks as training
samples and fed them into network. After that, the YOLOv4 network added with the DNL
module (or called saliency guided DNL-YOLO) is utilized for feature extraction and target
detection. These details are elaborated upon in the following subsections.

2.1. Scene Classification Using DPC Algorithm

In general, the width of remote sensing images is relatively large, so their scenes are
local. Therefore, the original remote sensing image needs to be divided into sub-blocks
to accurately detect targets in different scenes. Meanwhile, in order to avoid a ship being
cut in half, the sub-block cutting needs to be overlapped. After obtaining the image
block set, different scene images need to be classified according to certain characteristics.
Furthermore, for panchromatic images, grayscale intensity distribution can accurately
reflect different sea scene characteristics according to the height and position of the peaks
[42]. However, the statistics-based method is not accurate enough and requires further
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improvement. Density peak clustering approach, proposed on science in 2014 [14], is
an algorithm that can accomplish efficient clustering of a data set. The basic idea of the
algorithm is that the local density of the data cluster center is larger than that of adjacent
data points, and it is far away from other data cluster centers.

Figure 2. The overall flowchart of proposed saliency tuned YOLONet for ship detection. First, we
utilized the grayscale histograms of each block to classify scenes. Second, the saliency maps were
regarded as third channels. Finally, they were separately fed into the YOLO network adjusted by the
DNL module.

The grayscale histograms of each sub-blocks were written as the input vector of
clustering algorithm h(i) = [h0, h1, . . . , hk, . . . , hn−1]

T , where hk is the quantity of pixels
with each grayscale value. DPC algorithm needs to introduce 3 key parameters, namely dij
(the distance between vectors), ρi (the local density), and δi (the reference distance). The
distance dij between vectors are used to measure the similarity of two vectors. The more
similar the two vectors, the smaller the dij is. There are different methods to calculate the
distance between vectors, including Euclidean distance and Manhattan distance, etc. In
contrast, we chose the Manhattan distance due to its better stability in describing similarity
features and better intuitiveness in describing larger data feature differences.

dij =
√
|h(i)− h(j)|′ ∑−1 |h(i)− h(j)| (1)

The local density ρi was defined as follows:

ρi = ∑
j 6=i

χ(dij − dc) (2)

where χ(·) = 1 when (·) < 0, otherwise χ(·) = 0. dc is a cut-off distance, defining the scope
of points to be counted. In fact, ρi is the number of data points within the cut-off distance
around the currently counted point. Thus, ρi can measure how much data is clustered
around that point.

The reference distance δi was defined as follows:

δi = min
j:ρj>ρi

(dij) (3)
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The meaning of δi is the distance between data point h(i) and h(j) with bigger local
density ρj and smallest distance dij. Note that for the data point with biggest global density
h(m), its reference distance was defined as follows:

δm = max
j

(dij) (4)

We noticed that the necessary and sufficient condition for a data point to become the
center of the data cluster is that the reference distance and local density are both large. In
this way, isolated data points with small ρ and large δ and similar point families with a large
ρ and small δ were excluded. After clustering, we divided the marine scene sub-blocks into
five categories: big wave area, no wave area, thick cloud area, thin cloud area, and scattered
clouds area as shown in Figure 3. For different marine scenes, we use different methods to
perform the next step of saliency preprocessing in order to enhance the characteristics of
the ship target.

Figure 3. Marine scene classification algorithm based on density peak clustering. First, the grayscale
curves of different marine scene sub-blocks are employed as the input of DPC algorithm. Then, these
sub-blocks automatically gather to form 5 clusters, representing that marine scenes are classified into
five categories.

2.2. Saliency Detection for Different Scenes

Due to the salient characteristics of ship targets in the ocean background, we perform
saliency detection on image blocks to enhance the recognizability of ship targets. Ideally,
we can perform good saliency detection on all images in different scenes using only one
algorithm. However, the interference of clouds and sea waves makes this impossible.
Therefore, we used different methods to process image blocks in different scenes. (i)
Cloudless scene: the SR algorithm is used to extract the saliency map and the mean filter
parameter is set to 200× 200. (ii) Thin cloud scene: the above-mentioned saliency algorithm
is repeated twice. The mean filter parameter is set to 400 × 400. (iii) Scattered cloud scene:
the HC algorithm is used to extract the scattered cloud area and remove it. Then we used
the SR algorithm to detect the salient object. The mean filter parameter is set to 400 × 400.
(iv) Thick cloud scene: first, the CASD algorithm is used to detect the salient regions of the
original image, and then the SR algorithm is used for a second detection. The mean filter
parameter is set to 400 × 400. All images initially used median filtering to eliminate noise.
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Spectral residual algorithm. This method is mainly implemented in the frequency
domain. First, the image is transformed into the frequency domain through Fourier
transform, and the amplitude spectrum and phase spectrum are calculated.

a = A(F(x)) (5)

p = P(F(x)) (6)

where F represents the Fourier transform. A and P represent the acquisition of the amplitude
spectrum and the phase spectrum, respectively. Then the logarithm of the amplitude
spectrum is filtered through the linear space. Then, we calculated the difference between
the two to obtain the spectrum residual.

l = log(a) (7)

r = l − h ∗ l (8)

where h represents the mean filtering, and r represents the calculated spectral residual.
Finally, the spectral residual and phase spectrum are transformed to the space domain
through inverse Fourier transform, and the saliency result map is obtained through lin-
ear filtering.

s = h ∗ F−1[exp(r + p)]2 (9)

Context-aware algorithm. This method is mainly implemented according to four
major principles: local low-level considerations, global considerations, visual organization
rules, and high-level factors. At the beginning, we divided the image into multiple blocks,
and then we compared the block Pi corresponding to i with all other blocks Pj in the lab
color space. If the Pi block has a large distance from other blocks, it is a salient block. In
addition, the saliency areas are mostly clustered, thus the distance between the small blocks
is relatively close. The calculation formula is as follows:

d
(

pi, pj
)
=

dc
(

pi, pj
)

1 + c · dp
(

pi, pj
) (10)

where dc is the Euclidean color distance of the two image blocks in Lab space, and dp is the
Euclidean position distance. For the pi block, if the difference from any pj block is large, it
is considered a salient block. Hence, the first N (usually 65) image blocks with the smallest
distance to pi can be obtained. By calculating the difference between them and pi block, the
saliency formula is defined as follows:

si = 1− exp

{
− 1

n

N

∑
n=1

d(pi, qn)

}
(11)

Meanwhile, changing N can change the saliency area scale. By taking the average of
the multi-scale results, the saliency features at multiple scales can be combined to enhance
the representativeness of the saliency map.

s̄i =
1
M ∑

r∈R
sr

i (12)

Moreover, the context correction must be added. We need to set a threshold and
extract the most attended localized areas in the saliency map. The saliency value of the
pixel outside the attended areas is obtained by calculating the weighted Euclidean distance
between it and the nearest attended area. This is expressed as follows:

ŝi = s̄i

(
1− d f (i)

)
(13)
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d f (i) =
√(

xi − xj
)2

+
(
yi − yj

)2 (14)

where, d f (i) is the Euclidean distance between the pixel (xi, yi) and the nearest focus of
attention pixel

(
xj, yj

)
. With this operation, the saliency value near the salient target can be

increased, and the saliency value of the background area can be reduced, so as to achieve a
better saliency detection effect.

Histogram-based contrast algorithm. This saliency detection algorithm is imple-
mented based on color features. The saliency value of a pixel is determined by the color
difference with other pixels. Assuming there are N pixels in the image, the saliency formula
is expressed as:

si = ∑
∀j∈N

D(i, j) (15)

when calculating by color, the formula is:

si = s(ci) =
m

∑
j=1

fiD
(
ci, cj

)
(16)

where, ci is the color value in the pixel i, m is the number of different pixel colors, and fi
is the frequency of the pixel color cj in the image. The principle of this method is simple,
especially for scattered cloud scenes, it can achieve better cloud area extraction and reduce
interference for saliency detection of ship targets.

2.3. Saliency Tuned YOLONet

Most of the existing methods only use convolution operations to extract features. How-
ever, non-local blocks are a popular self-attention module used to enhance the modeling
ability of CNN and it shows good performance in visual applications. DNL module is
an improved version of a non-local module. By using an independent softmax function
and disentangling the embedding matrix, the learning complexity of the CNN is reduced,
and a clearer salient area can be extracted. As a consequence, the DNL module is added
on the architecture of the YOLOv4 network to combine both convolution and attention
operations, which can further explore the salient features in image. Especially for ships that
are prominent targets in the ocean background, it can exert a better detection performance.
The main framework of the network model is illustrated in Figure 2.

DNL module. The DNL module is obtained by optimizing the non-local module,
which is a popular module used to enhance the context modeling capabilities of traditional
CNN. The calculation formula of the original non-local module is as follows:

yi = ∑
j∈Ω

ω
(
xi, xj

)
g
(
xj
)

(17)

g
(

xj
)
= Wg ∗ xj (18)

where Ω denotes the all pixels of input feature map. g(·) is the transformation function
related to weight matrix Wg, which is utilized to map a point to a vector. ω(xi, xj) is
the similarity function of pixel j (referred to as a center pixel) and other pixel i, typically
instantiated by an embedded Gaussian as:

ω
(
xi, xj

)
= σ

(
pT

i cj

)
=

exp
(

pT
i cj
)

∑t∈Ω exp
(

pT
i ct
) (19)

where, pi = Wpxi and cj = Wcxj denote the embedding of pixel i and j, and σ(·) is the
softmax function. After that, the above formula can be transformed by a whitening dot
product denoted as:
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ω(xi, xi) = σ

(pi − µp
)T(cj − µc

)︸ ︷︷ ︸
pairwise

+ µT
p cj︸︷︷︸

unary

 (20)

where the µp and µc are the averaged embedding over all of the pixels. The first whitened
dot product term represents the pure pairwise relation between a pixel i and a pixel j,
and the second term represents the unary relation where a pixel j has the same impact
on all pixels i. As a consequence, the DNL module divides the original formula into two
terms, paired terms and unary terms, by disentangling matrix. One of them then learns the
relationship within the area, and the other learns the salient boundary. The separation of
these two items can then reduce the mutual interference, thereby achieving a better feature
extraction effect.

The specific frame is shown in the dashed box in Figure 2. For an input feature map
of C × H ×W, two 1× 1 convolutions wk, wq is utilized to extract features firstly. Then
they are calculated via a whitening dot product. Finally, the output features of HW × HW
are obtained through the softmax function. In another branch, an independent 1 × 1
convolution wm is used to extract features, and the softmax with expand operations are
connected to obtain the same size feature as the above. At the end, we added the previous
two results, and then a dot product with a 1× 1 convolution wm of the original input feature
in order to obtain the final output.

DNL-added YOLONet. The YOLOv4 network is a recent developed optimization
framework in the YOLO family for target detection. The YOLOv4 network model mainly
includes five basic components: CBM, CBL, Res Unit, CSPX, and SPP, as shown in Figure
4. The CBM component is composed of convolution, batchnorm, and mish activation
functions, and is the most basic structural unit. The CBL component is composed of convo-
lution, batchnorm, and leaky_rule activation functions. The Res Unit component draws on
the residual structure in the Resnet network, allowing the network to be built deeper. The
CSPX component draws on the CSPNet network structure and consists of convolutional
layers and X Res unit modules. The spatial pyramid pooling (SPP) component contains a
multi-scale pooling structure, which can then complete multi-scale feature fusion.

Figure 4. The specific details module of the YOLOv4 network with the DNL module added. The
YOLOv4 network model consists of three parts: backbone, neck, and detection head. This arti-
cle mainly modified the backbone module, adding the DNL module to the some CSPX modules.
Therefore, it can extract more salient feature information.

The overall framework is the same as other versions of the YOLO network, including
three parts: backbone, neck, and detection heads. Of these, the backbone network combines
many new methods, such as CSPX, Mish activation function, and dropblock. In the neck
part, it mainly includes SPP module, FPN, and a PAN structure. For the prediction part, it
includes three multi-scale detection heads and uses an improved CIOU_loss loss function.
In addition, we introduced the DNL module in the last two Res units of the CSPX structure.
For example, in the CPS8 module, the first six residual units only contain two CBM blocks,
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and the last two residual units are added to the DNL. The DNL module can reduce the
difficulty of joint learning in the original non-local module. At the same time, it can model
two different visual cues, regional relations and salient boundaries, to improve the accuracy
of salient feature extraction. Thus, the improved YOLONet has a greater advantage for
object detection.

3. Experiments

In this section, we demonstrate the effectiveness of our method on the Nan-Hai dataset
and compare our method with state-of-the-art methods. The model is implemented using
the Python language, and the network is built using the PyTorch deep learning framework.
All programs were run on an NVIDIA GeForce GTX 1080 Ti graphics card with 12 GB of
onboard memory.

3.1. Datasets

We verify the performance of the above method on the South China Sea dataset. This
dataset is produced from images returned by the Gaofen-1 remote sensing satellite. The
size of each image is 18,192 × 18,000 pixels, and the spatial resolution is 2 m. The spectrum
ranges from 450 to 900 nm. We selected some images in different scenes and cropped them
to a size of 512 × 512 pixels. As shown in Table 1, 2344 image blocks are converted into
one-dimensional grayscale vectors as training samples for scene classification. In addition,
the training samples for object detection contain more than 2000 image patches, and the
ratio of positive and negative sample images is 1:2. Moreover, there are many types of ship
targets in training samples, and the size of the target ships in 2-m resolution images varies
from 8 pixels to 157 pixels. They are illustrated in Figure 5.



Appl. Sci. 2022, 12, 2629 12 of 20

Figure 5. Schematic diagram of training sample blocks. The data set includes various types and sizes
of ship targets in different scenes, as well as static targets and dynamic targets. At the same time,
simulation samples are added to make up for the lack of samples in some scenes.

Table 1. Dataset overview.

− Scene Classification Object Detection

Data size
Data type

1 × 256
Gray vector

512 × 512
Panchromatic

Total samples
Train samples
Test samples

2344
2110
234

2721
2448
273

Original samples
Augment samples

−
−

2245
476

Moreover, for image samples in scenes such as thick clouds, there are fewer target
samples due to a large amount of cloud and fog occlusion. Therefore, we used the simula-
tion method usually used for small object augmentation [43] to create simulation samples,
which is shown in Figure 6. Ship samples of different types and sizes are cut out and
randomly added to the background image. Then, the boundary is blurred by multi-size
Gaussian filters so that the target and the background can be integrated better. After
that, we re-screened the obtained simulation samples and removed the images with poor
simulation results to obtain the final data set.
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Figure 6. Schematic diagram of simulation sample production with randomly added different types
of ships in the background in order to obtain augment samples.

3.2. Experimental Analysis

In general, we evaluated the performance of object detection methods through multiple
evaluation indicators, such as precision, recall, and AP value. Precision, also written as P,
indicates how many samples of the predicted result are correct. When P reaches 100%, it
means that there is no false detection. Similarly, recall usually remembers R, indicating
how many positive samples in the predicted results have been correctly detected. When
R reaches 100%, it means that there are no missed targets. To obtain these indicators, the
calculation of intersection over union (IoU) is necessary.

IoU = Ao/Au (21)

where Ao and Au represent the overlapping and union area of prediction boxes and the
ground truth box. Therefore, we need an IoU threshold to determine whether the detection
box is correct. Then, true positives (TPs), false positives (FP), false negatives (FN), and true
negatives (TN) in detection results can be found. Consequently, the precision and recall can
be calculated; the formula is as follows:

Precision =
TP

TP + FP
(22)

Recall =
TP

TP + FN
(23)

Moreover, it is not enough to only evaluate the performance of the model with preci-
sion and recall. Because it is possible that when the precision of model A is higher than
that of model B, its recall rate is lower than that of model B. The solution to this problem
is to combine precision and recall to calculate another indicator, mean average precision
(AP) score—where m means the average of multiple categories. Quantitatively, AP means
the average value of precision for each object category when recall varies from 0 to 1. It
can characterize the area under the precision–recall curve. Compared to F1, AP can more
accurately and intuitively reflect the performance of the detection model. For the ship
detection task discussed in this paper—because only a ship needs to be detected—mAP is
equal to AP.

Analysis of different schemes. This section focus on verifying the superiority of the
proposed schemes, including scene classification, saliency detection, and disentangled
non-local modules. As presented in Table 2, methods 1–5 are constructed models with
different schemes. The first row is the baseline method Yolov4, and the second method
is the baseline algorithm with saliency detection module. Other methods add different
modules in turn to verify the validity of each scheme. It can be seen that each method
performs better than the previous one. When all three schemes are included in a model, the
AP can be improved to 87.05%. Consequently, the proposed schemes in this paper are all
effective.
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Table 2. Quantitative evaluation of the proposed schemes. (SC: scene classification, SD: saliency
detection).

Methods Baseline SC SD DNL P(%) R(%) AP(%)

1 X - - - 90.77 80.30 85.21
2 X - X - 91.96 80.65 85.65
3 X - - X 92.37 81.33 85.82
4 X - X X 92.74 81.88 86.59
5 X X X X 93.23 82.44 87.05

Number of DNL analysis. The DNL module can extract more salient features, but it
also means that the network is prone to overfitting when a large number of modules are
added. Thus, in order to obtain a better detection result, the number of DNL added into
the YOLO network needs to be adjusted. Figure 7 displays the relationship between the
number of DNL in the network and the average precision. We can see that the average
precision is highest when the number of DNL modules is 12. After that, as the number of
DNL increases, average precision will decrease instead. Simultaneously, we have observed
experimentally that as DNL increases, the loss of verification dataset will also increase. It
indicates that the network learning has overfitted for this training dataset.

Confidence score analysis. As a key parameter, the confidence score has a great
influence on the final result. A higher confidence score usually means less FPs; it may
increase precision, but also decrease the recall. Thus, to obtain a better trade-off between
detection and location accuracies, the confidence score threshold in this paper is set 0.5.
The IoU threshold is also set 0.5, according to experiments. As Figure 8 shows, it displays
precision trends of three different object detection methods in a series of confidence scores.
It can be seen that the proposed method can obtain better detection results compared with
other networks. This indicates our approach is capable of learning more significant features
for ship detection tasks.

Figure 7. Overall average precision (%) versus different numbers of DNL module in each CSPX
structure based on the Nan-Hai dataset.
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Figure 8. Ship detection precision (%) versus confidence score for different detection methods.
(a) YOLOv4, (b) Faster RCNN, and (c) our method.

3.3. Comparisons on Detection Task with Other Methods

To illustrate the performance of the proposed saliency-tuned YOLONet ship detection
method, we conducted comparative experiments and compared them with some other state-
of-the-art object detection approaches. These included two one-stage methods, YOLOv4
citeyolov4 and SSD [33], and two-stage methods, Faster-RCNN [28] and SPPNet [26].
Because the variation of the object size is large and some ships are small, the IoU and
confidence threshold were set to 0.2 and 0.5, respectively, to obtain better results. We
trained the data samples over 100 epochs, and all other models were tuned to optimal
parameters in order to achieve the best results.

Precision–recall curve analysis. The precision–recall curves and AP scores of differ-
ent methods on the Nan-Hai dataset are shown in Figure 9 and Table 3, respectively. The
recall threshold is set from 0 to 1. In addition, to ensure the fairness of the experiment,
we try our best to ensure that all models are trained optimally. Table 3 shows that the
detection precision rate and recall rate of the proposed method is higher than the compared
methods. For the comprehensive index AP, the evaluation index demonstrates that it can
reach 87.05%. This AP is significantly higher than that of the other detectors investigated.
Moreover, the red line in Figure 9 can more intuitively show that our method has a larger
area under the line. This can be attributed to the fact that the method proposed in this
paper indeed have better detection performance.
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Figure 9. Ship detection precision (%) versus recall (%) for different detection methods. The larger
the area under the curve, the better the model performance.

Comprehensive analysis. We tested the model with images of size 2048 × 2048.
Large-format images can better reflect the performance of network detection in various
sea scenes. At the same time, in order to verify the generalization ability of the detection
method, simulation samples of different types and sizes are added in some images. The
comparative experimental results of the different methods are illustrated in Figure 10.
Among them, the green box represents the ship targets in the original images, and the red
box represents the detection results. It can seen from this figure that all methods can obtain
good detection results for cloudless scenes. However, when the scene is more complex,
such as those containing cloud interference and occlusion, SPPNet has a higher false alarm
rate. This is partly because the network does not extract enough features, which leads
to false detections. However, compared to the other two methods, YOLONet and Faster
RCNN, it can detect relatively more ship targets. For our method, although it adds some
false alarms, more accurate detection results can also be obtained. Over all, the network
model proposed in this paper has a better detection performance.
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Figure 10. Detection maps for the Nan-Hai dataset based on different methods. Among them, each
row represents different scenes: cloudless, big waves, scattered clouds, thin clouds, and thick clouds.
The first column represents the original image, columns 2–6, represent the results of our method,
YOLOv4, Faster RCNN, SSD, and SPPNet, respectively. Furthermore, the green boxes represent the
true ship targets; red boxes represent detected result targets.

Table 3. Performance results of different methods (P: precision, R: recall).

Algorithm P(%) R(%) AP(%)

Our approach 93.23 82.44 87.05

YOLOv4 90.77 80.30 85.21

SSD 84.98 77.76 81.33

Faster-RCNN 83.59 76.49 80.59

SPPNet 88.32 75.22 79.46

3.4. Discussion

With the help of scene classification and saliency detection, the proposed method can
promote the performance many off-shore ship detection methods in optical satellite images.
Unfortunately, the proposed method does not consider the amount of model parameters,
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resulting in a relatively long running time of the system. From the perspective of practical
application, the lightweight network model will be our next research goal. In addition,
the introduced saliency detection method is not good enough for images with a complex
background. It still has some noise in the obtained saliency map, especially for the scenes
with scattered clouds. It is very important to design a good saliency detection method
for ocean backgrounds. Furthermore, it can also be considered from the perspective of
multi-frame continuous images. For marine scenes dominated by moving ships, ship
targets will appear in a series in multiple frames of continuous images that are different
from the background.

4. Conclusions

In this article, a saliency-tuned YOLONet is proposed for off-shore ship detection from
the optical satellite image. First, the density peak clustering is introduced to classify the
different scene blocks by their histograms. The purpose of the scene classification is to
reduce the intra-class variance of the dataset for targeted image enhancement processing.
Second, since the ship can be regarded as a salient target, different saliency region extraction
methods (e.g., SR, HC, and CASD) are utilized to extract prominent targets in different scene
categories. Scene classification and targeted saliency detection can significantly reduce
the interference of clouds and fog on the sea surface. Finally, a DNL-added YOLONet is
proposed. By introducing an attention mechanism, the DNL module enables the feature
maps in order to add more global information to the original local features. Thus, the
neural network enhances its attention to salient targets and can capture more salient
features. The advantages of our approach come from two aspects: On the one hand, the
scene classification can effectively reduce differences within a class and pertinently process
images in different scenes. On the other hand, the additions of the saliency map and the
DNL module improve the saliency detection capabilities of the network model.

The experimental results based on the South China Sea dataset returned by the Gaofen-
1 satellite show that the detection accuracy of the proposed off-shore ship detection method
outperforms other state-of-the-art methods. However, due to the noise of the saliency
map, the recall rate is not greatly improved. This problem will be addressed in our future
research.
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