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Abstract: Clean energy is extremely important not only because of economic purposes but also for
health considerations. The use of photovoltaic (PV) systems is growing, with the increased needs for
electricity. This requires more attention to research of PV systems. In this study, a method to predict
the expected lifetime based on the reliability of system performance is proposed. Geographical data
were collected near two different locations: Cairo, Egypt and Riyadh, Saudi Arabia. The PV system
was simulated with inputs from collected data to obtain the device factors and system responses.
To study the significance of inputs and device parameters on the system responses, the Taguchi OA
method was used. The probability density function (pdf) of the time of acceptable performance was
estimated from the simulation data. A reliability analysis method was applied to the obtained pdf to
estimate the reliability function, lifetime or mean life, reliable life, and rate of failure of the used PV
system as assessment factors. The results showed that the system efficiency is highly dependent on
the ambient temperature, while the performance ratio depends on many variables. The reliability
analysis revealed that the field orientation of 30◦ tilt and 20◦ azimuth and of 30◦ tilt and 30◦ azimuth
are best for near Cairo and near Riyadh, respectively. These orientations lead to the longest mean life
of 772.25 and 688.36 months for Cairo and Riyadh, respectively. It also resulted in the lowest failure
rates of 0.001295 and 0.001228 per month for both regions.

Keywords: PV systems; reliability; performance analysis; Taguchi OA design

1. Introduction

Renewable clean energy has been the interest of many researchers because of its posi-
tive impact on the world. On top of these positive impacts, clean energy usage does not
generate pollution or harmful gasses. This helps save humans and wildlife in general. In
addition, clean energy production is more economical compared to those requiring oil
transport and refining. Moreover, the sources of clean energy are diverse and somehow
persistent, minimizing the dependence on other countries [1]. Many sources of renew-
able energy have been investigated such as solar energy, wind energy, and others. Solar
power as a renewable, sustainable and clean energy source is foreseen to be the dominant
source of electricity in the future. The worldwide growing population and the industrial
development have resulted in a continuous increase in the countries’ demands for elec-
tricity [2]. Meanwhile, about 40–50% of the total generated electricity is consumed by the
residential sector [3,4]. Researchers have been placing more efforts to study and improve
the performance of photovoltaic systems as a solar energy harvesting technology [5]. Solar
radiation is the input of the photovoltaic systems, and electric power is their output, with
many parameters affecting the performance and efficiency of the systems. Collecting and
analyzing the input, parameters, and output data of such systems is important to study to
improve their responses.

The amount of global solar radiation is essential for the optimum design of solar
energy systems, especially for PV systems. As the effect of solar radiation varies with the
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orientation of the PV system, it is important to study the performance of the PV systems at
different orientations for a specific geographical region of the world. This can help estimate
the best system alignment to obtain optimum system performance [6].

Generally speaking, the PV cell is a transducer that converts solar (optical) energy
into electrical energy. Utilizing the PV cells for power production requires more parts
to form a PV system. Studying such systems can be achieved through their transfer
function or by collecting and analyzing data about operational conditions, inputs, outputs
of different parts of the device (device factors), and system responses. Different settings
can be considered to collect data from different experiments. The following sections give
brief explanations of such data components and models.

1.1. The Operational Conditions

These include the atmospheric conditions and the field orientation parameters. The
atmospheric conditions include the ambient temperature TA, the velocity of wind Vw
and the global horizontal solar radiation, or shortly, the global horizontal irradiation.
While the atmospheric conditions are determined by the location of the system on Earth,
the parameters of field orientation can be adjusted for optimum performance. There
are two parameters for the field orientation: tilt angle of the PV plane β and its azimuth
angle αz. These two parameters affect the amount of solar energy collected by the system.
According to [7], the three parameters zenithal angle θz, azimuth angle αz and altitude
define the solar coordinates. The zenith angle θz is the angle of incidence of a beam from
the sun on a horizontal plane, which is the angle between the vertical direction and the line
to the sun.

The azimuth angle αz is defined as the angular displacement on the horizontal plan
taken from south of the projection of the beam radiation [7]. This angle is given by:

αz = arcsin (cos(δ)sin(H)/cos(h))

where,

- h is the solar altitude angle which is the complement of θz;
- H is the hour angle, defined as the angular displacement that the local meridian

makes by a rate of 15◦ per hour—either east or west due to the rotation of the Earth.
According to [7], H is negative in the morning and positive in the afternoon and
given by:

H = 15◦ (RTS− 12)

- RTS is the real time system in hours and is counted from 0 to 24 h;
- δ is the declination angle. In [8], δ is defined as the angle that the rays make with the

equator plane of the Earth for a specified day number n and is given by:

δ = 23.45 sin
[

360 ∗ 284 + n
365.25

]
1.2. Inputs of the PV System

The input to the PV system is the part of the global horizontal radiation that is incident
on the panels and is assumed to be converted into electrical energy. This radiation is called
global incident radiation Gi, and is measured in kWh/m2. The global incident radiation
depends on the global horizontal radiation Gh, which is composed of two components,
according to [9], as follows:

Gh = Dh + Bh

where Bh and Dh are the diffuse and direct beam horizontal radiations in kWh/m2. The
direct beam horizontal irradiation Bh is the radiation that reaches the Earth and that
comes from a beam traveling directly from the sun to the Earth without any atmospheric
scattering [9]. Conversely, the diffuse horizontal radiation Dh is the sun radiation that has
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been scattered by particles and molecules of the atmosphere but finally reaches the Earth’s
surface [9]. These variables are meteorological data available in the databases.

The global horizontal incident radiation Gi is defined as the amount of global solar
radiation incident on the collector plane and is related to the field orientation parameters
Bh and Dh by the following relation:

Gi =
cos(θi)

cos(θZ)
Bh +

(1 + cos(β))

2
Dh (1)

where the angle of incidence θi and θZ are evaluated geometrically by the direction of the
plane to the sun (declination, latitude, hour angle) and the field orientation (β, αz) of the
used PV plane.

The effective global radiation incident on the collector (Ge f f ) is related to Gi after
correction for optical losses due to shades and soiling. Thus, it is considered as an input
instead of Gi, to take the optical losses into consideration.

1.3. The Device Factors

The device factors are the technical specifications of the array and battery. These
factors might differ from one model to another and indicate the quality of the PV system.
The following is a list of the important device factors:

1. Array efficiency ηarr: this is defined as the energy at the array output relative to the
irradiance on the total area of the collector and given by:

ηarr =
Earr1

Gi
(2)

where Earr1 is the energy produced at the output of the array, in one hour, while the
battery is charging.

2. The array performance ratio APR: this is defined by the array yield to the reference
yield as:

APR =
Ya

Yr
(3)

where Yr is the reference yield of the system in kWh/m2/day, which is the amount of
energy received by the array collector in one day, and Ya is the array yield or the daily
production of the array in kWh/kWp/day. The unit kWh/kWp means the produced
electrical energy from the rough area of the array, so, there is no conflict in units of Yr
and Ya.

1.4. Output and System Responses

The output is the produced energy Eprod is available for usage and backup while the
array is producing. This energy is given by:

Eprod = Earr − Elost + E f ull

where Earr is the energy at the output of the array while the battery is charging, Elost is
the energy losses due to conversion and wiring, and E f ull is the unused energy due to
full-battery loss.

The system responses are the specs used to assess the system and include:

1. System efficiency η: the ratio of the produced energy to the irradiance on the total
area of the collector and given by:

η =
Eprod

Gi
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2. System performance ratio (PR): the ratio of the produced energy to the energy that
would be produced if the system is continuously working at its nominal STC ef-
ficiency. The performance ratio is also given by the ratio of the system yield to
the reference yield. This ratio indicates the quality of the system regardless of the
incident irradiance.

The PV system was analyzed and assessed using different methods. Among these
methods are the artificial neural networks (ANN), the adaptive neuro-fuzzy inference
system (ANFIS), and others mentioned below for review. In this work, the PV system
performance was analyzed by the reliability of this performance. Although reliability
engineering is a famous and robust technique, it is not found in the literature. The aim of
this study is to predict some measurements based on the system functionality to be used
for optimum settings and system assessment.

Ravi et al. [6] suggested an approach to maximize the total number of solar panels
in a PV system in a given area without compromising the overall system efficiency, while
also enhancing the output energy. The authors of this work achieved this by optimizing
the installation parameters such as pitch, tilt angle, altitude angle, shading and gain factor,
aiming to improve energy yield.

In [10], the authors studied the effects of using a system for sun tracking of multi-
axis type on electrical generation to evaluate its performance. The authors of this work
investigated the effects of tilt angles and azimuth on the output power of a PV module.
They estimated the instantaneous increments of the generated power when the PV module
is mounted on a single- and dual-axis tracking system. The results they obtained showed
that the yearly optimal tilt angle of a fixed panel facing the south is approximately 0.9 times
the latitude of the city they considered.

The slope of the panels of a photovoltaic system was studied in [11] for three cities.
They utilized the Liu and Jordan model to obtain the monthly optimal angle of tilt. The
results they obtained showed that the optimal tilt angle for these cities is less than 5◦.

Optimizing the performance of a model based on an artificial neural network to esti-
mate the solar radiation in the eastern region of Turkey is provided in [12]. They discussed
the estimation of performance by different types of neural networks. The work of these
authors aimed to evaluate the use of a neural network for such an optimization problem.

A code-based modeling approach was proposed in [13] to help study PV technologies.
The authors used a synthesized dataset for the coding and training of the model. They
used commercial PV modules to validate the model they suggested. Using this model,
they repeatedly and reliably predicted the maximum power point, short circuit current and
open circuit voltage with <2%, 0%, and <10% deviations, respectively.

In [14], Kasra et al. proposed an ANFIS (adaptive neuro-fuzzy inference system) to
identify the most significant parameters to predict the daily global solar radiation. The
ANFIS is a process to select variable input parameters with 1, 2 and 3 inputs to identify the
most significant sets for three cases. They used nine variables of the duration of sunshine
(n), (N) as the maximum of (n), maximum, minimum and average ambient temperatures,
water vapor pressure (VP), relative humidity (Rh), extraterrestrial radiation (Ho) and
sea level pressure (P). The results they obtained showed that the optimum sets of inputs
differed from one city to another due to different solar radiation and climate conditions.

Preemalatha et al. [15] developed an artificial neural network (ANN) model to predict
solar radiation. They used meteorological data for the previous 10 years from databases of
different locations. The ANN model they used is based on root mean square error (RMSE),
minimum mean absolute error (MAE), and maximum linear correlation coefficient (R). The
authors of this work confirmed the accuracy of this ANN model to predict the monthly
average global radiation.

An efficient ANN model was proposed in [16] to predict photovoltaic power. They
used different learning algorithms and training data from different databases to predict
the power production one day ahead with short computational time. The results they
obtained showed an enhancement of up to 1%, 1.5% and 15% for the MAE (mean absolute
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error), R2 (coefficient of determination) and RMSE (root mean square error) as performance
metrics, respectively.

In [17], an optimization technique based on a genetic algorithm and wavelet ANN was
provided to forecast the daily solar radiation. They used the genetic algorithm to optimize
the weights inputs, outputs, translation factors and scale factors. The daily radiation
data, cleanness index and temperature were used for training the ANN using the gradient
descent method. They obtained satisfactory results for the daily solar radiation.

Statistical regression techniques were suggested in [18] to demonstrate the robustness
of the day of the year-based models for solar radiation prediction. The authors evaluated
the performance of the selected models by analyzing different statistical indicators.

This paper is organized as follows: An introduction to the PV system with a brief
review is given in Section 1. The proposed methodology and used materials are described
in Section 2. The results are presented and discussed in Section 3. At the end of this paper,
the work is concluded.

2. Materials and Methods

The data used in this work were collected from two different geographical regions
as described:

- near Cairo: Cairo International Airport, Egypt, time zone UT + 2 with latitude 30.13◦ N,
longitude 31.40◦ E and altitude 36 m;

- near Riyadh: Al Ahsa, Saudi Arabia, time zone UT + 3 with latitude 22.0◦ N, longitude
51.0◦ E and altitude 138 m.

Three experiments were run with both datasets at different settings of field orientation
tilt angle β and azimuth angles αz. These settings were determined to include the most
common values of (β and αz) used in both regions as follows:

1. Experiment 1 at (30◦ and 0◦);
2. Experiment 2 at (30◦ and 20◦);
3. Experiment 3 at (30◦ and 30◦).

The values of the meteorological data (TA, Vw, Gi) were collected from the available
database of both regions. These data cover the twelve months of the year.

The method proposed to predict the assessment measures and lifetime, or the time
over which the system can work properly, is composed of the following three major steps,
which are described in later subsections.

1. Simulation of the PV system;
2. Factorial design experiments;
3. Reliability analysis.

2.1. Simulation of the PV System

In this major step, the performance of the photovoltaic system was simulated consider-
ing the values of inputs and operational conditions of both regions. The simulation results
in the corresponding values of the device factors and system responses. For this study, the
specialized software called PVsyst (version 7) was used to simulate the work of the PV
system with the following specifications:

• System type: unlimited sheds;
• PV array of 308 PV modules (model ET-P660_255WWCO Maxim);
• The inverter pack is composed of 44 inverters (model CSI-1.5KTL1P-GI-FL).

By default, this simulation software considers a redundant number of variables for
input and calculates a redundant number of device factors and the three system responses.
For this study, we considered the most discriminable variables and factors to eliminate
the redundancy. An example is that the simulation software calculates Ya, APR and ηarr
among other variables. From these three variables, we considered only the array yield Ya,
as it indicates the values of APR and ηarr.
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2.2. Factors Design Experiments

In this major step, an experiment was designed to study the significance of the inputs
and device factors were selected as variables affecting the output and system responses
and hence its quality. This gives an overview of the impact of each individual variable of
which field orientation allows for the best utilization of global irradiation.

To achieve this task, we applied the robust Taguchi Orthogonal Array (Taguchi OA)
for factorial design.

The Taguchi OA technique is a full factorial design (FFD) of experiments. This highly
fractional design can consider a selected subset of factor (including inputs and device
factors) runs at different levels of values. The balanced performance of the orthogonal
arrays ensures equal consideration of all factors at all levels. Thus, individual factors can
be evaluated independently of each other regardless of the design fractionality [19].

In this work, the significance and effects of the four factors (TA, Vw, Ge f f , Ya) on the
output and the two system responses (Eprod, η, PR) were estimated using the full factorial
Taguchi OA design. The reason for using these four factors is to consider all factors that
affect the system performance. In more detail, the weather-related factors and device
factors that affect the system performance must be considered, but redundancy should be
avoided. TA, Vw and Gi are the weather-related factors that affect performance. TA and
Vw are explicitly considered. The reason for using Ge f f is that it implicitly includes the Gi
as well as the effect of optical losses. The same concept was utilized when using Ya, as it
implicitly includes other device factors APR and Yr as per the definitions mentioned in
section number 1.

The software DOE++ is used for a 2-level full factorial Taguchi OA. The settings used
for the 6 experiments (3 field orientations and 2 datasets) are shown in Tables 1 and 2 for
near Cairo and near Riyadh, respectively. In these tables, L12 means the number of runs
equal to 12 (as the length of data collected over the 12 months of the year). The value
2ˆ10 indicates that the Taguchi OA algorithm was applied for 2 levels (low and high) with
10 output terms in the equations describing the responses. The 10 output terms are related
to the 4 factors and their 6 combinations for 2 locations.

Table 1. Settings of factorial design for the three experiments near Cairo.

Symbol Factor
(30◦, 0◦) (30◦, 20◦) (30◦, 30◦) Additional Settings

Low High Low High Low High

A Ge f f 119.1 194.6 115.6 196.1 111.6 197 Taguchi Design L12 (2ˆ10)
B TA 14.43 29.47 14.43 29.47 14.43 29.47 # of Unique Runs 12
C Vw 2.9 4.2 2.9 4.2 2.9 4.2 # of Blocks 1
D Ya 3.46 5.7 3.45 5.72 3.33 5.74 # of Replicates 1

Table 2. Settings of factorial design for the three experiments near Riyadh.

Symbol Factor
(30◦, 0◦) (30◦, 20◦) (30◦, 30◦) Additional Settings

Low High Low High Low High

A Ge f f 144.6 205.8 143.1 202.1 140.5 203.7 Taguchi Design L12 (2ˆ10)
B TA 14.5 38.2 14.5 38.2 14.5 38.2 # of Unique Runs 12
C Vw 2 3.6 2 3.6 2 3.6 # of Blocks 1
D Ya 4.58 5.57 4.49 5.49 4.37 5.41 # of Replicates 1

2.3. Reliability Analysis

In this major step, we proposed to use reliability engineering to predict some mea-
surements to assess the PV system based on the information obtained from the simulation
and factorial design steps. According to the IEEE standards, reliability engineering is a
part of systems engineering that predicts the ability of the system to function properly for
a specified time. Availability, maintainability, testability and maintenance are commonly
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defined as parts of reliability engineering [20]. In other words, reliability is the probability
of a system failure to occur after a specified time.

In systems engineering, the time of failure T is used as the random variable upon
which the reliability analysis is based. To obtain a mathematical expression of reliability, we
must have a probability distribution of the time of failure T (as a random event) to occur.
The probability distribution function (pdf) is a function of time t that gives the probability
of the time of failure (T) to occur or how probable the failure is to occur at a specified
time [21]. As a probability function, f (t) satisfies:∫ ∞

−∞
f (t)dt = 1

In case of non-availability of data about the time of failure T, a distribution about
the time of the system response can be used for this purpose. The change of any system
response with time actually contains information about the success and failure of the
system and their times. Thus, it is feasible to use the probability distribution function of
the time of acceptable system response to predict the reliability of the system functionality.
If the random variable T is the time after which the system response starts to be under an
acceptable level and f (t) is its pdf, then the cumulative probability density function F(t) is
defined as the probability of T to occur before time t. This function F(t) is used to indicate
the successful response of the system and is given by:

F(t) = P (T ≤ t) =
∫ t

−∞
f (k)dk

Since the reliability function R(t) is the probability of T while the system is working
successfully after time t, it is given by:

R(t) = 1 − F(t) = 1−
∫ t

−∞
f (k)dk

R(t) =
∫ ∞

t
f (k)dk (4)

From (4), the following statistics can be calculated for assessment purposes:
Reliable life: the time to which a specified reliability x can still be achieved. It is

calculated by solving R(t) = x to obtain t. For example, the time at which a reliability of
90% can still be achieved is mathematically expressed by:

Reliable_Li f e = (t|R(t) = x) Month (5)

Mean life: the average time before failure of the unrepairable systems (or average
time between consecutive failures for repairable system). Thus, the mean life is the time at
which the reliability decays to the minimum acceptable reliability y. Thus,

Mean_Li f e = (t|R(t) = y) Month (6)

Failure rate: the reciprocal of the mean life. Thus,

Faliure_Rate =
1

Mean Li f e
Month−1 (7)

The system response that depends on more inputs and device factors can be used for
the reliability study to predict the optimal usage of the system. In this work, we used the
ReliaSoft Weibull++ software to predict R(t), reliable life, mean life and failure rate of the
system based on the pdf of the time of a selected system response. The data of the chosen
system response collected from the simulation step were fed into the ReliaSoft Weibull++
software to process and fit it into a mathematical formula as an estimate of f (t). The method
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set to the software to estimate f (t) and its parameters is the rank regression method (RRM).
To determine how well the parameters of the estimated distribution fit the data, a goodness-
of-fit (GOF) was used. This GOF utility uses three different statistical tests for this purpose.
From the estimated function (t), the reliability function R(t), Reliable_Li f e, Mean_Li f e
and Failure_Rate can be obtained according to Equations (4)–(7), respectively.

3. Results and Discussion

In this section, the results obtained after running the six experiments (three for each
geographical region) are presented and discussed to draw a conclusion.

3.1. Results of Simulation Step

The changes of TA and VW over the 12 months are exactly the same for the three
experiments of a geographical region but differ between the two regions, which can be
observed in Figure 1b,c. The values Ge f f vary from one experiment to another since they
depend on the location and field orientation as shown in Figure 1a. Ge f f shows smooth
variation for the near Cairo but some irregular variation for the near Riyadh region. The
obtained values of the array yield Ya are plotted in Figure 2, which shows increased values
during the summer months following an increase in the effective global irradiation. The
smoothness and irregularity of Ge f f are reflected in the array yield but in a nonlinear
fashion. This nonlinearity may be due to the dusty weather in late autumn and the start of
summer in Riyadh and mid-autumn in Cairo [22]. The array yield also shows variability
among the three orientations during the cold months in both regions.

Figure 1. Inputs of the PV system over the 12 months for three orientations of the two regions.
(a) Global effective radiation over the 12 months. (b) Ambient temperature over the 12 months
(c) Velocity of wind over the 12 months.
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Figure 2. Array yield over the 12 months for three orientations of the two regions.

The PV system efficiency is shown in Figure 3, which demonstrates decreased efficiency
during the summer months for both regions, which is expected due to the increased ambient
temperature. The temperature for this time ranges from 25 to 29.5 ◦C near Cairo and from
34.7 to 39 ◦C near Riyadh. The minimum PV system efficiency is noted in mid-July when
the temperature is at its maximum value, as shown in Figures 1b and 3. The lower efficiency
of the system in the near Riyadh region confirms this conclusion, as the temperature in
Riyadh is always higher than that in Cairo. Figure 3 also demonstrates variation of the
system efficiency among the three orientations during the winter months in Cairo but no
variation for that of Riyadh. This may be due to the fact that Riyadh is closer to the equator
than Cairo, decreasing the effect of varying orientation.

Figure 3. Efficiency of the PV system calculated over the 12 months for three orientations of the
two regions.

Investigating Figure 4, the same description of PV system efficiency is noted for the
PV system performance ratio, with increased variability among the three orientations for
Cairo in the cold months.

The energy produced by the system over the 12 months changes in a fashion similar to
those of the effective global radiation and the array yield as shown in Figure 5. Although
there is decreased PV system efficiency and performance ratio during the summer months,
the produced energy increases because of the increased effective global radiation. It is
clear that the produced energy is higher in Cairo than in Riyadh for the three orientations,
although there is less effective global radiation in Cairo. This is due to less temperature
and cooling provided by the higher wind velocity in Cairo.

3.2. Results of Factorial Design Experiments

The Taguchi OA factorial design experiments showed the dependency of the responses
on the factors and the significance of such a dependency. The software DOE++ provided the
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results in different formats, from which we studied the significance of the factors based on
their p_values and the equations describing the dependency of the responses on the factors.

Figure 4. System performance ratio of the PV system calculated over the 12 months for three orientations
of the two regions.

Figure 5. Energy produced by the PV system and available for usage over the 12 months for
three orientations of the two regions.

The significance of each of the four factors (Ge f f , TA, Vw, Ya) and their combinations
is given in percentages such that:

signi f icance = (1− p_value) ∗ 100%

The most significant factors and their levels of significance on the three responses
(η, PR, Eprod) are presented in Tables 3 and 4 for near Cairo and near Riyadh, respectively.

Table 3. Most significant factors on the three responses for the three orientations near the Cairo region.

Response Azimuth 0 Azimuth 20 Azimuth 30

η TA (81.5%) TA (90.5%) TA (73%)

PR TA Ya (90%) Ge f f Ya (96%) Ge f f Ya (80%)

Eprod Ge f f (99%) Ge f f (92%) Ge f f (95%)

From Tables 3 and 4, the PV system efficiency η depends mostly on the ambient
temperature for the two regions and the three field orientations. This result confirms the
discussion provided above for the lower system efficiency in the near Riyadh region than
that in the near Cairo region.
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Table 4. Most significant factors on the three responses for the three orientations near the Cairo region.

Response Azimuth 0 Azimuth 20 Azimuth 30

η TA (97%) TA (90.8%) TA (90%)

PR TA (97%) TA (95%) TA Ya (94%)

Eprod Ge f f (99%) Ge f f (99%) Ya (100%)

In addition, from Tables 3 and 4, the energy produced by the system and available for
usage Eprod is mostly affected by the global effective radiation Ge f f and the array yield Ya,
which is actually related to Ge f f .

However, the most significant factors on the PV system performance ratio PR varies
from one region to the other and from field one orientation to the other. For this variability,
the performance ratio is chosen to be used for the reliability study to predict the lifetime of
the PV system at both regions with the three different field orientations.

Some of results obtained from the factorial design experiments to form the equations
are shown in Table 3. A response is given by the summation of the obtained absolute value
and the factors multiplied by the obtained coefficients. This table shows the coefficients of
the factors and their combinations obtained for the field orientation (30

◦
, 0
◦
) of both regions.

From this table, the PV system efficiency in near the Riyadh region at field orientation
(30

◦
, 0
◦
) is given by:

η = 12.4241 + −0.7815TA + +0.0709Vw + +0.0434Ya + +0.0409Ge f f ·TA + . . .

The most significant factors are highlighted in Table 5, which confirms the results
obtained based on the p values.

Table 5. Some of the equations describing the responses with the most significant coefficients and
factors highlighted.

Ex
pe

ri
m

en
t1

(T
ilt

30
◦ ,

A
zi

m
ut

h
0◦

)
ne

ar
C

ir
o

η = 13.3811+ Eprod = 1.1059E + 04+ PR = 0.8502+
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3.3. Results of Reliability Analysis

Based on the results obtained from the simulation experiments, the PV system effi-
ciency depends mainly on the ambient temperature, and the produced energy depends
mainly on the global effective radiation. However, the PV system performance ratio
(PR) depends on multiple factors. Thus, PR is the PV system response selected for
reliability analysis.

The ReliaSoft Weibull++ software estimated a probability density function of PR with
time f (t) to be an exponential function given by:

f (t) = λe−λ(t − γ), f (t) ≥ 0, λ > 0, t ≥ γ (8)

While the scale parameter λ indicates the stretch of the curve along the time axis, the
location parameter γ idicates the shift of the curve from the origin. For exponential pdf, λ
is related to γ by:

λ =
1

m− γ
(9)

where t is the operating time (or life) and (m− γ) is the mean of the pdf [21].
From Equations (4) and (8), R(t) is given by:

R(t) =

∞∫
t

λe−λ(k − γ)dk

R(t) = e−λ(t−γ)

Substitute for λ from Equation (9),

R(t) = e−
(t − γ)
(m − γ) (10)

For experiment 1 (30◦, 0◦) and experiment 2 (30◦, 20◦) of the near Cairo region, the
obtained value of the parameter γ is zero, and hence, the pdf is called the 1-paramter (1-p)
distribution, and the corresponding reliability function is given by:

R(t) = e−
t
m

However, for the location parameter, γ = 1 for the remaining four experiments. Thus,
the distribution is a 2-p distribution, and the corresponding reliability function R(t) is
given by:

R(t) = e
−(t−1)
(m−1)

- The reliability functions R(t) of the PV system performance ratio for the six experi-
ments are shown in Figure 6 with an assumed target reliability of 90%, indicated by
the red horizontal line.

- As an example, the reliability at time t = 100 months is given in the first row
of Tables 6 and 7 for the two regions. This value is greater for near Cairo for the
two experiments (azimuth angles 0◦, 20◦), while it is greater for near Riyadh for the
remaining experiments.

- The values of the Mean_Li f e are shown in the second row of Tables 6 and 7 for the
two regions. The obtained Mean_Li f e values of the near Cairo region are 768.4, 772.2
and 659.4 months for experiments 1, 2 and 3, while those of near Riyadh are 685.63,
687.59 and 688.36, respectively. Thus, the field orientation (30◦, 20◦) gives the longest
time for the near Cairo region, and the field orientation (30◦, 30◦) gives the longest
lifetime for the near Riyadh region. The lifetimes of the systems in near Cairo are
longer for orientations (30◦, 0◦) and (30◦, 20◦), while that of near Riyadh is longer for
orientation (30◦, 30◦).
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- The Failure_Rate equals the reciprocal of the Mean_Li f e. The failure rate is given by
the parameter λ, and the exact values are shown in the third row of Tables 6 and 7 for
both regions.

- If we consider an acceptable limit of reliability to be 90%, then the Reliable_Li f e for
the six experiments are less than their Mean_Li f e as shown in the fourth row of
Tables 6 and 7. This result is logic as the reliability at the Mean_Li f e is usually much
less than 90%. Considering a reliability of 50%, the system may have working reliably
for 532.63, 535.28 and 457.38 months for the three orientations in the near Cairo region
as shown in the fifth row of Table 6. This also shows that the field orientation (30◦, 20◦)
is the best among the three orientations for near Cairo, as mentioned above, as it gives
the longest time for a 50% reliability of the performance ratio. For a reliability of 50%,
the system may have working reliably for 476.244, 477.605 and 564.470 months for the
three orientations in the near Riyadh region as shown in the fifth row of Table 7. In
addition, the field orientation (30◦, 30◦) is the best among the three orientations for
near Riyadh, as mentioned above, as it gives the longest time for the 50% reliability of
the performance ratio.

Figure 6. The reliability functions R(t) of: (a,d) field orientation (30◦ tilt, 0◦ azimuth), (b,e) field
orientation (30◦ tilt, 20◦ azimuth) and (c,f) field orientation (30◦ tilt, 30◦ azimuth).

Table 6. Results obtained by the reliability analysis for the near Cairo region.

Statistic 30◦ Tilt, 0◦ Azimuth 30◦ Tilt, 20◦ Azimuth 30◦ Tilt, 30◦ Azimuth

R (t = 100) 0.877977 0.878542 0.860399

Mean_Li f e 768.43 months 772.25 months 658.42 months

Failure_Rate 0.001301/months 0.001295/months 0.001519/months

Reliable_Li f e : (t|R = 0.9) 80.96 months 81.36 months 70.37 months

Reliable_Li f e : (t|R = 0.5) 532.63 months 535.28 months 457.38 months
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Table 7. Results obtained by the reliability analysis for the near Riyadh region.

Statistic 30◦ Tilt, 0◦ Azimuth 30◦ Tilt, 20◦ Azimuth 30◦ Tilt, 30◦ Azimuth

R (t = 100) 0.865548 0.865905 0.884444

Mean_Li f e 685.63 months 687.59 months 688.36 months

Failure_Rate 0.001459/months 0.001454/months 0.001228/months

Reliable_Li f e : (t|R = 0.9 ) 73.238 months 73.455 months 85.801 months

Reliable_Li f e : (t|R = 0.5) 476.244 months 477.605 months 564.470 months

4. Conclusions

In conclusion, this work proposed a method to predict some statistics to assess the
quality of the PV systems. To achieve this goal, data collected from two different geograph-
ical regions were used to simulate the PV system work. The simulation results showed that
the higher the temperature, the lower the PV system efficiency. This is valid for the change
of temperature along the year and among different locations.

From the collected inputs, obtained device factors and system responses, the most
comprehensive variables were selected to undergo a Taguchi OA experiment to obtain
the dependency of the system responses on the inputs and device factors. This algorithm
obtained the level of significance of each of the inputs and devised factors on the system
responses. In turn, it helped to choose the best system response that could be used for
reliability analysis. The Taguchi OA showed that the PV system efficiency and the produced
energy are highly dependent on the ambient temperature and the global effective radiation,
respectively. It also revealed that the performance ratio of the PV system varies with many
inputs and device parameters, which makes it a reliability analysis candidate.

The reliability analysis applied to the performance ratio of the PV system showed that
the field orientation (30◦, 20◦) leads to the longest lifetime of the PV system in the near
Cairo region, while the field orientation (30◦, 30◦) leads to the longest lifetime of the PV
system in the near Riyadh region.
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