friried applied
e sciences

Article

Correcting Diacritics and Typos with a ByT5 Transformer Model

Lukas Stankevicius *

and Tomas Krilavi¢ius 2

check for
updates

Citation: Stankevicius, L.;
Lukosevicius, M.; Kapocitite-Dzikiené,
J.; Briediené, M.; Krilavi&ius, T.
Correcting Diacritics and Typos with
a ByT5 Transformer Model. Appl. Sci.
2022, 12,2636. https://doi.org/
10.3390/app12052636

Academic Editors: Andrea Prati,
Carlos A. Iglesias, Luis Javier Garcia
Villalba and Vincent A. Cicirello

Received: 18 January 2022
Accepted: 23 February 2022
Published: 3 March 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Mantas LukosSeviéius

1,% 2 2

, Jurgita Kapociute-Dzikiené “(), Monika Briediené

Faculty of Informatics, Kaunas University of Technology, LT-51368 Kaunas, Lithuania

Faculty of Informatics, Vytautas Magnus University, LT-44404 Kaunas, Lithuania;
jurgita.kapociute-dzikiene@vdu.lt (J.K.-D.); monika.briediene@vdu.lt (M.B.); tomas krilavicius@vdu.lt (T.K.)
Correspondence: lukas.stankevicius@ktu.lt (L.S.); mantas.lukosevicius@ktu.lt (M.L.)

Abstract: Due to the fast pace of life and online communications and the prevalence of English and
the QWERTY keyboard, people tend to forgo using diacritics, make typographical errors (typos)
when typing in other languages. Restoring diacritics and correcting spelling is important for proper
language use and the disambiguation of texts for both humans and downstream algorithms. However,
both of these problems are typically addressed separately: the state-of-the-art diacritics restoration
methods do not tolerate other typos, but classical spellcheckers also cannot deal adequately with
all the diacritics missing.In this work, we tackle both problems at once by employing the newly-
developed universal ByT5 byte-level seq2seq transformer model that requires no language-specific
model structures. For a comparison, we perform diacritics restoration on benchmark datasets of
12 languages, with the addition of Lithuanian. The experimental investigation proves that our
approach is able to achieve results (>98%) comparable to the previous state-of-the-art, despite being
trained less and on fewer data. Our approach is also able to restore diacritics in words not seen during
training with >76% accuracy. Our simultaneous diacritics restoration and typos correction approach
reaches >94% alpha-word accuracy on the 13 languages. It has no direct competitors and strongly
outperforms classical spell-checking or dictionary-based approaches. We also demonstrate all the
accuracies to further improve with more training. Taken together, this shows the great real-world
application potential of our suggested methods to more data, languages, and error classes.

Keywords: natural language processing; diacritics restoration; typo correction; transformer models;
ByT5; QWERTY

1. Introduction

Since the dawn of the computer era, the English language, Latin alphabet, and the
QWERTY keyboard are the “computer-native” means of communication. English remains
the lingua franca in IT, science, and many other fields. Many people use it in addition to
other, their native languages, as do we here.

Most other languages that use a Latin-based alphabet have some diacritic signs (“¢”)
that are added to the basic Latin characters (“c”), modifying their pronunciation. The initial
ASCII character set was greatly expanded by the wide adoption of the Unicode Standard to
accommodate for the characters of other languages. Typing these characters, however, is
not always convenient.

Many different keyboard layouts exist, they can be more efficient for other languages,
as well as English, it is easy to remap physical keyboards in software, and virtual keyboards
on touchscreens can even be dynamic; however, learning to type efficiently on different
layouts is not easy, they are also not universally available. In addition, large alphabets are
not practical to fit on a keyboard layout so that each character can be typed by pressing just
one key, instead requiring combinations or sequences of keys.

Appl. Sci. 2022, 12, 2636. https:/ /doi.org/10.3390/app12052636

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12052636
https://doi.org/10.3390/app12052636
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0012-5471
https://orcid.org/0000-0001-7963-285X
https://orcid.org/0000-0002-8402-4549
https://orcid.org/0000-0001-6165-1702
https://orcid.org/0000-0001-8509-420X
https://doi.org/10.3390/app12052636
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12052636?type=check_update&version=2

Appl. Sci. 2022,12, 2636

2 0f 33

All these factors made the QWERTY variations (including the similar QWERTZ and
AZERTY) remain the most popular keyboard layouts for Latin-alphabet-based languages,
where the diacritics are usually an afterthought.

By necessity, haste, or convenience, people often forgo the diacritic signs and special
characters in the languages that need them, and type using the base Latin alphabet and
keyboard layout instead. Such texts can typically be largely understood nonetheless, but
this introduces ambiguities and is not considered a proper use of the language.

Our aim, in this work, is to investigate automatic methods of restoring diacritic signs
in such texts, as well as correcting other typical typographic errors, colloquially known as
“typos”, as such fast, sloppy typing usually results in both.

Restoring diacritics (as well as correcting typos) is important for the human readability
of the texts, as well as disambiguation and the proper use of the language (and the prestige
associated with it), preventing its degradation.

On the more objectively-measurable technical side, undiacritized texts are also harder
to proccess automatically: machine-translate, synthesize, parse, etc. The relevance and
importance of diacritics restoration are revealed by evaluating them on the downstream
tasks, i.e., extrinsically. There are several examples. The diacritics restoration helped to
increase the automatic speech recognition quality for the Romanian language when diacrit-
ics were restored in the corpus used for the language model training [1,2]. The diacritics
restoration also resulted in a better text-to-speech performance for Romanians [3]. Used
as the integrative NLU component, the diacritics restoration also improved the accuracy
of the intent classification-based Vietnamese dialogue system [4,5]. Similarly, statistical
machine translation performance was positively correlated with correctly diacritized words
for Arabic [6]. Moreover, a higher binary classification accuracy was achieved after Turkish
text diacritization [7].

Usually, the progress in any Natural Language Processing (NLP) topic initially begins
with research for the English language and then spreads to others, but the omitted diacritics
problem is an exception. The English written language is highly dependent on the original
Latin alphabet. Undiacritized ASCII equivalents of a few English loanwords with diacritics
(as “café”, “naive”, “facade”, etc., mostly borrowed from French) do not cause ambigu-
ity and, therefore, can be easily restored with a dictionary. The level of ambiguity and
complexity of restoration for the other languages strongly depends on the language charac-
teristics. For languages where the omitted diacritics cause fewer disambiguation problems,
the diacritics restoration is formulated as a spelling correction task. In this research, our
focus is on languages that already have lexical and inflective ambiguity. Hence, the omitted
diacritics exacerbate this problem even more, and simple solutions are not enough.

Virtually all the previous works (see Section 2) investigated the diacritics restoration
problem in isolation, i.e., restoring diacritics in otherwise correct texts. This is, however,
not realistic: if not enough care and attention is given to using proper diacritics, while
typing a text, then, typically, the same is with using the correct spelling. A carefully-typed
text without diacritics might be more common in the past, when Unicode was not widely
supported for technical reasons, but this is no longer the case. Crucially, it is neither easy to
correct typos before restoring diacritics, as those are not proper texts, nor after, as diacritics
would not be restored on mistyped words. If, in addition to the missing diacritics, other
typographical errors are introduced (as is common with fast, careless typing), specialized
diacritics restoration algorithms break down.

Considering these limitations and trends in the current state of the art in diacritic
restoration and typo correction, we take an approach with these main contributions:

* In contrast to the current state of the art, we use the latest universal sequence-to-
sequence byte-level transformer model ByT5 [8] that has no task- or language-specific
structure, Vocabulary, or character set;

* We experimentally investigate the effectiveness of this universal method in restoring
diacritics on a standard set of 12 + 1 languages, comparing it to the state of the art;

Appl. Sci. 2022,12, 2636

30f33

* We experimentally investigate the effectiveness of this universal method in correcting
typos while simultaneously restoring diacritics on the same set of 12 + 1 languages.

The rest of this paper is organized as follows. We provide a review of related work in
the literature on diacritics restoration and typo correction in Sections 2 and 3, respectively.
In Section 4, we give a detailed background on our chosen approach and related transformer
models in general. In Section 5, we describe the datasets used. In Section 6 we outline
the experimental setting, and in Section 7, we present the results. Finally, we discuss the
findings of this work in Section 8 and summarize them in Section 9.

2. Related Work on Diacritics Restoration

Restoring diacritics is important, as most of the world’s languages use and often lose
them in the digital age, as discussed above. Thus, there are many automatic solutions
investigated in scientific literature.

2.1. Classical Approaches

The first approaches were based on rules and simple text statistics.

2.1.1. Rule-Based Approaches

The oldest practicable solutions achieving an acceptable accuracy for the diacritics’
restoration problem are based on a set of rules. The creation of the rules typically requires
human intervention and linguistic skills. They also often employ external language re-
sources, i.e., morphological analyzers, syntactic analyzers, and /or morpho-phonological
processing tools [9,10]. The authors in [11] use the lemmatization technique to restore dia-
critics for the Czech language. Their method contains the set of if-then rules that consider
prefixes and suffixes.

As presented in [12], different language resources (i.e., a word-based language tri-gram
model with the back-off strategy, augmented with the letter-based language model and
the extremely simple morphological model) can be integrated into a cascade of finite-state
transducers to restore diacritics on the Arabic texts. Changing diacritics changes not only
the syntax, but the semantics of a target (ambiguous) word.

The authors in [13] use a rule-based algorithm to determine the implication of relation-
ships between undiacritized and diacritized words by computing distances and conflicts
between them based on a distance-map tuned over a long domain experience. Despite the
fact that handcrafted rules are less flexible to include all aspects of the language and are
harder to transfer to new domains, they are still in use today (1) when the solving task
and domain are very specific; (2) if there is no possibility to get the training corpus of a
sufficient size and diversity; and (3) as the baseline approach or for comparison purposes.

2.1.2. Statistics-Based Approaches

In addition to the rule-based approaches, another group that effectively solves the
diacritics restoration problems is based on corpus statistics. These methods, in turn, can
be further divided into a character-level and a word-level. The word-level approaches are
considered to be a more accurate solution, but they typically rely on expensive resources
(i.e., monolingual texts to train language models, dictionaries, etc.) that do not cover the
non-standard language forms. All of this makes them more language-dependent and,
at the same time, less suitable for less-resourced languages. On the other hand, character-
level approaches are able to more effectively cope with out-of-vocabulary words and,
therefore, can be used to diacritize non-normative language texts (such as posts on social
networks, forums, internet comments, etc.) in which the omitted diacritics problem is
especially apparent.

The majority of word-level statistical approaches are based on pre-trained probabilistic
n-gram language models [14]. The n-gram language models are trained on large mono-
lingual corpora and give a probability of encountering a particular sequence of n words
in a text. The robustness of n-gram models directly depend on the size and variety of the

Appl. Sci. 2022,12, 2636

40f33

training data. The higher the order n of the n-gram model is, the lower perplexity it has,
and the better it is at language modeling. Yet, high orders of n require a vast amount of
data for training and, as a side effect, inflicts sparseness, which leads to zero conditional
probabilities. The models are usually based on the closed-world assumption, where words
not found in the language model do not exist. Therefore, smoothing mechanisms become
especially important in coping with unseen words (typically assigning non-zero probabili-
ties). Larger ns are more cumbersome to store and compute, and are typically less beneficial
for languages with a free word order in a sentence; rare combinations make language
models very sparse, less robust, and they, therefore, require pruning.

Since longer sequences are less probable, word-level diacritization approaches often
allow for back-off or interpolation procedures. The authors of [15] successfully applied
their language modeling method to the lowercased Slovak texts. The method compares
the surrounding context of the target (undiacritized) word with the related n-grams (with
n = 4). In this way, the method considers three preceding and three following words
around the target one. If the 4-gram is not found, the process continues by backing off
to trigrams, bigrams, and, if necessary, to unigrams. The whole diacritization process
is iterative and sequential: after the diacritized equivalent for some targeting word is
determined, the new target is set.

A similar method is applied to the Igbo language [16]. The authors tested the bigram
and trigram language models with the back-off strategy and various smoothing techniques,
experimentally proving the trigram language model with the Add-1 smoothing to be the
most accurate for their diacritization problems.

However, the back-off strategy does not always appear to be the best. An experi-
mentally investigated token bigram language model achieved the highest accuracy on the
Spanish texts [17]. It outperformed not only the unigram model, but a bigram language
model with the back-off strategy.

The diacritics restoration problem for Spanish is also tackled in [18] and three different
methods are investigated. Their first method relies on the Bayesian framework. The idea
behind it is that words closer to the target would give more clues about its correct disam-
biguation and diacritization. The basis of the second method is the Hidden Markov Model
(HMM) method, which is able to solve ambiguity problems by indicating different parts of
speech. The third method, which is the hybrid of both, is able to overcome the limitations
of the Bayesian (which performed poorly on rare words) and the HMM (which relied on
the imperfect morphological analysis) models to demonstrate the best performance.

The decision-list approach combines word-form frequencies, morphological informa-
tion, and collocational information to restore omitted diacritics for Spanish and French
languages [19]. First of all, it identifies ambiguity with the help of lexical resources (dic-
tionaries), then it collects the context of 4 k words around the target word. Afterward, it
measures collocational distributions (containing the target word) to select the most useful
representatives. When the log-likelihood values of these collocations are calculated, the al-
gorithm sorts them into decision lists, performs pruning and interpolation. The prepared
decision lists are later used to restore diacritics.

The diacritics restoration system for the Croatian language presented in [20] success-
fully combines the statistical bigram language model with the dictionary (of 750 000 entries)
look-up method. The diacritization process contains three stages. During the first stage,
substitution schemes are applied to the raw text result for generating the diacritized candi-
dates; then, the validity of each candidate is determined via a comparison with dictionary
forms; and finally, correct forms are selected with the language model. The authors demon-
strated the effectiveness of their method not only on the artificial data (newspaper articles
that were undiacritized, namely for experiments) but also on the real data (forum posts).

The statistical language model can be created not only on the word level but on the
character level, as in [21]. During the first stage, for recognized words, it uses a statistical
n-gram language model with n = [1, 4] that works on the word level; during the second
stage, it processes the out-of-vocabulary words with the statistical n-gram character-based

Appl. Sci. 2022,12, 2636

50f33

model that works on the character level. The authors proved that their offered approach
led to the better diacritization accuracy of the Arabic dialectal texts.

2.1.3. Translation-Based Approaches

Sometimes the diacritization problem is formulated as the machine translation prob-
lem, but instead of translating from the source language to the target, the undiacritized
text is “ translated” into the diacritized text. However, such a translation problem is less
complex due to a simpler (one-to-one) alignment and decoding.

The phrase-based Statistical Machine Translation (SMT) system has been successfully
applied to restore diacritics in the Algiers dialectal texts of the Arabic language [22]. This
system uses the Moses (Open Source Toolkit for SMT) engine with the default settings,
such as the bidirectional phrase and lexical translation probabilities, the distortion model
with seven features, a word and phrase penalty, and a language model.

The SMT-based method was also applied to Hungarian texts [23]. Similar to [22],
Moses was used with the default configuration settings (except for the translation model
that contained only unigrams, and the language model with n up to 5), monotone de-
coding, and without the alignment step. However, SMT alone was not enough to solve
their task: the agglutinative morphology of the Hungarian language results in plenty of
word forms that are unseen by the system with the restricted vocabulary. To handle this,
a morphological analyzer was incorporated into the system. It generates candidates for
unseen words that are later fed into the Moses decoder. The probability of each candidate
was estimated from the corpus with a linear regression model considering its lemma fre-
quency, the number of productively applied compounding, the number of productively
applied derivational affixes, and the frequency of the inflectional suffix sequence returned
by the analysis.

Despite the problem to be solved in [24] being formulated as a word-to-word trans-
lation problem, this is not the typical case with SMT. The authors investigated two ap-
proaches that only required monolingual corpora. Their lexicon-based approach (applying
the most frequent translation observed from the training data) was outperformed by the
corpus-based approach (combining information about the probability of translation and the
probability of observing a translation in the given context, via a simple log-linear model).
This research is interesting for several reasons. First of all, the effectiveness of the method is
proven in several languages, i.e., Croatian, Serbian, and Slovenian. Similarly, the diacritics
are restored on both standard and non-standard (Web data) texts. Moreover, the authors
also performed cross-lingual experiments by training their model on one language and
testing it on another. The cross-lingual experiments revealed that the Croatian and Serbian
languages can benefit from each other (training/testing in both directions), whereas the
model trained on the Slovenian language was not effective for Croatian or Serbian.

2.1.4. Character-Level Approaches

Another important direction in diacritics restoration is character-level approaches.
They solve problems that are typically defined as sequence labeling. The iterative process
slides through an undiacritized sequence of characters by assigning their diacritized equiv-
alents (labels). Each character is a separate classification instance with the surrounding
content as other classification features. Such approaches typically require no additional lan-
guage tools except for the raw text, which makes them suitable for less-resourced languages.
Moreover, character-level methods are robust when dealing with unknown words. Depend-
ing on the chosen classifier, this classification process can be viewed as the independent
instance-based classification (assuming that each instance is independent) or the sequence
classification (considering conditional dependencies between predictions) problems.

The seminal research work in [25] described the instance-based classification technique
applied to the Czech, Hungarian, Polish, and Romanian languages. Authors tested different
window sizes (of 1, 3, 5, 7, and 9 lower-cased characters to both sides) with two classifiers:

Appl. Sci. 2022,12, 2636

6 of 33

the memory-based approach and the decision tree (C4.5). Their offered method achieved
an accuracy which is competitive to word-level approaches.

Another study, presented in [26], described the sequence classification tackled with the
MaxEnt classifier. This approach is applied to the Arabic language, but instead of pure char-
acter features, it employs character- (character n-grams), segment- (words decomposed into
prefixes, suffixes, stems, etc.), and part-of-speech tag-based feature types. The successful
combination of these diverse sources resulted in a high diacritization accuracy.

Similar to [25], three instance-based classifiers (a decision tree, logistic regression,
and the Support Vector Machine, or SVM), with character n-grams (from a sliding window)
as features, were investigated for the Hungarian language [27]. The decision tree, which is
also good at identifying important features and keeping decisions easy to interpret, was
determined to be the most accurate. This research is important for several reasons: it claims
the effectiveness of the offered approach on non-normative language (web data, Facebook
posts) and the superiority over lexicon lookup (retrieving the most common diacritized
forms) and hybrid (the lexicon plus character bigrams) approaches in the comparative
experiments. However, comparative experiments are not always in favor of character-
level approaches.

In [28], the character-level and word-level approaches are compared for the Lithuanian
language. The authors used conditional random fields (CRF) as the sequence classifier
by applying them to the character-level features. Despite different window sizes (up to
6), the character-based approach was not able to outperform the trigram language model
with the back-off strategy. The character-based approach was also not the best choice when
applied to the Spanish texts [29]. It was outperformed by the decision list (that combines the
simple word-form frequency, morphological regularity, and the collocational information)
and the part-of-speech tagging (trained on the tagged corpus with information about the
diacritic placement) approaches.

Two approaches, namely, sequence labeling (i.e., sequence classification) and SMT
were compared in [30] for the Tunisian language. The sequence classification approach
uses CRF as the classifier and is applied to the different character (windows up to 6-
grams) and word-level (part-of-speech tags of two neighboring words) features. The SMT
approach uses Moses with a 5-gramlanguage model and other parameters set to their
default values. The comparative experiments demonstrated the superiority of the sequence
labeling approach compared to the SMT approach.

Even more comprehensive comparative experiments are performed in [31], and they
cover 100 languages and several approaches, such as the lexicon lookup, the lexicon lookup
with the bigram language model, several character-level methods with various window
sizes, the hybrid of the lexicon lookup with the bigram language model (for words in the
lexicon), and the character-level approach (for words that are not in the lexicon). With some
exceptions, the hybrid approach performs the best for the majority of languages.

A similar hybrid approach is also successfully applied to the Romanian language [32].
The candidates for each recognized undiacritized target word are generated based on
mappings of the dictionary, and the appropriate candidates are selected with the Hidden
Markov Model (HMM)-based language model. The diacritics for unknown words are
restored with the character-level approach (described in [25]) using windows with up to
eight characters.

Another hybrid approach that is used for completely different purposes (to clar-
ify/claim the output of the character-based method) is presented in [33] for the Turkish
language. During the first stage, it performs the sequence classification with the CRF
method, but next to current/neighboring character,s it also uses the current/neighboring
tokens as features, i.e., five character-level and two word-level features. The output of the
first stage is fed into the morphological analyzer-based language validator. The authors
compared their hybrid approach with several others (rule-based, rule-based with the un-
igram language model, and character-based but without language validator stage) and
proved it is the best model to use.

Appl. Sci. 2022,12, 2636

7 of 33

In contrast to the previously described approaches, the sequence labeling problem can
be solved, not on the character, but the syllable level, as in [34]. The authors solved the
instance-based classification problem by treating each syllable as a separate independent
classification instance and applying the SVM classifier on top. They used different types of
features, such as the n-grams of syllables (surrounding the target with window sizes of 2
and 3); syllable types (uppercase, lowercase, number, other), characterizing surrounding
syllables, and dictionary-based features (dictionary words that contain the target syllable).
The method achieves a high accuracy on Vietnamese texts.

2.2. Deep-Learning-Based Approaches

With the era of Deep Neural Networks (DNNSs), the diacritics restoration problem is
being solved with these innovative techniques. Some of them rely on word embeddings,
i.e., learned word representations that are capable of capturing the context.

Word2vec embeddings were integrated into a three-stage diacritics restoration system
for Turkish in [7]. During the first stage, candidates are generated for the target word.
During the second stage, the morphological analyzer checks if the candidates are legitimate
words. During the last stage, the word2vec-based tool evaluates the semantic relationship
of each candidate to its neighboring words with the similarity method and chooses the most
suitable one. The authors tested two types of word-embedding models (i.e., the continuous
bag-of-words model, or CBOW, which predicts the target word based on its context, and
the skip-gram model, which predicts the surrounding words based on the input word) and
several similarity measures (Cosine, Euclidean, Manhattan, Minkowski, and Chebyshev).
Their experimental investigation revealed that the skip-gram and cosinesimilarity approach
was the most accurate on Twitter data.

The omitted diacritics problem can also be tackled at the character level and solved as
a character classification problem. An example of such a system is for the Arabic language,
and the core of it is the Bidirectional Recurrent Neural Network (BiRNN) [35]. The BiLSTM
takes the undiacritized character (as an input) and outputs its diacritized equivalent (as
a label). The input characters are represented as real-number vectors that are randomly
initialized at the beginning and are updated during the training. The output is the n-
dimensional vector, with the size n equal to the size of the output alphabet. The approach
outperformed the other methods in the comparative experiments. A similar approach is
offered for Hebrew, and the base of it is the two-layer LSTM [36].

The Deep Belief Network (DBN) (as a stack of multiple restricted Boltzmann machines
in which each layer communicates with both the previous and subsequent layers; however,
the nodes in each layer do not communicate with each other literally), on the character
level, is applied to Arabic [37]. The advantage of the DBN compared to the RNN-based
approaches is that it overcomes the limitations of backpropagation. The authors tested
their approach on several benchmark datasets and compared it to other competing systems,
claiming their approach to be the best for the diacritization problem.

The robustness of sequence classification was also tested for Croatian, Serbian, Slove-
nian, and Czech [38]. However, this language-independent part has the additional inte-
gration of the 2, 3, 4, 5-gram language model. This language model-based version, for the
inference, uses the left-to-right beam search decoder that combines the neural network and
language model likelihoods. The authors compared their method with other approaches
(lexicon-based, corpus-based) and systems, demonstrating its superiority over the other
models.

The authors in [39] also assumed that pure character information is not enough to
achieve a high accuracy for Arabic, because the lexical and syntactic information is closely
interrelated. Due to this reason, they offer the multi-task approach, which jointly learns
several NLP models, namely for segmentation (operating at the character level), part-of-
speech tagging, and syntactic diacritics restoration (operating at the word level). All these
aggregated models are later used for diacritics restoration. The segmentation, part-of-
speech tagging, and syntactic diacritization models use separate BILSTM methods with the

Appl. Sci. 2022,12, 2636

8 of 33

softmax on top of each. Their outputs are aggregated, and they become the input for the
diacritization model which, again, is BILSTM-based. The authors compared their model to
the other popular approaches, and they claim it is a statistically significant improvement.

A similar character classification problem was solved in [40] for the Romanian lan-
guage. The architecture of this offered system has three different input paths: for characters
(to represent the window of characters around the target character), words, and sentences
(in which the target character appears). The character input path is represented by a
BiLSTM encoder for character embeddings, the word input path by the FastText word
embeddings, and the sentence input path by the BILSTM encoder applied on concatenated
FastText word embeddings. The authors tested their approach with different combinations
of input paths (only character input, character input with the word input, etc.) proving that
the best accuracy can only be reached with all the three input paths.

The sequence classification tasks were also solved for the Arabic, Vietnamese, and
Yoruba languages [41]. The authors tested the Temporal Convolutional Network (TCN) (in
which information flows from the past to the future, as in the LSTM) and the Acousal TCN
(A-TCN) (where information flows in both directions, as in the BILSTM) approaches, and
compared them to the recurrent sequential models, i.e., the LSTM and the BiLSTM. The A-
TCM approach yielded a significant improvement over the TCM and had a competitive
performance over the BILSTM. The hybrid approach (as the three-stage stacked pipeline) for
the Arabic language [42] integrates a character classifier as the first language-independent
component. The other two components, namely, the character-level deterministic rule-
based corrector and the word-level statistical corrector, are already language-dependent,
but help to increase the accuracy even further.

Another research direction for the diacritics restoration problem is the sequence-to-
sequence (seq2seq) methods. The seq2seq architecture consists of an encoder (converting
an input sequence into a context vector) and decoder (reading the context vector to produce
an output sequence) blocks as separate DNNs.

Such a seq2seq approach, with the RNN-based core, was successfully applied to
the Turkish language [43], and, with the LSTM-based core, to Viethamese texts [5,44].
In [45], Romanian authors investigated four different encoder-decoder architectures op-
erating on the character level: one-layer LSTMs, two types of stacked LSTMs, and the
CNN-based method (three-layer CNN with the concatenated output of the encoder and
decoder, processed with another two-layer CNN), and determined that the CNN-based
approach was the most accurate. Moreover, they compared their seq2seq approaches with
the classification-based approach. The first approach is a hybrid of the BiLSTM (operating
on the word level) and the CNN (operating on the character level); the second is described
in [38] and requires additional language resources (a language model). The comparative
experiments revealed the superiority of seq2seq methods.

Transformer-Based Approaches

The state-of-the-art techniques in the diacritics restoration, as in all NLP fields, employ
transformer-based models.

The multilingual BERT was successfully applied to 12 languages (Viethnamese, Roma-
nian, Latvian, Czech, Polish, Slovak, Irish, Hungarian, French, Turkish, Spanish, and Croa-
tian) [46]. The BERT embeddings, created on the undiacritized text, are fed into a fully
connected Feed-Forward Neural Network (FENN). The output of such a network is a set of
instructions (as labels) that define the diacritization operation necessary for each character
of the input token. The authors claim that their BERT-based approach outperforms all
previous state-of-the-art models.

The authors in [47] solve the character classification problem for the Vietnamese
language by offering a novel Transformer Decoder method with the Penalty layer (TDP).
The model is a stack of six decoder blocks. The encoder part is redundant since each
input character corresponds to only one output character. The penalty layer restricts the
output by only allowing the possible characters for each input character. The authors also

Appl. Sci. 2022,12, 2636

9 of 33

performed comparative experiments, proving their approach is superior to those offered
in [38].

Another transformer-based technique was applied to 14 languages (Bosnian, Czech,
Estonian, Croatian, Hungarian, Lithuanian, Latvian, Polish, Romanian, Slovak, Slovenian,
Albanian, Serbian, and Montenegro) [48]. The core of the diacritization approach is the
Marian Neural Machine Translation (NMT) system [49] with six encoder-decoder layers,
which is applied to the frequently occurring character sequences. The research is especially
interesting because it is performed in monolingual (training and testing on the same
language) and multilingual (by either mixing the data of all languages or by mixing the
data of all languages, but inserting language codes as the first token of each segment)
settings. The authors experimentally determined that the monolingual experiments gave
almost the same accuracy as the multilingual experiments with the language codes.

3. Related Work on Correcting Typographical Errors

A typographical mistake is an error that occurs while printing the material. Historically,
this was due to errors in the setup of the manual type-setting. The term includes errors
caused by mechanical failure or the slipping of the arm (or finger), but does not include
errors caused by ignorance, such as spelling errors. However, typos are the subset of a
bigger category of misspelling errors. These are of the same importance and are solved with
the same methods. The only difference is that typographical errors are easier to model, as
they depend only on the keyboard (we discuss it more in Section 5.2) and not the language.

The most classical spelling error correction systems follow these steps:

1. Error detection;

Candidate generation;
3. Error correction.

N

We will cover separate methods constituting this pipeline below.

3.1. Non-Word Detection

The dictionary is the most popular error detection method, sometimes called a lexicon
or a unigram language model. The dictionary detects non-words, that is, the ones that
cannot be found in it. The first system [50] used exactly this method with some additional
heuristics. Modern spell checkers, such as GNU Aspell [51] and Hunspell [52] also compare
each word of a text to their large lists of words. In Hunspell’s case, the dictionary is
compacted by keeping only the main word forms with transformation rules, prefixes, and
suffixes, thus supporting many languages with rich morphologies.

There are some downsides to the dictionary method. As noted in [53], about 40% of
spelling errors are real-word errors (i.e., “from” — “form”) and cannot be detected by the
dictionary. The study by [54] showed that GNU Aspell corrects only 51% of errors and
performs best on non-word errors. Secondly, the dictionary cannot cover rare words, such
as proper names, country and region names, technical terms, and acronyms. This issue
could be dealt with by enlarging the dictionary. However, [53] argues that, eventually, most
of the misspellings would match rare words and would, therefore, fail to be spotted.

3.2. Candidate Generation

This is the task of finding the confusion set of real words for a given misspelled
word. One can manually craft a confusion set or look for a publicly available one, such
as [55] for the Chinese language. However, usually these sets are generated on the fly.
The similarity measure between words is obtained by the phonetic or the Minimum Edit
Distance algorithms.

The most-known phonetic algorithm is Soundex [56,57]. The cornerstone of the
Soundex approach is that homophones (the same-sounding words) are encoded similarly,
so that they can be matched regardless of subtle differences in their spelling. A Soundex
code is computed from a misspelling, and words that have the same code are retrieved
from the dictionary as correction candidates. A similar principle of misspelling encoding

Appl. Sci. 2022,12, 2636

10 of 33

was used in the first system by [50]. Nowadays, the Metaphone representations of words
(as an improvement over Soundex) [58] are used in Aspell [51].

The Minimum Edit Distance [59] measure is defined by the minimum number of
edit operations needed to transform one string to another. As reported in [60], more
than 80% of errors differ from the correct word by only a single letter; thus, the distance
between them is low. There are several different edit distance algorithms: Levenshtein [61]
(number of insertions, deletions, and substitutions), Damerau-Levenshtein [60] (treating
transposition as a single edit), Hamming [62] (number of characters that differ between
two equal-length strings), and the Longest Common Subsequence [63]. As an example,
the widely-used Aspell uses the Damerau-Levenshtein distance between Metaphone
representations of words.

3.3. Using Context and External Datasets

The given candidates can be simply ranked by their pre-computed distances. On the
other hand, some additional information, whether from nearby words or from additional
corpa, can aid target word selection.

The approach in [64] uses a Bayesian combination rule to rank the given candidates.
First, the probabilities for substitutions, insertions, and other errors are collected from
a corpus of millions of words of typewritten text. Then, given a misspelled word, its
each inflection and the resulting word probabilites are combined to produce a probability
estimate for each correction candidate.

The n-gram language models [14] that are trained on a large external corpus can
give a conditional probability of how likely a sequence of words is to be followed by a
certain word. The n-gram model ranking for confusion sets is used in multiple works for
spelling correction [54,65-69]. The character-level n-gram also allows for the calculation
of a distance measure (such as Hamming in [70]) by comparing the character n-grams
between two strings [71]. Spelling correction systems using n-grams usually employ back-
off techniques [65,66,68] or other [72,73] smoothing techniques, and sometimes, due to its
size, they even require a complex distributed setting [68,74]. The extensions and problems
with the n-gram models have already been discussed in Section 2.1.2.

External datasets are especially well-exploited by the neural network approaches.
The authors of [75,76] used a FastText [77] shallow neural model to learn both known
and unknown word vectors as a sum of character n-gram embeddings. Candidate words
could then be scored with a cosine similarity to the context words vectors. The differences
between these two works are text domains. In the study by [75], the model was trained
in the Bangla language, while in the study by [76], the model was trained on English and
Dutch clinical texts.

The ability to learn from vast text resources eventually culminated in the state-of-the-
art transformer models, discussed in Sections 3.5 and 4.2.

3.4. Real-Word Errors

We already reviewed techniques for detecting and correcting non-word typos. The
other, far more difficult, group is the real-word errors. These are misspellings that result in
other real words. Ironically, these errors are also caused by automatic spelling correction
systems [78]. As it is harder to apply unsupervised methods such as the dictionary, there is
also a challenge to build tools for different languages with different alphabets and rules [79].

The detection of real-word errors can be done by searching every word in a confusion
set and checking for a better alternative [66,72,80,81]. The candidate population is usually
done by the n-gram method, and others, as already discussed in Section 3.2. Some works
employ natural language parsers that check grammar [82,83] or look for words semantically
unrelated to their context, that have semantically-related spelling alternatives [84]. Since
the detection is similar to the selection of candidates here, the real-word error correction
systems often do detection and correction at the same time.

Appl. Sci. 2022,12, 2636

11 of 33

3.5. Transformer Models for Spelling Error Correction

Recent advances in natural language processing, particularly the transformer architec-
ture [85], solve many problems encountered in traditional approaches. Firstly, the tradi-
tional detect-suggest-select pipeline is discarded. Whether it is a seq2seq translation or an
encoder-type each-token classification, target words are generated immediately. Secondly,
the segregation of non-word and real-word methods is gone here. Finally, the use of the
context from the whole input sequence and the knowledge from the additional datasets are
now employed. Despite the advantages, some open issues are still being solved.

An important problem for seq2seq models is the over-correction, which is the attempts
of a model to correct the sentence even if it is not confident. The authors of [86] addressed
this problem for their Korean spelling error correction system by using a dedicated Copy
Mechanism. Correction is attempted only if it detects that the input is incorrect, otherwise,
the input sequence is copied. The results showed that such a mechanism resulted in a
better overall performance. The authors of [87] found that the over-correction can be
mitigated by allowing the transformer to be trained with unfiltered (containing gibberish
samples) inputs. In this way, the model is forced to stick to the initial input, unless there
is a high certainty of a typo. There is also an attempt to use an additional error detection
classification head in the encoder-type transformer model [88].

Usually, small available datasets are not enough to train transformer models. As a
result, most works resort to the artificial spelling error generation. The authors of [87]
used the statistics of their private 195000 sample dataset to generate 94 million examples.
The authors of [86] used Grapheme-to-Phoneme and Alphabetical (insertions, deletions,
and substitutions) generators, together with 45711 private samples. The authors of [88]
constructed a random rule-based generator covering the most common error categories of
the Vietnamese language. Works utilizing the BERT [89] encoder can utilize, or supplement,
the default masking [MASK] token. The authors of [90] also used related words from
confusion sets, while the authors of [91] replaced them with phonologically and visually
similar ones.

The original BERT [89] transformer model used subword tokenization. As misspellings
happen at a character level, it is wise to also incorporate characters or other phonetic
features. The authors of [88] used an additional character-level encoder to output character-
level vectors. These are concatenated with word embeddings and are used in the final
word encoder. For the Chinese language, [91] additionally added phonetic and shape
embeddings acquired from separately-trained single-layer GRU [92] networks. Parallel to
the character classification, authors also performed pronunciation prediction. Similarly,
other works on the Chinese language find it useful to predict not only characters, but
also pinyin and radicals, which is a total of three classification heads. In contrast to these
approaches, we use the fine-grained model in the first place and we, therefore, can avoid
the additional incorporation of character information.

4. Our Methodology

The analysis of related work revealed research performed under very different experi-
mental conditions, which makes the results difficult to compare. Different languages have
different levels of complexity and ambiguity, and omitting the diacritics or introducing ty-
pos exacerbates this problem even more. The training/testing texts cover normative (fiction,
periodical, Bible texts) and non-normative (tweets, comments)language types. Investigated
approaches are affected by the availability of language resources and the emergence of new
methods, and vary from rule-based, traditional machine learning to the most innovative
deep learning solutions. There are different evaluation types: extrinsic, which refers to
evaluating the downstream tasks, vs. intrinsic, which refers to calculating the percentage
of correctly restored words or characters); different evaluation metrics cover word-level
and character-level (including all characters or only with diacritics) techniques. Hence,
there is no consensus about which approach is the best for the diacritics restoration and

Appl. Sci. 2022,12, 2636

12 0f 33

typographical error correction problems. Recent trends suggest that innovative approaches,
such as transformer models, are still needed, and should be the most promising.

4.1. Formal Definition of the Solving Task

Let X = {x1,x,...,xn} be a sequence of tokens, constituting our text without diacrit-
ics and/or with typos. Let Y = {y1,y2,...,ym} be a sequence of equivalents with their
diacritics and/or typos corrected. Depending on the chosen tokenization form, a token can
represent a word, subword, character, or byte value.

The function # correctly maps X — Y. Our task is to find the method I" which is as
close to an approximation of # as possible.

In this work, we use a transformer model as a method I'. Below, we further explain
what is behind tokens in our case, and how the sequence mapping is performed.

4.1.1. Tokens

Generally, the text is represented as a Unicode string. It is a sequence of code points,
which are numbers from 0 through 1114 111. For example, the letter “s” has a code point of
115, while the same letter with the additional caron, “§”, is at 353. The Unicode describes a
huge amount of various symbols but is very wasteful in terms of memory space. The most
popular symbols are at the beginning of this list, but they would still have to be represented
as 32-bit integers. Instead, UTF-8 encoding is employed to translate the Unicode sequence
into 8-bit bytes. If the code point is larger than 127, it is turned into multiple bytes with
values between 128 and 255. Therefore, the code point 353 of the letter “5” is translated
into two bytes 197 and 161, while the letter “s” retains byte 115. The authors of [8] showed
better results using a transformer model ByT5 at these byte-level tokens, rather than on
characters. Inspired by their success on transliteration and noisy text tasks, we also use the
same byte-level tokenization.

4.1.2. Mapping X to Y

One should note that the transformer model does not map the whole target sequence
instantly. Starting with the first artificial start token y, it estimates the probability for each
next token by taking into account the whole input sequence and the previously generated
tokens (the context). The probability that the next token is y; can be written as

P(yi | {x1, %2, ..., xn} {vo, v1, - Vi1 })- 1)

Thus, the output from a transformer model is a list of probabilities for each token, in a
vocabulary, to be the next token y;.

The choice of the next token, given the probabilities of all candidates, depends on
the decoding algorithm. There are two groups of maximization-based sampling: greedy
and beam search. The most obvious greedy approach is to select a token with the highest
probability. During the beam search, a defined number (the so-called beam size) of the word
sequences with the highest overall probabilities are kept. This way, a single low-probability
word would not shadow a high-overall-probability sequence. Stochastic approaches are
inappropriate for our task as there is only one right way to restore diacritics or correct typos.

4.2. Transformer Models

There are several key reasons why transformer [85] architecture became the top-
performing model in multiple natural language processing leaderboards, such as Super-
GLUE [93]. The first reason is that, compared to previous recurrent ones, it is highly
parallelizable. It does not need to wait for the calculations to finish for the previous word.
Instead, calculations for all words are done at once. Models can be elementary, trained
on multiple dedicated machines (such as GPUs), thus quickly digesting vast amounts of
data. Secondly, only after a single block (usually called a layer), the information between
all tokens is already exchanged. This is accomplished by a self-attention layer inside the
block, which processes a sequence by replacing each element with a weighted average of

Appl. Sci. 2022,12, 2636

13 0f 33

the rest of the sequence. As there are usually more than five blocks, it allows for the quick
learning of long-range dependencies. Finally, it costs less computational power, demanding
shorter sequences, which is the case for most of the language tasks. These reasons allowed
transformer architecture to flourish.

The capabilities of these models come with a price. Training them from scratch
requires dedicated hardware (i.e., a GPU with a large enough memory), takes a long
time, and consumes a lot of electricity. Solutions to alleviate this burden started with
the introduction of the BERT [89] transformer. This model is pre-trained with a general
word-masking task to be fine-tuned for any desired task later (the process called transfer
learning). It is estimated that the pre-training of BERT caused more than 300 kg of CO,
emissions [94], but it can be easily fine-tuned for a custom purpose at a small fraction of
that cost. Three years later, there are plenty of similarly pre-trained publicly available
models (e.g., at HuggingFace transformers library [95]). We also built our work on top of
one such pre-trained ByT5 [8] model.

In general, transformer models can be grouped into three categories: auto-encoding,
auto-regressive, and sequence-to-sequence. We will cover them in more detail below.

4.2.1. Auto-Encoding Transformer Models

This version of the transformer model possesses only an encoder part. It encodes the
input text into distinct output vectors for each given token. Attention layers can access all
the words in the initial sentence to get the most representative information of the whole
sequence. Additional “heads” can be placed on top to further process this representation
for a sentence or word classification, extractive question answering, regression, or other
tasks. The most popular model of this category is the BERT [89].

Several diacritics restoration works use transformer encoders. The authors of [46]
performed a classification of each transformation, described by a diacritic sign to be applied
and its position in a word. Meanwhile, the model in [47], although it is named a “decoder”,
has its attention masking removed and classifies output diacritic mark categories for each
input character.

4.2.2. Auto-Regressive Transformer Models

These models possess only the decoder side of the original architecture, and its tokens
can only attend to the previous ones. Probably the most-known example is one of the latest
gigantic (175 billion parameters) transformer models, GPT-3 [96]. It is used in practice
by finishing sentence beginnings, which is the so-called zero-shot task solving. In this
setting, the human must manage to convey all the necessary information for solving the
task in the beginning, such as by providing examples of task solutions. Currently, we do
not possess access to the latest GPT-3 model, nor do we believe it can adequately cover the
languages we use in this work. However, it would be interesting to test its capabilities in
an unsupervised zero-shot multilingual diacritics and typos correction.

4.2.3. Sequence-to-Sequence Transformer Models

These are the encoder-decoder models. In the encoder part, each token can attend
to every other token. On the decoder side, there are two types of attention that occurs.
The first type is the attention to the decoder’s past inputs, which is the same as in the auto-
regressive transformer models. The second type is the model’s full attention to the tokens
of the encoder. The most straightforward application of this network is the translation.
The encoder only receives input language tokens, while the decoder is fed target language
tokens and predicts them one at a time. As the diacritics restoration task can be viewed as
a translation task, this transformer type is found in several related works [97-99].

The most popular model of this category is T5 [100]. Authors framed various tasks,
even ones including numbers, to text-to-text format. They reported that there was no
significant difference if a separate “head” was used, or an answer was generated as simple
text. This, in turn, made the model very simple to use. In this work, we use the follow-up

Appl. Sci. 2022,12, 2636

14 of 33

multilingual ByT5 [8] model designed to work with byte-level tokens. We think that the
seq2seq approach is the most adequate, as it is universal. Additionally, operating on the
byte-level gives a level of immunity to minor text noise, i.e., against typographical errors,
and is more language-universal.

4.2.4. The ByT5 Model

The ByT5 model [8] is a general-purpose pre-trained multilingual text-to-text model,
based on its earlier predecessor, mT5 [101]. It completely disposes of SentencePiece [102]
tokenizer, as it does not need any. The authors concentrated 3/4 of the parameters into the
encoder by decoupling the depth of the encoder and the decoder. A small version of the
ByT5 now has 12 encoder layers and four decoder layers.

In the ByT5 model’s case, the total vocabulary size is 384, consisting of: three special
tokens (<pad> for padding, </s> for the end of the sequence, and <unk> for unknown),
256 = 28 values of the main eight-bit byte, and 125 extra sentinel tokens used only in
the pre-training task. In the small version, the vocabulary accounts only for 0.3% of the
total parameters, while in a similarly-sized mT5 model, the vocabulary took 85% of the
total parameters. As a result, the small ByT5 model, working with fine-granularity tokens
(bytes), outperforms mT5, which worked inefficiently due to its large granularity and its
rarely-used vocabulary parts (subwords) which took up much parameter space.

Due to its byte-level nature, the ByT5 model is slower to compute. More fine-grained
tokenization produces more tokens for the same text and requires more time for the model
to digest. However, the ByT5 model’s authors showed that, for short-to-medium length
text, the time increase is negligible. This is the case for diacritics restoration, as the input is
composed of a single sentence.

The sequence-to-sequence nature of the ByT5 model tackles the limitations of the latest
state-of-the-art diacritics restoration model [46], which is based on the BERT. The latter
system was an auto-encoding type, and it performed classifications for each token. That
is, it had to predict the proper classes of each token correction, described by the position
and diacritic sign type. This system is limited to its predefined instruction set (correction
classes), which is highly language-dependent and involves the single task of restoring
diacritics. On the other hand, our sequence-to-sequence ByT5 approach allows us to
address multiple grammatical errors and learn to generate output sequences in a much
more universal, language-independent approach.

4.3. Training Hyperparameters

The artificial neural networks are trained by updating their weights according to their
response to the input. In particular, we focused on mini-batch gradient descent. For every
mini-batch of 7 training examples (input x and output ' pairs), the model parameters 6
are updated using an objective function J:

0—=06— - VGI(GI xi:i+n;yi:i+n)‘ (2)

The Adam [103] and Adafactor [104] extensions of this vanilla gradient descent are
currently the most prevalent optimization algorithms for the transformer models. The suc-
cess of training the models depends a lot on setting the hyperparameters in (2) correctly,
such as the batch size 7, the sequence length within a sample, and the learning rate . We
will discuss them in more detail.

4.3.1. Batch Size

This is the number of samples to be run through the model before updating the
weights. The more tokens it has, the less disturbance an individual sample will cause
during a (much smoother) weight update. On the other hand, very large batches take more
time to compute and have diminishing gains.

The first popular pre-trained transformer, the BERT [89] model, for its classification,
used a batch size of 256 sequences. A later model, RoBERTa [105], showed that an increase

Appl. Sci. 2022,12, 2636

15 0f 33

in the batch size (up to 8000) and the dataset size accordingly improved the downstream
performance. However, the same authors had to fine-tune the downstream applications
using only batches of a size up to 48.

The popular seq2seq transformer, T5 [100], used batch size 128 for both pre-training
and fine-tuning. Follow-up models, such as the multilingual version mT5 [101], the gram-
matical error correction model gT5 [106], and ByT5 [8] (the model we use in this work) all
carried on with the same value for fine-tuning. The same size is also used in works solving
the diacritics restoration task [47,107].

In conclusion, we can use a batch size of 128 or greater. All methods of this family
use the same size and we are not strictly limited by the dataset size to increase it for
better performance.

4.3.2. Maximum Sequence Length

When choosing the right batch size, one should also account for the maximum number
of tokens allowed in a sample. There are two caveats here. First, the time complexity of
the transformer model is quadratic on the sequence length n (number of tokens) O(n?),
thus, shorter sequences are preferred for a faster training time. Secondly, the model we use
operates in byte granularity and needs more tokens to express the same text, compared
to word-level granularity models. The authors of the ByT5 model [8] report that English
language sequences in byte tokens are about five times longer than in subword ones. As a
result, the maximum sequence length for the ByT5 model is set to 1024 tokens. In our case,
samples are sentences and, in practice, they all fit into this length.

4.3.3. Learning Rate

The last important parameter in (2) is the learning rate 7. It controls how much the
model parameters have to be updated. Low values of 77 ensure smooth monotonic but small
updates of the learned weights and a prolonged convergence. On the other hand, the higher
learning rates would enlarge improvements and speed up the training. However, due to the
higher “energy” (or “temperature”) in the optimization, the high 7 causes the “bouncing”
of the learned parameter values and prevents settling in the best spot, resulting in the
higher final training loss. An optimal learning rate value, as used during fine-tuning of the
T5 family of models [8,100,101,106] with the Adafactor optimizer, is 0.001.

Sometimes, better results can be achieved by scheduling learning rate values during
the training. There is, typically, the so-called warm-up period in the beginning to level
discrepancies between previous parameters and new domain updates. It contains low or
linearly increasing values of the learning rate. Similarly, as the training is to be finished,
the “energy” of the optimization can be lowered by lowering the learning rate and allowing
the neural network weights to settle in a more favorable position. As an example, during the
original T5 [100] pre-training, a constant warm-up following an inverse square root decay
with a peak learning rate of 0.01 was used. However, fine-tuning was performed with a
constant value of 0.001. Such a learning rate is not dependent on the dataset size and it en-
ables the straightforward comparisons of different setups. Overall, learning rate schedules
can improve constant learning rate results, but they are less flexible to experiment with.

4.4. Evaluation
To evaluate diacritics restoration capabilities, we use the alpha-word accuracy metric
from [38]. Each text sample is segmented into words, and for each word, we check if it is
an alpha-word (alphabetical word):
e All characters in the word are alphabetic, where the general Unicode category property
is One Of IILmI/, IILt//, IILu//’ IILl/// Or IILOII;
* Ithas at least one letter.

Appl. Sci. 2022,12, 2636

16 of 33

Given the number of gold (correct text) words to satisfy this condition Tg, as well
as the number of these words that are correctly predicted by the system T5s, the alpha-word
accuracy is

Ts
alpha-word accuracy = Tg -100%. 3)
This metric ensures that our results are not polluted by words that cannot have accents
(e.g., numbers). Moreover, it takes into account both occasions of necessary and unnecessary
accent generations. Other metrics, such as the Word Error Rate (WER) or the Diacritic Error
Rate (DER), restrict themselves to Tg of only the diacritized letters in the gold standard
text [37].

5. Dataset

The expansion of the internet brought many abundant multilingual text resources.
They usually vary from noisy and colossal to small in quantity but high in quality. A good
example of the former is the Common Crawl dataset of more than 20TB of data, and its
version OSCAR [108], which is filtered by language. Such huge datasets are now one of the
main building blocks of the popular transformer models’ pre-training, but they are very
costly to work with during fine-tuning scenarios, such as our. The other extreme, such as
the small high-quality Universal Dependencies [109] dataset, is too small to cover most
aspects in each language.

Recent works on diacritics restoration seek a compromise between these two extremes.
The authors of [48] use an OpenSubtitles dataset, which is of a satisfactory quality. On the
other hand, the authors of [46] combine low-quality and high-quality datasets. They
train first with the noisy web data, and finish with the higher quality Wikipedia dataset.
However, training took two weeks for each language to reach the state-of-the-art results.

We use the same 12-language (Croatian, Czech, French, Hungarian, Irish, Latvian,
Polish, Romanian, Slovak, Spanish, Turkish, and Vietnamese) Wikipedia dataset, proposed
in [38]. Recent state-of-the-art diacritics restoration results were reported [46] for this
dataset, so it is straightforward to compare with our methods on this particular task. As our
focus is on efficiency, we omitted the large web text part to work only with the better-quality
Wikipedia part.

We also add the Lithuanian language to the list, using the tools publicly provided
by the original authors of [38] (we provide the links in the Data Availability Statement at
the end of this article). The Lithuanian language is an omission we do not want to make
here, not only because it is our mother tongue and, thus, we can interpret the results well,
but also because it has some very unique features discussed in Section 5.1.

The dataset consists of training, development, and testing sets. All three are lower-
cased, tokenized to words, and are split into sentences. The split between sets is performed
on the Wikipedia article level. We show statistics of the training set in Table 1. The testing
sets do not differ much, except that each language has exactly 30 000 sentences allocated
to it and, thus, has a similar amount of words. The percentages of alpha-words, diacritic
words, and diacritic letters in the testing sets do not deviate by more than 10%, compared
to their training counterparts.

The dataset is already preprocessed to be used by simpler approaches, such as dictio-
nary mapping. The ByT5 tokenization does not require that, as any text can be encoded in
UTF-8 bytes; thus, it can work with any processed or unprocessed text.

Appl. Sci. 2022,12, 2636

17 of 33

Table 1. Languages and the training dataset statistics. Diacritic percentages are calculated among
alphabetical words or letters. Alphabetical words (alpha-words) range from 72% to 86% of all the
total words, including numbers.

Language Dataset
Diacritic Keyboard Alpha- Diacritic %

Name Sentences

Letters Family Words Words Letters
Croatian 5 QWERTZ 802,610 12,914,186 14.55 2.78
Czech 19 QWERTY 952,909 14,730,260 48.69 12.90
French 15 AZERTY 1,818,618 37,612,736 16.49 3.72
Hungarian 9 QWERTZ 1,294,605 17,587,448 50.05 11.48
Irish 5 QWERTY 50,825 1,005,620 29.52 7.04
Latvian 15 QWERTY 315,807 4,244 914 48.57 10.27
Lithuanian 9 QWERTY 612,724 7,096,677 38.75 7.00
Polish 9 QWERTY 1,069,841 16,178,130 32.71 6.42
Romanian 6 QWERTY 837,647 16,050,136 27.04 5.87
Slovak 25 QWERTZ 613,727 9,180,800 42.38 9.32
Spanish 7 QWERTY 1,735,516 42,863,263 11.50 2.33
Turkish 11 QWERTY 875,781 10,785,516 31.35 6.30
Vietnamese 67 QWERTY 819,918 20,241,117 81.18 25.94

5.1. Features of Lithuanian

Here are some features of the Lithuanian language that make it interesting and impor-
tant to include.

The Lithuanian language is highly inflective (fusional) and derivationally complex.
It is different from agglutinative languages, that rely on prefixes, suffixes, and infixes.
For inflections, Lithuanian “fuses” inflectional categories together, whereas prefixes, suf-
fixes, and infixes are still used to derive words. For example, a diminutive/hypocoristic
word can be derived by adding suffixes to the root, and the word can have two-three
suffixes (sometimes going up to six), where each added suffix changes its meaning slightly.
The language has compounds (connecting two-three words). Moreover, verbs can be made
from any onomatopoeia; phrasal verbs (e.g., go in, go out) are composed by adding the
prefix to the verb.

Some sentence structures are preferable in the Lithuanian language, but, syntactically,
there is a lot of freedom in composing sentences. However, it is important to notice that the
word order changes the sentence shade and message emphasis.

This complexity and variety of the forms makes isolated Lithuanian words ambiguous:
47% of Lithuanian word forms are morphologically ambiguous [110]. This, in turn, makes
diacritic restoration and typo correction even more challenging.

5.2. A Realistic Model of Typos

We produce our pairs of correct (target) and incorrect (input) texts by taking the dataset
as the correct (gold) text and by generating the corresponding incorrect text automatically.

The diacritic removal is straightforward, and is simply done by replacing all diacritic
letters with the non-diacritic equivalents.

However, for typographical error inductions, a dedicated realistic corruption model is
required. The approach, taken by other works [78,87], is to infer probabilities for each error
group from the available smaller dataset and to use them to generate errors on the target
one. We took the same approach in this work.

There are four prevailing categories of typographical errors. The authors of [60,111]
reported that more than 80% of errors can be attributed to substitution, deletion, insertion,
or transposition errors. This division allows us to model each category separately.

The physical keyboard layout plays an important role in influencing typos. A single
keypress instruction consists of information of which hand, finger, and key row to select.

Appl. Sci. 2022,12, 2636

18 of 33

The authors of [53] argue that the confusion of these instructions is the main culprit of
substitution errors, while mixed instruction timing between the two hands (operating on
different parts of a keyboard) is the main culprit of transposition errors. While there may
be more causes, such as visual and phonological factors [112], we restrict ourselves to the
physical keyboard layout influence. This allows us to model typographical errors for all
languages, given the distribution of the keyboard errors for a single language. We also
make no distinction between physical and touchscreen keyboards, large or small.

There are only limited misspelling resources for the data-rich English language,
as shown in Table 2. The largest one is the Github Typo corpus [113]. Although it contains
edits for multiple languages, only the English language is of a significant size. There is
also a multilingual Wikipedia edit history, which could be prepared, similar to the GitHub
dataset. However, it must be filtered [114] to not include non-typographical error-related
examples. Incorporating the Twitter Typo corpus [115] may also not be worth the effort,
as the domains are different, as well as the length of text spans (needed to normalize error
frequencies). In the end, we used a single GitHub Typo Corpus to derive the probabilities
of errors.

Table 2. Related datasets for English misspelling corrections.

Dataset Number of Edits Collection Method
GitHub Typo Corpus [113] 350,000 Keyboard
Twitter Typo Corpus [115] 39,171 Keyboard
Birkbeck Spelling Corpus [116] 36,133 Handwritten
Holbrook Misspelling Corpus [117,118] 1,791 Handwritten

Further details on generating the typos are provided in Section 6.2.

6. Experiment Details

Here, we provide further details on our experiments.

6.1. ByT5 Model Fine-Tuning

We chose the batch size of 256 and the default ByT5 maximum sequence length of 1024.
Such a configuration matches the total maximum number of tokens (256 x 1024 = 2048 x 128)
with the best system for diacritics restoration [46]. The larger sequence length is essential,
as our model works on byte-level fine-grained tokens, compared to coarser subword-
level models.

We used a GeForce RTX 2080 Ti GPU. Due to the modest memory size, we employed
the gradient accumulation technique. It accumulates gradients in a continuous, rather than
in a parallel, fashion. In addition, feeding only a single sample at a time allowed us to
avoid padding.

We trained each model for 2048 steps, each consisting of 256 sentences/samples, with
a total of 2048 x 256 = 524,288 sentences, and this took up to 10 h for a single model. For
example, for the Lithuanian language, this corresponds to a 0.86 epoch over the total 612,724
sentences in its dataset (Table 1). In our results, we refer to such basic training as being
trained for x1 the number of sentences (#samples). We fix this training length, irrespective
of the available dataset, for each language (Table 1) to make training comparable among
languages. In experiments where we trained our models for longer (e.g., x8), we used
the whole dataset and passed through it as many times as needed, e.g., for Lithuanian x8
corresponds to 6.8 epochs.

We used the Adafactor [104] optimizer with a constant learning rate of 0.001. The same
setup was employed by the ByT5 [8] authors for fine-tuning experiments. Moreover,
the Adafactor optimizer also has very little auxiliary storage compared to the other popular
optimizer, Adam [103]. More complex learning rate schedules may give a slightly better

Appl. Sci. 2022,12, 2636

19 of 33

performance, but it would be more difficult to compare our runs, so we adhered to the
constant learning rate approach.

For the diacritics restoration task with each language, we trained three different
models. Each model has a different weight initialization, and data sampling is performed
differently, according to a given random seed. The results are reported as a mean and a
standard deviation over these three runs. In addition, we trained models for simultaneous
diacritics and typographical error corrections for each language.

We also trained several models for a much longer time. First, we continued our basic
fine-tuning setup with a batch size of 258 to 6000 steps (all other basic setups are up to 2048).
At this stage, the loss became noisy (although it was low), so we increased our batch size
to 8192 and continued training further. Due to the change in batch size, we reported our
model training steps by how much training data, compared to our basic setup, it consumed.
In our results, we reported models trained for x8 and x19 the number of samples in the
basic setup. We chose those ceiling-rounded numbers as a means of convenience in our
setup. As long training is very time-consuming, we performed only a few of them. We
think that it still sufficiently indicates the scaling effects.

For text generation, in all our experiments we used a beam size of two. Later runs
revealed that there is hardly a difference in size. As a result, for future work, we recommend
adhering to a simpler beam size of 1.

The training script and the Pytorch model implementation were used from the Hug-
ging Face library [95]. If not stated otherwise, we used all default parameters as they are in
this library version 4.12.0.

6.2. The Generation of Typographical Errors

We took a similar approach for the generation of typographical errors, as in [78]. Close
to a process of text writing, the program moves through each symbol and induces errors in
a stochastic manner by evaluating probabilities of various error types for each character.
This includes deletion, insertion, substitution, and transposition operations.

The chance for a letter to participate in a particular error type is determined according
to the frequency of errors in the reference dataset. We used the largest known original
typo dataset, the GitHub Typo Corpus [113]. The dataset was filtered for only English
language typos and the characters were selected with a count of at least 1000. Given the
final character set C, the total number of times f(c) the character ¢ € C or a specific typo
pattern appeared in the selected corpus, the following probabilities for each character are

considered:
c—)

P(deletion | ¢) = f(f(c)' 4
L fle=o)
P(substitution | ¢) = QGCW, ©)
Y. f(c— cc) Y. f(c— cc)
P(insertion after | c) = QECZT, P(insertion before | ¢) = geCzT’ (6)
P(transposition | cc’) = flec = o) 7)

flec’)

Note that we divide insertion errors into two distinct categories, whether the character
is inserted after the one in question, or before. Both insertion probabilities are collected
from the same samples, so we divide them by two. An alternative way would be to collect
triplets of characters before the one in question and after, but the probabilities would then
be sparse. Nevertheless, our chosen approach covers the so-called “fat-finger” errors.

We ran some typographical error induction experiments on the original GitHub Corpus
and confirmed that our generation method aligns with the original error type distribution.
Initially, only about 1% of characters were corrupted, so we scaled our probabilities by

Appl. Sci. 2022,12, 2636

20 of 33

a factor of three to be close to the low error rate, as defined in [78]. The final error type
distribution and percentage of the corrupted characters for each language are depicted in
Figure 1. The amount of generated errors for each language slightly varies because the
letter frequencies derived from English differ in other languages.

THHERIUAOOH AR -

g0 4 | =1 transposition
[substitution °
[insertion
60 - | I deletion

=
o
o

@ 3.3

3.2

40 A

20 A

Distribution of typographical error types (%)
()
The amount of generated errors (%)

2.9

Croatian
Czech
French
Hungarian
Irish
Latvian
Lithuanian
Polish
Romanian
Slovak
Spanish e}
Turkish

(]
0
(]
€
@
c
)
Q
>

English Github

Language

Figure 1. Distribution of generated typographical errors by category (the left vertical axis and stacked
bars). Proportions for the English part of the GitHub Corpus (used to derive generation probabilities)
are also depicted for reference. The total percentage of induced corruptions are included (the right
vertical axis and corresponding blue dots).

Insertion and substitution errors can result in many different outcomes. The probabili-
ties for specific letters to emerge, given that this type of error occurs at a specific place, are
computed by the following equations:

fle—=)
L fle=o)

ceC

P(c — ¢’ | ¢, substitution) =

®)

f(c— o)

Y flc—cc)’

ceC
flc— o)

L fle—=co)

ceC

P(c — cc’ | ¢, insertion after) =

©)

P(c — c'c | ¢, insertion before) = (10)

As mentioned previously, we took the typo statistics from the English dataset and
ran on the assumption that typos are based purely on the layout of the keyboard (the
proximity of keys, etc.), so the same typo statistics will be in all the other languages using
the QWERTY layout. We did not deal with the extensions of the character sets and keyboard
layouts for different languages, as we only introduced typos to the undiacritized versions
of the texts, irrespective of the case. We disregarded other possible minor variations in the
keyboard layouts as insignificant.

For the Croatian, French, Hungarian, and Slovak languages, corresponding to their
different keyboard layout families (see Table 1), we remapped the original English QWERTY

Appl. Sci. 2022,12, 2636

21 0f 33

dataset before inferring typo probabilities. For example, for Croatian, which has a QWERTZ
layout, we had to swap the letters “z” and “y” when calculating probabilities. In our initial
experiments, we did not observe significant model performance differences between the

QWERTY and remapped typo generation versions.

7. Results
We present the results of our different experiments here.

7.1. Diacritics Restoration

The diacritics restoration results are presented in Table 3. Our ByT5 method results
lay between the dictionary (a simple statistical Unigram model) and the state-of-the-art
model [46]. The highest alpha-word accuracy is for French, Spanish, and Croatian, with
results that were only 0.34%, 0.29%, and 0.56% behind the state of the art, respectively.
These languages have the smallest percentage of diacritic words (see Table 1). The lowest
scores are recorded for Vietnamese and Latvian at 94.25% and 96.33%, respectively. We also
note that the Irish language, with the smallest dataset, has the highest standard deviation
of 0.32%.

The “Raw” column in Table 3 indicates the alpha-word accuracy of the uncorrected text
for comparison. Naturally, the more diacritic-heavy the language is, the lower the number.

An Approach with the Dictionary and the ByT5 models (Dict.+ByT5)

We noticed that the dictionary method outperforms the ByT5 method for words that
have only a single target translation in the dictionary. We grouped words by how many
translation targets in the dictionary they have and we show the ratio of ByT5-to-Dictionary
error rates in Table 4. The resulting values that are higher than 1 indicate the Dictionary
outperforming the ByT5 model. This is the case for all languages at a word group with only
a single translation.

Table 3. Alpha-word accuracy results (%) for the diacritics restoration task. We report means and
standard deviations for three separate training runs with different initial model weights and dataset
samplings trained for 524 288 sentences (#samples: x 1) and a single run for eight times more(x8),
cycling through the available training data (Table 1) as needed.

ByT5 Dict.+ByT5

Language Raw Dict. [46]

#samples: X1 X8 X1 X8
Croatian 85.01 99.11 99.73 99.17 £+ 0.06 99.42 +0.03
Czech 49.71 95,67 99.22 98.01 £+ 0.03 98.38 + 0.04
French 83.11 9798 99.71 99.37 £ 0.04 99.49 £ 0.03
Hungarian 50.34 9622 99.41 9842 £0.02 9920 9878 +£0.01 99.25
Irish 69.97 96.65 98.88 98.14 £+ 0.32 98.40 + 0.16
Latvian 50.14 90.59 98.63 9633 £0.12 9778 96.62+0.09 97.66
Lithuanian 60.76 93.83 — 97944+ 0.19 99.07 9818 +0.13 98.95
Polish 66.73 97.00 99.66 99.00 £ 0.03 99.16 &+ 0.02
Romanian 70.37 96.09 98.64 97.99 £ 0.03 98.17 £ 0.04
Slovak 56.34 96.88 99.32 98.43 £ 0.06 98.77 £ 0.02
Spanish 8797 99.11 99.62 99.33 £ 0.04 99.43 + 0.02
Turkish 68.39 9841 9895 98.86 & 0.04 99.03 &+ 0.02

Vietnamese 15.88 73.53 98.53 9425+ 0.07 9753 9429+£0.07 9754
Average 62.67 9470 99.19 98.10 98.32

Appl. Sci. 2022,12, 2636

22 of 33

Table 4. Alpha-word error ratio between the ByT5 and Dictionary methods for two word groups and
models in different training stages. The values higher than 1 indicate that the Dictionary method
restores diacritics better. The first word group corresponds to words with exactly one possible
translation target, and the second word group corresponds to words with two translation targets.
Groups are determined by the training set statistics, while results are reported on the testing set.

One Dictionary Candidate Two Dictionary Candidates

Language

#samples: X 0.5 X1 X8 X 0.5 X1 X8
Croatian 6.37 2098 4.98 £0.52 1.18 £0.03 1.01 £ 0.06
Czech 474+019 3.53+0.03 045+£0.02 0.37£0.01
French 5294+0.17 498 +0.48 0.31+£0.02 0.27+0.01
Hungarian 735+048 437+010 142 084+0.03 0.62+0.00 0.34
Irish 213+£021 227 +£0.84 0.56 £0.03 0.57 £0.08
Latvian 243+017 177+£011 0.9 043+0.00 037+£002 023
Lithuanian 261+018 200+£036 058 034+0.02 027£001 012
Polish 406+024 256+£0.15 0.30 £0.03 0.24 +£0.01
Romanian 3.66 044 2.63+£0.12 0.82+0.02 0.63 +0.02
Slovak 429+0.03 3.00=£0.21 0.54+0.02 0.44+0.01
Spanish 54+054 4.18+£057 0.95+0.04 0.82+0.03
Turkish 10.5£10.84 2.70+0.24 3.83 +£4.68 1.01 £0.03
Vietnamese 26+010 238+020 131 1524+016 121+0.04 0.32

Table 4 also portrays how the ratio of the ByT5-to-Dictionary error rates changes during
half and full training. The trend is obvious: the transformer improves for all word groups
with training. If our training was longer, the ByT5 model may even surpass the Dictionary
model at a word group of one translation candidate. This is exactly what happened for the
Latvian and the Lithuanian languages after eight times more training samples.

Note that at half the training, the standard deviation of the Turkish ratio is abnormally
high. This is due to one of three ByT5 training runs that temporarily fail. However, with
further training, the run recovered up to the same accuracy level as the other two. This is
a good example of how different training dynamics can be dependent on different initial
conditions and different data sampling.

We constructed a hybrid approach by letting the Dictionary model restore words with
only a single translation candidate, while leaving all the other words for the transformer.
For our standard training, this improved the single ByT5 results by up to 0.37%, on average,
and allowed us to reach the state-of-the-art results for the Turkish language. However,
we can observe that, with longer training, the pure ByT5 model can catch up to, or even
surpass, the hybrid approach.

7.2. Simultaneous Diacritics and Typos Corrections

The results of the simultaneous diacritic and typographic error corrections are repre-
sented in Table 5. We see that the alpha-word accuracy results are significantly lower across
the board, compared to restoring the diacritics alone.

Appl. Sci. 2022,12, 2636

23 of 33

Table 5. Alpha-word accuracies for the simultaneous diacritics and typographic error corrections.

ByT5 Dict.+ByT5

Language Raw Hunspell Dict.

#samples: X1 x19 X1 x19
Croatian 64.05 66.43 74.06 90.27 96.71
Czech 38.68 4015 71.37 89.88 94.52
French 60.81 64.94 70.87 93.45 96.52
Hungarian 38.16 46.35 69.84 88.31 9396 9431 96.85
Irish 53.49 56.01 73.16 89.48 94.49
Latvian 37.69 4421 66.29 88.88 93.01
Lithuanian 44.78 4487 68.44 89.68 9419 9470 96.73
Polish 49.10 56.61 70.02 91.38 96.76
Romanian 51.93 5454 70.29 90.50 94.14
Slovak 43.92 48.59 72.89 91.05 95.56
Spanish 64.07 68.03 71.58 93.12 95.98
Turkish 51.18 51.69 72.58 90.00 95.29
Vietnamese 11.92 11.84 56.19 8734 9340 87.86 93.77
Average 46.91 50.33 71.89 90.26 94.60

We also added correction results that were obtained with the open-source Hunspell
spellchecker [52] by replacing the words that it found to be incorrectly spelled with its
first suggestion. The results indicate that it is barely better than raw uncorrected sen-
tences. It is also significantly worse than our Dictionary approach, which is specialized in
restoring diacritics.

The Dictionary method was used in the same way as the previous experiment, i.e., it
was “trained” on the typo-free diacritization-only task in both the standalone and hy-
brid approaches.

The reduction of accuracy the ByT5 model, on average, is by 7.84%, while for hybrid
Dict.+ByT5 approach, it was 3.71%. A smaller reduction for the hybrid method suggests
that the transformers do not cope well with the same words that it successfully dealt with
when there were no typos present. A possible reason may be that more learning is required
by both tasks, and up to 10 h of training might not be enough. Training the Hungarian
model up to 19 times longer improves the performance substantially, but the gap of 2.98%
between the ByT5 model and the hybrid remains.

7.3. Performance on the Zipf's Tail

Word frequencies can be modeled reasonably well by a Zipf distribution. It is a very
heavy-tailed distribution, where there is a vast number of words with low frequencies.
The abundance of such words is a challenge for most learning systems, as the data for these
points is sparse. Our question is, how hard are these words for our trained models?

We grouped words that were in our testing set by their frequencies in the training set.
The resulting word groups are:

* Unseen: present in the test but not in train data;
e [1,100]: words appearing in the training set from 1 to 100 times;
e [101,10,000]: words appearing in training set from 101 to 10,000 times.

Alpha-word accuracy results for these groups are shown in Table 6.

Appl. Sci. 2022,12, 2636

24 of 33

Table 6. The distribution of diacritics restoration errors for the different frequencies of the words in
the training dataset are shown in the first three columns. The intervals indicate the bounds of how
many times the words in this group were encountered in the training dataset. The last two columns
indicate the percentages of how much of the training dataset was constituted by these word groups.

Percentage of All Errors

% of Training Dataset

Language
Unseen [1,100] [101,10,000] [1,100] [101,10,000]

Croatian 3142 4+1.65 54234+127 12,67 £145 11.79 51.02
Czech 2042 +024 51.07+131 2643 +0.80 10.62 54.54
French 13.55 £0.88 4229 +£326 2853 +£1.66 2.06 37.53
Hungarian 2678 £0.33 4996 +0.59 19.67 £+ 0.69 9.25 50 82

x 8 #samples 35.97 43.45 17.64 ' '
Irish 46.51 £6.04 3537065 13.64 +£3.17 23.53 45.03
Latvian 2594 +095 4987 +0.16 21.35+0.77

x 8 #samples 33.71 43.23 20.49 22.20 56.23
Lithuanian 2613 £0.60 4793+1.03 24.83+1.11

x8 #samples 40.28 39.60 19.55 lo4l 63.61
Polish 18.31 £0.52 4849 +£0.89 29.78 £ 0.46 10.43 56.29
Romanian 16.06 £0.29 4346 £0.96 27.83 +1.08 6.83 48.39
Slovak 36.68 +£1.00 52.96+0.29 10.01 +£0.70 14.98 52.18
Spanish 1322 £024 3929 +£158 28.74+0.86 2.19 36.81
Turkish 2411 +048 5403+1.13 21.07+0.71 11.26 59.66
Vietnamese 148+0.01 785+£019 5840+046 0.96 26.15

x8 #samples 3.37 10.69 55.43 ' '

A substantial part of errors come from the words that are unseen during the training.
Excluding Vietnamese and Irish, this ranges from 13% (Spanish, French) to 36% for Slovak.
The Vietnamese outlier of 1% may be due to its linguistic nature, while the Irish outlier of
46% is due to its very small dataset. Overall, the smaller the dataset (Table 1), the more
unseen or rare words, and the associated errors, we have.

Similar to the Dictionary method and the other classical methods, unseen data is also a
significant source of errors for the transformer model. Different to the classical approaches,
however, is the transformer model, which is based on neural networks, and it can generalize
to unseen data. To investigate this generalization, we filtered all the words that were in the
testing set and not in the training and calculated the percentages, as is shown in Table 7.
We can see that the ByT5 model successfully restores more than 76% of unseen words for
each language.

Appl. Sci. 2022,12, 2636

25 of 33

Table 7. The confusion matrix of the unseen word diacritics restoration performance by the ByT5
model. Unseen words with and without diacritics are presented separately. The last column depicts
the total number of unseen words for each language.

With Diacritics, % Without Diacritics, %
Language : : Total Unseen
Failed Restored Failed Left Correct
Croatian 68+02 159+£02 43104 73.0£04 12,147
Czech 164+02 377+£02 50+04 409 £ 0.4 9398
French 10.1 £0.1 98+01 46+£03 75.6 £0.3 3794
Hungarian 101 £02 582+£02 23+£01 295+ 0.1 16,350
x8 #samples 7.1 61.2 12 30.5 ’
Irish 121£05 256+05 53£10 570+ 1.0 29,470
Latvian 16.8+0.7 399+£07 55+06 379 £0.6 17 449
x8 #samples 13.6 43.1 3.9 39.4 !
Lithuanian 81+04 297+04 44414 577 £ 14 15547
x8 #samples 6.0 31.9 2.8 59.3 ’
Polish 70+£01 204+£01 23402 703 £0.2 9461
Romanian 156 £05 151+05 69=£09 62.4+09 8493
Slovak 144+03 337+£03 49+16 469 £1.6 13,357
Spanish 81+02 116+£02 54+1.0 75.0£1.0 5115
Turkish 70+£01 253+£01 37402 63.9 £0.2 9594
Vietnamese 144 £ 0.3 1.7£03 19404 821+04 4260
x8 #samples 13.1 2.9 2.7 81.2

7.4. Training Longer

Training for longer is beneficial. As can be seen in Figure 2, testing the alpha-word
accuracy for all our models is only increaing with training. The lack of training hurts
the performance of the Vietnamese language the most, which is the language with the
most diacritics. Training the corresponding model for eight times longer brings substantial
improvements of over 3.28%.

Croatian A #samples ® ﬁ
Czech1 @ x0.25 @y
French4 @ x0.5 ‘

Hungarian{ @ %0.75 ® C o) ®)
Irish 4 @ x1 “
> Latvian - x8 “_ eay ®)
c) x19 'Y)
& Lithuanian - @
5 Polish - 0
Romanian 4 %
Slovak ® ‘

Spanish A ‘

Turkish e ‘-
Vietnamese -P. ® ® o0 @ on
8I8 9I0 9I2 9I4 9I6 9I8

Alpha-word-accuracy

Figure 2. Alpha-word accuracy improvement during diacritics restoration training. Training steps of
x1 corresponds to 2048 x 256 sentences for a given language. There is a visible outlier for the Turkish
language at x 0.5 training steps, but that model regained the accuracy later in training.

Appl. Sci. 2022,12, 2636

26 of 33

A similar trend is observed for all the models trained on the two tasks simultaneously
in Figure 3. Here, the improvements are much larger. On the other hand, languages with
fewer diacritics, such as French and Spanish, have diminishing gains from longer training.
Overall, longer training is a must for the more difficult tasks.

Note that while the training is much longer, we still use the same dataset sizes pre-
sented in Table 1, but we just iterate over them more times.

Croatian A @ o @ O
Czech A { J o 0@
French - o O @0
Hungarian - { @ o O o0
Irish @ @
% Latvian - #sarr:(rz)lezss @ L o @
3 Lithuanian - : i ° o oo o
© Polish ® x0.75 @ ® 00
Romanian - o x1 o o o°
Slovak - X8 o o 0@
Spanish A x19 @ 000
Turkish L o @ O
Viethamese +— @] @ @ O
8IO 8I2 8I4 8I6 8I8 9I0 9I2 9I4

Alpha-word-accuracy

Figure 3. Alpha-word accuracy improvement during diacritics and typographical errors correction
training. Training data of x1 corresponds to 2048 x 256 sentences for a given language. We also run
a single longer training session for the Hungarian language, with up to x19 training steps.

8. Discussion

In this work, we show that accuracy can be improved by combining the transformer
and the classical Dictionary methods. Yet, this is the case for more under-trained transform-
ers. We show that the longer-trained ByT5 models start to bypass the hybrid approach.
However, when resources are limited compared to the difficulty of the task, such a hybrid
approach can be a viable solution, as is the case with our simultaneous diacritics restoration
and typos correction tasks.

The hybrid Dict.+ByT5 approach might also have an advantage in the latter task
because the dictionary part is “trained” on the typo-free diacritization task and, thus,
recognizes and corrects typo-free words well. The ByT5 model was trained only on the
combined task, so it, thus, has a harder time learning to recognize these situations from the
noisy data.

Transformer models depend on the amount of training data, and small sizes can hinder
the performance. Hungarian and Latvian languages, with a very similar percentage of
diacritics (and, hence, the task difficulty), had a difference of four times between their
dataset sizes. As a result, our achieved restoration score for Latvian was almost 2% lower.
On the other hand, the alpha-word accuracy of over 96% and 98% can still be reached for
Latvian and Irish languages, with dataset sizes of 5.5 M and 1.2 M words, respectively. This
indicates a correlation between the difficulty of the task and the size of the dataset needed.

One way to improve our results is to leverage the fact that most of the errors are due to
unseen and less-seen words in the training data. As we show in this work (Table 6), longer
training improves the restoration of words with moderate frequencies but it is less effective
for unseen words and is very time-consuming. The only way to improve unseen words
is to rely on the additional dataset. Time constraints could, additionally, be relieved by
employing boosting approaches [119], i.e., training on the filtered selection of data, which
is known to be problematic. Such data could contain a high proportion of low-frequency
and unseen words, while at the same time, being compact.

Appl. Sci. 2022,12, 2636

27 of 33

A limitation of our work is that we had only a single moderate GPU at our disposal.
Scaling the model size [106], incorporating additional datasets [46], and training longer
can improve accuracy by several percent. Similarly, one can build a model of multiple
languages to gain benefits by overlapping vocabularies and semantics of related under-
represented languages, although studies report contradictory results [46,48]. We think that
all these scaling approaches are promising as future work.

In our work, we generated the typos for the entire datasets just once, but, in principle,
we could generate different typos each time we pass through the dataset. This would
require more computation, but it would enrich the data for longer training sessions.

Another natural future direction is the incorporation of multiple error types. This is
still an active area of research, as the currently achievable accuracy of such systems has a
wide margin to improve [107]. In this work, we show how difficult the task becomes by
combining just two classes of errors. However, this is a bigger problem for the classical
hand-crafted approaches, but our ByT5-based models could, in principle, cope with this,
given additional data and training times.

Our approach is also easy to scale to other languages, as it does not depend on the
alphabet or structure of the language. For example, only the typo dataset generation model
in this work depends on the Latin alphabet and a corresponding keyboard layout.

Altogether, this makes our approach very promising for large-scale real-world ap-
plications. Our combined diacritic restoration and typo correction solution could, in
principle, already be used in, for example, auto-correcting text messages or social me-
dia posts/comments. Expanding the approach in the ways discussed above opens even
bigger application horizons.

9. Conclusions

We achieved a 98.3% average alpha-word accuracy (within 1% of the state of the art) on
the diacritic restoration task over 13 benchmark languages with a ByT5 universal byte-level
transformer model approach, a smaller training dataset (Wikipedia), and a much-reduced
training time (Table 3). When the training time is limited, the model is slightly improved
by the assistance of a simple statistical Unigram model (Dict.+ByT5). There is a solid
indication, however, that longer training gets very close to the state-of-the-art model, even
without this assistance, and with the smaller dataset (Figure 2).

We achieved a 94.6% average alpha-word accuracy on the simultaneous diacritics
restoration and typo correction tasks with the same models (Dict.+ByT5), training datasets
and times. This is a much harder task, and is problematic for the specialized systems; thus,
we have no state-of-the-art model to compare to (Table 5). There is also a strong indication
that longer training can significantly improve these results (Figure 3).

We investigated that most of the errors are caused by the words that are rare in the
training dataset (Table 6). However, contrary to the classical approaches, our models
generalize quite well to the unseen words (Table 7) and restore diacritics correctly on >76%
of the unseen words in every language. This gives us good hints on how the models can be
further improved, often by simply training them more.

The good performance and universality of this approach make it very promising for
real-world applications, more languages and error classes.

Author Contributions: Conceptualization, M.L.,] K.-D., L.S. and T.K.; methodology, L.S., M.L.,
J.K.-D. and M.B,; software, L.S.; validation, L.S.; formal analysis, L.S. and M.L.; investigation, L.S.;
resources, M.L.; data curation, L.S.; writing—original draft preparation, L.S., M.L.,] K.-D. and M.B.;
writing—review and editing, M.L. and J.K.-D.; visualization, L.S.; supervision, M.L. and J.K.-D.;
project administration, M.L. and]J.K.-D.; funding acquisition, M.L.,] K.-D., L.S., T.K. and M.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the joint Kaunas University of Technology Research and Inno-
vation Fund and Vytautas Magnus University project “Deep-Learning-Based Automatic Lithuanian
Text Editor (Lituanistas)”, Project No.: PP34/2108.

Appl. Sci. 2022,12, 2636 28 of 33

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The data for
12 benchmark languages can be found here: http:/ /hdl.handle.net/11234/1-2607. Additional data
for the Lithuanian were used from here: https://ufal. mff.cuni.cz/~maijlis/w2c/download.html
and were preprocessed by the tools from https://github.com/arahusky/diacritics_restoration/tree/
master/data/create_corpus_scripts. All the links were last accessed on 3 January 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Petricd, L.; Cucu, H.; Buzo, A.; Burileanu, C. A Robust Diacritics Restoration System Using Unreliable Raw Text Data. In Spoken
Language Technologies for Under-Resourced Languages; SPIIRAS: St Petersburg, Russia, 2014; pp. 215-220.

2. Cucu, H; Besacier, L.; Burileanu, C.; Buzo, A. ASR domain adaptation methods for low-resourced languages: Application to
Romanian language. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27-31
August 2012; IEEE: Bucharest, Romania, 2012; pp. 1648-1652.

3. Ungurean, C.; Burileanu, D.; Popescu, V.; Negrescu, C.; Dervis, A. Automatic diacritic restoration for a TTS-based e-mail reader
application. UPB Sci. Bull. Ser. C 2008, 70, 3-12.

4. Nguyen, T.; Shcherbakov, M. Improvement of Intent Classification Using Diacritic Restoration for Text Message in Chatbot. In
Creativity in Intelligent Technologies and Data Science; Kravets, A.G., Shcherbakov, M., Parygin, D., Groumpos, PP, Eds.; Springer
International Publishing: Cham, Germany, 2021; pp. 110-123.

5. Hung, B.T. Integrating Diacritics Restoration and Question Classification into Vietnamese Question Answering System. Adv. Sci.
Technol. Eng. Syst. . 2019, 4, 207-212. [CrossRef]

6. Diab, M.; Ghoneim, M.; Habash, N. Arabic diacritization in the context of statistical machine translation. In Proceedings of the
Eleventh Machine Translation Summit (MT-Summit XI); ACL Anthology: Copenhagen, Denmark, 2007.

7. Ozer, Z.; Ozer, L; Findik, O. Diacritic restoration of Turkish tweets with word2vec. Eng. Sci. Technol. Int. |. 2018, 21, 1120-1127.
[CrossRef]

8. Xue, L.; Barua, A.; Constant, N.; Al-Rfou, R.; Narang, S.; Kale, M.; Roberts, A.; Raffel, C. ByT5: Towards a Token-Free Future with
Pre-Trained Byte-To-Byte Models. arXiv 2021, arXiv:2105.13626.

9. Alansary, S. Alserag: An Automatic Diacritization System for Arabic. In Proceedings of the International Conference on
Advanced Intelligent Systems and Informatics 2016, Cairo, Egypt, 24-26 October 2016; Hassanien, A.E., Shaalan, K., Gaber, T.,
Azar, A.T., Tolba, M.E, Eds.; Springer International Publishing: Cham, Germany, 2017; pp. 182-192.

10. Habash, N.; Rambow, O. Arabic Diacritization through Full Morphological Tagging. In Proceedings of the Human Language
Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics, Rochester,
NY, USA, 22-27 April 2007; Companion Volume, Short Papers; Association for Computational Linguistics: Rochester, NY, USA,
2007; pp. 53-56.

11. Kanis, J.; Miiller, L. Using the Lemmatization Technique for Phonetic Transcription in Text-to-Speech System. In Text, Speech and
Dialogue; Sojka, P., Kopecek, 1., Pala, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 355-361.

12. Nelken, R.; Shieber, S.M. Arabic Diacritization Using Weighted Finite-State Transducers. In Proceedings of the ACL Workshop on
Computational Approaches to Semitic Languages; Semitic ‘05, Stroudsburg, PA, USA, 29 June 2005; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2005; pp. 79-86.

13. Jarrar, M.; Zaraket, F; Asia, R.; Amayreh, H. Diacritic-Based Matching of Arabic Words. ACM Trans. Asian Low-Resour. Lang. Inf.
Process. 2018, 18, 1-21. doi: 10.1145/3242177. [CrossRef]

14. Shannon, C.E. Prediction and entropy of printed English. Bell Syst. Tech.]. 1951, 30, 50-64. [CrossRef]

15. Toth, S.; Zaymus, E.; Duraéik, M.; Hrkut, P.; Mesko, M. Diacritics restoration based on word n-grams for Slovak texts. Open
Comput. Sci. 2021, 11, 180-189. [CrossRef]

16. Ezeani, I.; Hepple, M.; Onyenwe, I. Automatic Restoration of Diacritics for Igbo Language. In Text, Speech, and Dialogue; Sojka, P.,
Hordk, A., Kopecek, 1., Pala, K., Eds.; Springer International Publishing: Cham, Germany, 2016; pp. 198-205. [CrossRef]

17. Atserias, J.; Fuentes, M.; Nazar, R.; Renau, I. Spell Checking in Spanish: The Case of Diacritic Accents. In Proceedings of the
Eighth International Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey, 21-27 May 2012; European
Language Resources Association (ELRA): Istanbul, Turkey, 2012; pp. 737-742.

18. Crandall, D. Automatic Accent Restoration in Spanish Text; Indiana University Bloomington: Bloomington, IN, USA, 2005.

19. Yarowsky, D. DECISION LISTS FOR LEXICAL AMBIGUITY RESOLUTION: Application to Accent Restoration in Spanish and
French. In Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, Las Cruces, NM, USA,
27-30 June 1994; Association for Computational Linguistics: Las Cruces, NM, USA, 1994; pp. 88-95. [CrossRef]

20. Santi¢, N.; gnajder, J.; Basi¢, B.D. Automatic diacritics restoration in Croatian texts. In Proceedings of the INFuture2009:

Digital Resources and Knowledge Sharing, Zagreb, Croatia, 4-6 November 2009; Department of Information Sciences, Faculty of
Humanities and Social Sciences, University of Zagreb: Zagreb, Croatia, 2009; pp. 309-318.

http://hdl.handle.net/11234/1-2607
https://ufal.mff.cuni.cz/~majlis/w2c/download.html
https://github.com/arahusky/diacritics_restoration/tree/master/data/create_corpus_scripts
https://github.com/arahusky/diacritics_restoration/tree/master/data/create_corpus_scripts
http://doi.org/10.25046/aj040526
http://dx.doi.org/10.1016/j.jestch.2018.09.002
http://dx.doi.org/10.1145/3242177
http://dx.doi.org/10.1002/j.1538-7305.1951.tb01366.x
http://dx.doi.org/10.1515/comp-2020-0143
http://dx.doi.org/10.1007/978-3-319-45510-5_23
http://dx.doi.org/10.3115/981732.981745

Appl. Sci. 2022,12, 2636 29 of 33

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Zayyan, A.; Elmahdy, M.; Husni, H.; Aljaam, J. Automatic Diacritics Restoration for Dialectal Arabic Text. Int. . Comput. Inf. Sci.
2016, 12, 159-165. [CrossRef]

Harrat, S.; Abbas, M.; Meftouh, K.; Smaili, K. Diacritics restoration for Arabic dialects. In Proceedings of the INTERSPEECH
2013-14th Annual Conference of the International Speech Communication Association, Lyon, France, 25-29 August 2013; ISCA:
Lyon, France, 2013.

Novak, A.; Siklési, B. Automatic Diacritics Restoration for Hungarian. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, Lisbon, Portugal, 17-21 September 2015; Association for Computational Linguistics:
Lisbon, Portugal, 2015; pp. 2286-2291. [CrossRef]

Ljubesi¢, N.; Erjavec, T.; FiSer, D. Corpus-Based Diacritic Restoration for South Slavic Languages. In Proceedings of the Tenth
International Conference on Language Resources and Evaluation (LREC’16), Portoroz, Slovenia, 23-28 May 2016; European
Language Resources Association (ELRA): Portoroz, Slovenia, 2016; pp. 3612-3616.

Mihalcea, R.; Nastase, V. Letter Level Learning for Language Independent Diacritics Restoration. In Proceedings of the COLING-02:
The 6th Conference on Natural Language Learning—Volume 20; CoNLL-2002; Association for Computational Linguistics: Stroudsburg,
PA, USA, 2002

Zitouni, I.; Sorensen, J.S.; Sarikaya, R. Maximum Entropy Based Restoration of Arabic Diacritics. In Proceedings of the
21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational
Linguistics, Sydney, Australia, 20 July 2006; Association for Computational Linguistics: Sydney, Australia, 2006; pp. 577-584.
[CrossRef]

Acs, J.; Halmi, J. Hunaccent: Small Footprint Diacritic Restoration for Social Media. In Normalisation and Analysis of Social Media
Texts (NormSoMe) Workshop; VDU: Portoroz, Slovenia, 2016.

Kapotitte-Dzikieng, J.; Davidsonas, A.; Vidugiriené, A. Character-based machine learning vs. language modeling for diacritics
restoration. Inf. Technol. Control 2017, 46, 508-520. [CrossRef]

Francom,].; Hulden, M. Diacritic error detection and restoration via part-of-speech tags. In Proceedings of the 6th Language and
Technology Conference, Poznar, Poland, 7-9 December 2013.

Masmoudi, A.; Mdhaffar, S.; Sellami, R.; Belguith, L.H. Automatic Diacritics Restoration for Tunisian Dialect. ACM Trans. Asian
Low-Resour. Lang. Inf. Process. 2019, 18, 1-18. [CrossRef]

Scannell, K.P. Statistical unicodification of African languages. Lang. Resour. Eval. 2011, 45, 375-386. [CrossRef]

Tufis, D.; Ceausu, A. DIAC+: A Professional Diacritics Recovering System. In Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC’08), Marrakech, Morocco, 28-30 May 2008; European Language Resources Association
(ELRA): Marrakech, Morocco, 2008.

Adali, K.; Eryigit, G. Vowel and Diacritic Restoration for Social Media Texts. In Proceedings of the 5th Workshop on Language
Analysis for Social Media (LASM), Gothenburg, Sweden, 27 April 2014; Association for Computational Linguistics: Gothenburg,
Sweden, 2014; pp. 53-61. [CrossRef]

Luu, T.A.; Yamamoto, K. A Pointwise Approach for Vietnamese Diacritics Restoration. In Proceedings of the 2012 International
Conference on Asian Language Processing, Hanoi, Vietnam, 13-15 November 2012; IEEE: Hanoi, Vietnam, 2012; pp. 189-192.
[CrossRef]

Karim, A.A.; Abandah, G. On the Training of Deep Neural Networks for Automatic Arabic-Text Diacritization. Int.]. Adv.
Comput. Sci. Appl. 2021, 12 . [CrossRef]

Gershuni, E.; Pinter, Y. Restoring Hebrew Diacritics Without a Dictionary. arXiv 2021, arXiv:2105.05209.

Almanaseer, W.; Alshraideh, M.; Alkadi, O. A Deep Belief Network Classification Approach for Automatic Diacritization of
Arabic Text. Appl. Sci. 2021, 11, 5228. [CrossRef]

Naplava, J.; Straka, M.; Strandk, P.; Haji¢, J. Diacritics Restoration Using Neural Networks. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 7-12 May 2018; European
Language Resources Association (ELRA): Miyazaki, Japan, 2018.

Algahtani, S.; Mishra, A.; Diab, M. A Multitask Learning Approach for Diacritic Restoration. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, Stroudsburg, PA, USA, 5-10 July 2020; Association for Computational
Linguistics: Stroudsburg, PA, USA , 2020; pp. 8238-8247. [CrossRef]

Ruseti, S.; Cotet, TM.; Dascalu, M. Romanian Diacritics Restoration Using Recurrent Neural Networks. arXiv 2020,
arXiv:2009.02743.

Algahtani, S.; Mishra, A.; Diab, M. Efficient Convolutional Neural Networks for Diacritic Restoration. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3-7 November 2019; Association for Computational Linguistics:
Hong Kong, China, 2019; pp. 1442-1448. [CrossRef]

Abbad, H.; Xiong, S. Multi-components System for Automatic Arabic Diacritization. In Advances in Information Retrieval; Jose,
J.M,, Yilmaz, E., Magalhaes, J., Castells, P, Ferro, N., Silva, M.]., Martins, F, Eds.; Springer International Publishing: Cham,
Germany, 2020; pp. 341-355.

Uzun, A. Diacritic Restoration Using Recurrent Neural Network. Available online: https://github.com/aysnrgenc/
TurkishDeasciifier (accessed on 17 December 2021).

http://dx.doi.org/10.21700/ijcis.2016.119
http://dx.doi.org/10.18653/v1/D15-1275
http://dx.doi.org/10.3115/1220175.1220248
http://dx.doi.org/10.5755/j01.itc.46.4.18066
http://dx.doi.org/10.1145/3297278
http://dx.doi.org/10.1007/s10579-011-9150-3
http://dx.doi.org/10.3115/v1/W14-1307
http://dx.doi.org/10.1109/IALP.2012.18
http://dx.doi.org/10.14569/IJACSA.2021.0120832
http://dx.doi.org/10.3390/app11115228
http://dx.doi.org/10.18653/v1/2020.acl-main.732
http://dx.doi.org/10.18653/v1/D19-1151
https://github.com/aysnrgenc/TurkishDeasciifier
https://github.com/aysnrgenc/TurkishDeasciifier

Appl. Sci. 2022,12, 2636 30 of 33

44.

45.

46.

47.

48.

49.

50.
51.
52.
53.
54.

55.
56.
57.
58.
59.
60.
61.
62.
63.

64.
65.

66.

67.

68.

69.

70.

71.

72.

Hung, B.T. Vietnamese Diacritics Restoration Using Deep Learning Approach. In Proceedings of the 2018 10th International
Conference on Knowledge and Systems Engineering (KSE), Ho Chi Minh City, Vietnam, 1-3 November 2018; IEEE: Ho Chi Minh
City, Vietnam, 2018; pp. 347-351. [CrossRef]

Nutu, M,; Lérincz, B.; Stan, A. Deep Learning for Automatic Diacritics Restoration in Romanian. In Proceedings of the 2019
IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 5-7
September 2019; IEEE: Cluj-Napoca, Romania, 2019; pp. 235-240. [CrossRef]

Naplava, J.; Straka, M.; Strakova, J. Diacritics Restoration using BERT with Analysis on Czech language. Prague Bull. Math.
Linguist. 2021, 116, 27-42. [CrossRef]

Dang, T.D.A.; Nguyen, T.T.T. TDP—A Hybrid Diacritic Restoration with Transformer Decoder. In Proceedings of the 34th
Pacific Asia Conference on Language, Information and Computation, Hanoi, Vietnam, 24-26 October 2020; Association for
Computational Linguistics: Hanoi, Vietnam, 2020; pp. 76-83.

Laki, L.].; Yang, Z.G. Automatic Diacritic Restoration With Transformer Model Based Neural Machine Translation for East-Central
European Languages. In Proceedings of the 11th International Conference on Applied Informatics (ICAI), Eger, Hungary, 29-31
January 2020; Number 2650 in CEUR Workshop Proceedings; pp. 190-202.

Junczys-Dowmunt, M.; Grundkiewicz, R.; Dwojak, T.; Hoang, H.; Heafield, K.; Neckermann, T; Seide, F.; Germann, U.; Aji, A.F,;
Bogoychev, N.; et al. Marian: Fast Neural Machine Translation in C++. In Proceedings of the ACL 2018, System Demonstrations,
Association for Computational Linguistics, Melbourne, Australia, 15-20 July 2018; pp. 116-121. [CrossRef]

Blair, C.R. A program for correcting spelling errors. Inf. Control 1960, 3, 60-67. [CrossRef]

Kevin, A. GNU Aspell 0.50.5. 2004. Available online: http://aspell.net/ (accessed on 17 December 2021).

Németh, L. Hunspell. Available online: http://hunspell.github.io/ (accessed on 17 December 2021).

Mitton, R. English Spelling and the Computer; Longman Group: London, UK, 1996.

Bassil, Y.; Alwani, M. Context-sensitive Spelling Correction Using Google Web 1T 5-Gram Information. Comput. Inf. Sci. 2012, 5 .
[CrossRef]

Wu, S.H.; Liu, C.L.; Lee, L.H. Chinese Spelling Check Evaluation at SIGHAN Bake-off 2013. In Proceedings of the Seventh
SIGHAN Workshop on Chinese Language Processing, Nagoya, Japan, 14-18 October 2013; Asian Federation of Natural Language
Processing: Nagoya, Japan, 2013; pp. 35—42.

Russel, R.C. Soundex Code. U.S. Patent 1,261,167, 2 April 1918.

Knuth, D.E. The Art of Computer Programming, Volume 3: Sorting and Searching; Addison Wesley: Boston, MA, USA, 1973.
Philips, L. Hanging on the metaphone. Comput. Lang. 1990, 7, 39-43.

Wagner, R.A.; Fischer, M.]J. The String-to-String Correction Problem.]. ACM 1974, 21, 168-173. [CrossRef]

Damerau, FJ. A Technique for Computer Detection and Correction of Spelling Errors. Commun. ACM 1964, 7, 171-176. [CrossRef]
Levenshtein, V.I. Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. 1966, 10, 707-710.
Doklady Akademii Nauk SSSR, V163 No4 845-848 1965 .

Hamming, R.W. Error detecting and error correcting codes. Bell Syst. Tech.]. 1950, 29, 147-160. [CrossRef]

Allison, L.; Dix, T.I. A bit-string longest-common-subsequence algorithm. Inf. Process. Lett. 1986, 23, 305-310. [CrossRef]
Church, K.W.; Gale, W.A. Probability scoring for spelling correction. Stat. Comput. 1991, 1, 93-103. [CrossRef]

Dalkilig, G.; Cebi, Y. Turkish spelling error detection and correction by using word n-grams. In Proceedings of the 2009 Fifth
International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control,
Famagusta, North Cyprus, 2—4 September 2009; IEEE: Famagusta, North Cyprus, 2009; pp. 1-4. [CrossRef]

Islam, A.; Inkpen, D. Real-word spelling correction using Google Web 1T n-gram with backoff. In Proceedings of the 2009
International Conference on Natural Language Processing and Knowledge Engineering, Dalian, China, 24-27 September 2009;
IEEE: Dalian, China, 2009; pp. 1-8. [CrossRef]

Chaabi, Y.; Ataa Allah, F. Amazigh spell checker using Damerau-Levenshtein algorithm and N-gram. J. King Saud Univ.-Comput.
Inf. Sci. 2021, in press. [CrossRef]

Gao, J.; Li, X,; Micol, D.; Quirk, C.; Sun, X. A Large Scale Ranker-Based System for Search Query Spelling Correction. In
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), Beijing, China, 23-27 August 2010;
Coling 2010 Organizing Committee: Beijing, China, 2010; pp. 358-366.

Xu, W,; Tetreault, J.; Chodorow, M.; Grishman, R.; Zhao, L. Exploiting Syntactic and Distributional Information for Spelling
Correction with Web-Scale N-gram Models. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, Edinburgh, Scotland, UK, 27-31 July 2011; Association for Computational Linguistics: Edinburgh, Scotland, UK, 2011;
pp- 1291-1300.

Hodge, V,; Austin,]. A comparison of standard spell checking algorithms and a novel binary neural approach. IEEE Trans. Knowl.
Data Eng. 2003, 15, 1073-1081. [CrossRef]

Pfeifer, U.; Poersch, T.; Fuhr, N. Retrieval Effectiveness of Proper Name Search Methods. Inf. Process. Manag. 1996, 32, 667-679.
[CrossRef]

Lin, C.J.; Chu, W.C. A Study on Chinese Spelling Check Using Confusion Sets and?N-gram Statistics. In Proceedings of the
International Journal of Computational Linguistics & Chinese Language Processing; Special Issue on Chinese as a Foreign
Language; Volume 20. Available online: https://aclanthology.org/volumes/015-2/ (accessed on 17 December 2021).

http://dx.doi.org/10.1109/KSE.2018.8573427
http://dx.doi.org/10.1109/ICCP48234.2019.8959557
http://dx.doi.org/10.14712/00326585.013
http://dx.doi.org/10.18653/v1/P18-4020
http://dx.doi.org/10.1016/S0019-9958(60)90272-2
http://aspell.net/
http://hunspell.github.io/
http://dx.doi.org/10.5539/cis.v5n3p37
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1145/363958.363994
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1016/0020-0190(86)90091-8
http://dx.doi.org/10.1007/BF01889984
http://dx.doi.org/10.1109/ICSCCW.2009.5379481
http://dx.doi.org/10.1109/NLPKE.2009.5313823
http://dx.doi.org/10.1016/j.jksuci.2021.07.015
http://dx.doi.org/10.1109/TKDE.2003.1232265
http://dx.doi.org/10.1016/S0306-4573(96)00042-8
https://aclanthology.org/volumes/O15-2/

Appl. Sci. 2022,12, 2636 31 0f 33

73.

74.
75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.
88.

89.

90.

91.

92.
93.

94.

Xie, W.; Huang, P; Zhang, X.; Hong, K.; Huang, Q.; Chen, B.; Huang, L. Chinese Spelling Check System Based on N-gram Model.
In Proceedings of the Eighth SIGHAN Workshop on Chinese Language Processing, Beijing, China, 30-31 July 2015; Association
for Computational Linguistics: Beijing, China, 2015; pp. 128-136. [CrossRef]

Bassil, Y. Parallel spell-checking algorithm based on yahoo! n-grams dataset. arXiv 2012, arXiv:1204.0184.

Roy, S.; Ali, E.B. Unsupervised Context-Sensitive Bangla Spelling Correction with Character N-gram. In Proceedings of the 2019
22nd International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 18-20 December 2019;
IEEE: Dhaka, Bangladesh, 2019; pp. 1-6. [CrossRef]

Fivez, P; Suster, S.; Daelemans, W. Unsupervised Context-Sensitive Spelling Correction of Clinical Free-Text with Word and
Character N-Gram Embeddings. In BioNLP 2017; Association for Computational Linguistics: Vancouver, BV, Canada, 2017; pp.
143-148. [CrossRef]

Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching Word Vectors with Subword Information. Trans. Assoc. Comput.
Linguist. 2017, 5, 135-146. [CrossRef]

Shah, K.; de Melo, G. Correcting the Autocorrect: Context-Aware Typographical Error Correction via Training Data Augmentation.
In Proceedings of the 12th Language Resources and Evaluation Conference, Palais du Pharo, Marseille, France, 11-16 May 2020;
European Language Resources Association: Marseille, France, 2020; pp. 6930-6936.

Singh, S.; Singh, S. Review of Real-word Error Detection and Correction Methods in Text Documents. In Proceedings of the 2018
Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29-31
March 2018; IEEE: Coimbatore, India, 2018; pp. 1076-1081. [CrossRef]

Samanta, P.; Chaudhuri, B.B. A simple real-word error detection and correction using local word bigram and trigram. In
Proceedings of the 25th Conference on Computational Linguistics and Speech Processing (ROCLING 2013), Kaohsiung, Taiwan,
4-5 October 2013; The Association for Computational Linguistics and Chinese Language Processing (ACLCLP): Kaohsiung,
Taiwan, 2013; pp. 211-220.

Wilcox-O’Hearn, A.; Hirst, G.; Budanitsky, A. Real-word spelling correction with trigrams: A reconsideration of the Mays,
Damerau, and Mercer model. In Proceedings of the International Conference on Intelligent Text Processing and Computational
Linguistics, Haifa, Israel, 17-23 February 2008; Springer: Berlin/Heidelberg, Germany, 2008, pp. 605-616.

Heidorn, G.E,; Jensen, K.; Miller, L.A.; Byrd, R.J.; Chodorow, M.S. The EPISTLE text-critiquing system. IBM Syst.]. 1982,
21, 305-326. [CrossRef]

Richardson, S.D.; Braden-Harder, L.C. The Experience of Developing a Large-Scale Natural Language Text Processing System:
Critique. In Proceedings of the Second Conference on Applied Natural Language Processing; Association for Computational Linguistics:
Austin, TX, USA, 1988; pp. 195-202. [CrossRef]

Hirst, G.; Budanitsky, A. Correcting real-word spelling errors by restoring lexical cohesion. Nat. Lang. Eng. 2005, 11, 87-111.
[CrossRef]

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need.
In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4-9
December 2017; NIPS’17; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6000-6010.

Park, C.; Kim, K,; Yang, Y.; Kang, M.; Lim, H. Neural spelling correction: Translating incorrect sentences to correct sentences for
multimedia. Multimed. Tools Appl. 2021, 80, 34591-34608. [CrossRef]

Kuznetsov, A.; Urdiales, H. Spelling Correction with Denoising Transformer. arXiv 2021, arXiv:2105.05977.

Tran, H.; Dinh, C.V,; Phan, L.; Nguyen, S.T. Hierarchical Transformer Encoders for Vietnamese Spelling Correction. arXiv 2021,
arXiv:2105.13578.

Devlin, J.; Chang, M.W,; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2-7 June 2019; Association for
Computational Linguistics: Minneapolis, MN, USA, 2019; pp. 4171-4186. [CrossRef]

Ji, T.; Yan, H.; Qiu, X. SpellBERT: A Lightweight Pretrained Model for Chinese Spelling Check. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, Online, 7-11 November 2021; Association for Computational
Linguistics: Online, 2021; pp. 3544-3551.

Liu, S.; Yang, T.; Yue, T.; Zhang, F.; Wang, D. PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correc-
tion. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), Virtual Event, 1-6 August 2021; Association for
Computational Linguistics: Online, 2021; pp. 2991-3000. [CrossRef]

Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
Wang, A.; Pruksachatkun, Y.; Nangia, N.; Singh, A.; Michael, |.; Hill, F; Levy, O.; Bowman, S. SuperGLUE: A Stickier Benchmark
for General-Purpose Language Understanding Systems. In Proceedings of the Advances in Neural Information Processing
Systems, Red Hook, NY, USA, 8-14 December 2019; Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, E, Fox, E., Garnett,
R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32.

Strubell, E.; Ganesh, A.; McCallum, A. Energy and Policy Considerations for Modern Deep Learning Research. Proc. AAAI Conf.
Artif. Intell. 2020, 34, 13693-13696. [CrossRef]

http://dx.doi.org/10.18653/v1/W15-3120
http://dx.doi.org/10.1109/ICCIT48885.2019.9038604
http://dx.doi.org/10.18653/v1/W17-2317
http://dx.doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.1109/ICECA.2018.8474700
http://dx.doi.org/10.1147/sj.213.0305
http://dx.doi.org/10.3115/974235.974271
http://dx.doi.org/10.1017/S1351324904003560
http://dx.doi.org/10.1007/s11042-020-09148-2
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/2021.acl-long.233
http://dx.doi.org/10.1609/aaai.v34i09.7123

Appl. Sci. 2022,12, 2636 32 0f 33

95.

96.

97.

98.

99.

100.

101.

102.

103.
104.

105.

106.

107.

108.

109.
110.

111.

112.

113.

114.

115.

Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A; Cistac, P; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Online, 16-20 November 2020; Association for Computational Linguistics: Online, 2020; pp.
38-45. [CrossRef]

Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P,; Sastry, G.; Askell, A.; et al.
Language Models are Few-Shot Learners. In Proceedings of the Advances in Neural Information Processing Systems, Red Hook,
NY, USA, 6-12 December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F,, Lin, H., Eds.; Curran Associates, Inc.: Red
Hook, NY, USA, 2020; Volume 33, pp. 1877-1901.

Orife, I. Attentive Sequence-to-Sequence Learning for Diacritic Restoration of Yortiba Language Text. arXiv 2018,
arXiv:1804.00832.

Orife, I.; Adelani, D.I,; Fasubaa, T.; Williamson, V.; Oyewusi, W.E.; Wahab, O.; Tubosun, K. Improving Yortiba Diacritic Restoration.
arXiv 2020, arXiv:2003.10564.

Mubarak, H.; Abdelali, A.; Sajjad, H.; Samih, Y.; Darwish, K. Highly Effective Arabic Diacritization using Sequence to Sequence
Modeling. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2-7 June 2019; Association for
Computational Linguistics: Minneapolis, MN, USA, 2019; pp. 2390-2395. [CrossRef]

Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W,; Liu, PJ. Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 2020, 21, 1-67.

Xue, L.; Constant, N.; Roberts, A.; Kale, M.; Al-Rfou, R.; Siddhant, A.; Barua, A.; Raffel, C. mT5: A Massively Multilingual
Pre-trained Text-to-Text Transformer. In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Mexico City, Mexico, 6-11 June 2021; Association for Computational
Linguistics: Online, 2021; pp. 483-498. [CrossRef]

Kudo, T.; Richardson, J. SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural
Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, Brussels, Belgium, 31 October—4 November 2018; Association for Computational Linguistics: Brussels, Belgium,
2018; pp. 66-71. [CrossRef]

Kingma, D.P; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Shazeer, N.; Stern, M. Adafactor: Adaptive Learning Rates with Sublinear Memory Cost. In Proceedings of the 35th International
Conference on Machine Learning, Stockholm, Sweden, 10-15 July 2018; Dy, J., Krause, A., Eds.; Proceedings of Machine Learning
Research: Online, 2018; Volune 80, pp. 4596—4604.

Zhuang, L.; Wayne, L.; Ya, S.; Jun, Z. A Robustly Optimized BERT Pre-training Approach with Post-training. In Proceedings of
the 20th Chinese National Conference on Computational Linguistics, Hohhot, China, 13-15 August 2021; Chinese Information
Processing Society of China: Huhhot, China, 2021; pp. 1218-1227.

Rothe, S.; Mallinson, J.; Malmi, E.; Krause, S.; Severyn, A. A Simple Recipe for Multilingual Grammatical Error Correction. arXiv
2021, arXiv:2106.03830.

Samuel, D.; Straka, M. UFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5. In
Proceedings of the 7th Workshop on Noisy User-generated Text (W-NUT 2021), Online, 11 November 2021; Association for
Computational Linguistics: Punta Cana, Dominican Republic, 2021.

Ortiz Sudrez, PJ.; Sagot, B.; Romary, L. Asynchronous Pipeline for Processing Huge Corpora on Medium to Low Resource
Infrastructures. In Proceedings of the 7th Workshop on the Challenges in the Management of Large Corpora (CMLC-7), Cardiff,
UK, 22 July 2019. [CrossRef]

De Marneffe, M.C.; Manning, C.D.; Nivre, J.; Zeman, D. Universal dependencies. Comput. Linguist. 2021, 47, 255-308. [CrossRef]
Rimkuté, E. Morfologinio Daugiareiksmiskumo Ribojimas Kompiuteriniame Tekstyne [Morphological Disambiguation of the
Corpus of Lithuanian Language]. Ph.D. Thesis, Vytautas Magnus University, Kaunas, Lithuania, 2006. Available online:
https:/ /etalpykla.lituanistikadb.lt/ object/ LT-LDB-0001:E.02~2006~1367155963435 / E.02~2006~1367155963435.pdf (accessed on
17 December 2021).

Pollock, J.J.; Zamora, A. Automatic Spelling Correction in Scientific and Scholarly Text. Commun. ACM 1984, 27, 358-368.
[CrossRef]

Baba, Y.; Suzuki, H. How Are Spelling Errors Generated and Corrected? A Study of Corrected and Uncorrected Spelling Errors
Using Keystroke Logs. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), Jeju Island, Korea, 8-14 July 2012; Association for Computational Linguistics: Jeju Island, Korea, 2012; pp. 373-377.
Hagiwara, M.; Mita, M. GitHub Typo Corpus: A Large-Scale Multilingual Dataset of Misspellings and Grammatical Errors. In
Proceedings of the 12th Language Resources and Evaluation Conference, Marseille, France, 11-16 May 2020; European Language
Resources Association: Marseille, France, 2020; pp. 6761-6768.

Boyd, A. Using Wikipedia Edits in Low Resource Grammatical Error Correction. In Proceedings of the 2018 EMNLP Workshop
W-NUT: The 4th Workshop on Noisy User-generated Text, Brussels, Belgium, 1 November 2018; Association for Computational
Linguistics: Brussels, Belgium, 2018; pp. 79-84. [CrossRef]

Aramaki, E. Typo Corpus. 2010. Available online: http://luululu.com/tweet/ (accessed on 17 December 2021).

http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
http://dx.doi.org/10.18653/v1/N19-1248
http://dx.doi.org/10.18653/v1/2021.naacl-main.41
http://dx.doi.org/10.18653/v1/D18-2012
http://dx.doi.org/10.14618/IDS-PUB-9021
http://dx.doi.org/10.1162/coli_a_00402
https://etalpykla.lituanistikadb.lt/object/LT-LDB-0001:E.02~2006~1367155963435/E.02~2006~1367155963435.pdf
http://dx.doi.org/10.1145/358027.358048
http://dx.doi.org/10.18653/v1/W18-6111
http://luululu.com/tweet/

Appl. Sci. 2022,12, 2636 33 of 33

116.

117.

118.

119.

Birkbeck Spelling Error Corpus/Roger Mitton. Oxford Text Archive. Available online: http://hdl.handle.net/20.500.12024 /0643
(accessed on 17 December 2021).

Holbrook, D. English for the Rejected: Training Literacy in the Lower Streams of the Secondary School; ERIC: 1964. Available online:
https:/ /eric.ed.gov/?id=ED027328 (accessed on 17 December 2021).

Mitton, R. Corpus of Spelling Errors. Available online: https://www.dcs.bbk.ac.uk/~roger/corpora.html3 (accessed on 17
December 2021).

Schapire, R.E., The Boosting Approach to Machine Learning: An Overview. In Nonlinear Estimation and Classification; Springer:
New York, NY, 2003; pp. 149-171. [CrossRef]

http://hdl.handle.net/20.500.12024/0643
https://eric.ed.gov/?id=ED027328
https://www.dcs.bbk.ac.uk/~roger/corpora.html3
http://dx.doi.org/10.1007/978-0-387-21579-2_9

	Introduction
	Related Work on Diacritics Restoration
	Classical Approaches
	Rule-Based Approaches
	Statistics-Based Approaches
	Translation-Based Approaches
	Character-Level Approaches

	Deep-Learning-Based Approaches

	Related Work on Correcting Typographical Errors
	Non-Word Detection
	Candidate Generation
	Using Context and External Datasets
	Real-Word Errors
	Transformer Models for Spelling Error Correction

	Our Methodology
	Formal Definition of the Solving Task
	Tokens
	Mapping X to Y

	Transformer Models
	Auto-Encoding Transformer Models
	Auto-Regressive Transformer Models
	Sequence-to-Sequence Transformer Models
	The ByT5 Model

	Training Hyperparameters
	Batch Size
	Maximum Sequence Length
	Learning Rate

	Evaluation

	Dataset
	Features of Lithuanian
	A Realistic Model of Typos

	Experiment Details
	ByT5 Model Fine-Tuning
	The Generation of Typographical Errors

	Results
	Diacritics Restoration
	Simultaneous Diacritics and Typos Corrections
	Performance on the Zipf's Tail
	Training Longer

	Discussion
	Conclusions
	References

