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Abstract: Information about rotor positions is critical when controlling a permanent-magnet syn-
chronous motor (PMSM). This information can be gathered using a sensor or through an estimation
without using a sensor. This article discusses a machine learning technique for estimating rotor
positions. The proposed machine learning observer was constructed using a modified Elman neural
network as the main algorithm. The network was trained offline with training data obtained from
PMSM field-oriented control simulations and was tested using a validation data set. The PMSM
control simulation results revealed that the rotor position estimated through machine learning was
comparable with the simulated rotor position; the average error was 0.0127 per unit position. Further-
more, the machine learning model was implemented in an experimental PMSM-control hardware
platform. Both the simulation and experimental results indicate that the proposed machine learning
observer has an acceptable performance.

Keywords: machine learning observer; rotor position estimation; sensorless motor control; modified
Elman neural network

1. Introduction

Electric motors have various uses in modern life, such as in household appliances,
manufacturing, and transportation [1–4]. The permanent magnet synchronous motor
(PMSM) is one of the numerous types of electric motors and has a high performance,
strength, and torque. Therefore, numerous researchers have studied PMSMs; in particular,
the control of PMSMs has attracted substantial attention. Field-oriented control (FOC) is
the most frequently used strategy for PMSM control. Because the FOC scheme requires
information about rotor positions, PMSMs are typically equipped with a sensor to read
this parameter. However, for several reasons, the necessity to use a bulky sensor needs to
be avoided to reduce production costs, eliminate reliability challenges, and minimize the
effect of noise that can interfere with sensor performance; this method is called sensorless
control.

Research on sensorless control strategies can be divided into two categories: (1) control
during the initial startup and at a low speed [5–7] and (2) control at a medium or high
speed [4,8,9]. The high-frequency injection technique is typically used for low speeds,
whereas the back-electromotive force (EMF) method is used for high speeds.

Some research has suggested an alternative using artificial intelligence (AI) for sen-
sorless control [10–16]. In 2003, Lachman et al., showed that neural networks (NNs) are
limited by long computation times because NN performance is dominated by complex
recursive computations [10].

As a subset of AI, machine learning (ML) has attracted attention due to its potential
applications in many engineering disciplines, including powered electronics and motor
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drives. ML based on an artificial NN (ANN) offers several advantages, such as a distributed
design that enables it to handle multiple inputs and outputs, the ability to recognize
nonlinear systems, and the ability to learn, generalize, and adapt. These characteristics
indicate that ML can be used for motor control.

ANNs have been widely implemented for general motor control. In [11], Hoai used a
radial-basis function self-tuning proportional–integral–derivative (PID) NN controller to
control the velocity loop of a PMSM. Ramirez and Trujillo implemented a back-propagation
NN (BPNN) training method to track the speed of a brushless direct-current (BLDC) mo-
tor [12]. In [13], a reactive power-based model-reference adaptive-system speed estimator
and an adaptive neural network for a PMSM were used to construct a sensorless speed
system.

Previously, AI has been used to predict rotor positions. Rajesh Kumar successfully
used an ANN to estimate a rotor position angle; trapezoidal back-EMF information from a
BLDC was employed as the ANN input [14]. In another study, the Scikit-learn computation
software library was successfully used, along with two currents from the Clarke transform
(Iα and Iβ) as inputs, to facilitate a simulation of rotor positions [15]. The AdaBoost
algorithm and Scikit-learn software libraries require enormous computational resources.
Moreover, [16] described a ML observer based on a back-propagation algorithm.

The sensorless ML-based observer became interesting since it uses data from a well-
running control process (data-driven) instead of a formula with specified motor parameters.
A sliding mode observer, another type of observer, requires certain parameter values so that
the mathematical process runs well [8,9,17,18]. While ML-based observers do not require
detailed parameters, the proposed ML model needs to be trained using data obtained from
a motor control that has been running well [15,16].

In [15,16], training data acquired from signal sampling at various motor-speed control
operation points were used. The methods provided a favorable response for constant
speed control but had difficulty with speed transitions for some implementations. These
studies [15,16] used a multilayer feedforward configuration; this method has a disadvantage
in that feedback data from previous positions cannot be obtained. To overcome this
weakness, this paper proposes a scheme that utilizes feedback information—the previous
value of the output layer—to represent the last rotor angle.

Figure 1 presents the architecture of the sensorless PMSM-FOC developed in this study.
The startup process was performed using the Volt/Hz open-loop control method [19–23].
When the motor was operated at a low speed (for example, less than 400 rpm), it rotated in
an open loop (switch mode 1). Thus, when the speed reference was set to a value greater
than 400 rpm, the motor speed ramped up in an open loop until it reached 400 rpm. Switch
mode 2 was then used, enabling a closed-loop sensorless control mode for speeds exceeding
400 rpm.

ML with the Elman NN (ENN) basic architecture was used in this study. The ENN
includes a context layer to store an internal state; thus, it is more dynamic than the multi-
layer perceptron architecture [24]. The ENN can be considered to have additional memory
neurons and local feedback [25]. Since its introduction in 1990, the ENN has been widely
used in various fields [26–30], and many efforts have been made to optimize its perfor-
mance [31–33]. Figure 2 presents a block diagram of the modified ENN. The dashed line
indicates the feedback portion of the original ENN algorithm; the previous network output
value is fed back to the input layer. This modified part is also the novel contribution
of this work. The inputs are voltages and currents in the α-β axes (vα, vβ, Iα, and Iβ).
The targeted outputs are the sine and cosine of the rotor-position angle θ. Figure 1 indi-
cates that information about the rotor speed ωe is also required during the FOC process.
Consequently, in the ML-based observer block, the modified ENN, is combined with a
phase-locked loop (PLL) to determine θ and ωe. The PLL has been widely adopted to
enhance estimator quality [11,18,34,35]. MATLAB 2021b was used to develop the modified
ENN algorithms, design and simulate the control schemes, generate the embedded code for
hardware implementation, and control and retrieve data from experimental platforms. As a
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part of MATLAB, Simulink has a Motor Control Blockset that contains several fundamental
motor-control function blocks, such as the Clark and Park Transformations, space vector
generators, and electrical system models, such as those for inverters and motors [36]. Thus,
motor-control simulations can be performed rapidly, precisely, and accurately. Because of
the precision and accuracy of the simulation data, ML models trained on these data are
thought to perform well when implemented on real hardware. The present experimental
results were obtained using a hardware control platform based on digital signal proces-
sors (DSP) from Texas Instruments (TI). The platform was developed with MATLAB’s
embedded coder support package, which can efficiently create a control algorithm from
a Simulink model [11,37]. ML has high computational demands; thus, determining the
sample time was critical to the success of the hardware implementation.
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The following steps were performed to develop the model:

• An ML-based observer-training algorithm was developed on the basis of the modified
ENN.

• Training and validation data were recorded from the sensored PMSM-FOC digital
simulation performed with Simulink.

• The ML-based observer was trained and validated using the recorded data.
• The validated ML function block was implemented in a Simulink simulation for a

sensorless PMSM-FOC.
• The ML-based observer was realized in a DSP-based hardware control scheme.

The remainder of this paper is organized as follows: Section 2 describes the PMSM
drive system. Section 3 details the methodology for building the ML model, collecting
learning data, and performing training and validations. The ML-based observer block
is also described. In Section 4, the simulation results are presented and discussed. Sec-
tion 5 presents the experimental results and discusses the implementation of the proposed
algorithm. The final section concludes the paper.

2. PMSM Drive System

To control a PMSM using an ML-based observer, the observer need to be trained with
data from a running PMSM control process. Training data were obtained from a simulation
model instead of from a workbench control process.

In general, the mathematical model of a PMSM is expressed in the d-q synchronous
rotating coordinate as follows:{

vd = rsid + Ls
d
dt id −ωeLsiq

vq = rsiq + Ls
d
dt iq + ωeLsid + ωeλ f

(1)

Here, vd and vq are the d- and q-axis voltages, respectively, and rs is the winding
resistance per phase of the stator. For a surface-mounted PMSM, Ls = Ld = Lq, where
Ld and Lq are the d- and q-axis inductances, respectively; id and iq denote the d- and q-
axis currents, respectively; the rotational speed of magnet flux is denoted as ωe; and the
permanent magnet flux linkage is denoted as λ f .

Figure 1 indicates that id and iq are obtained from Clarke and Park transformations
of the phase currents. These currents are then controlled using proportional–integral (PI)
current controls. The behavior is similar to a DC motor when the current id is set to zero. In
mode 2, the torque produced by the PMSM can be expressed as follows:

Te =
3Np

4
λ f iq , Ktiq (2)

Kt =
3Np

4
λ f (3)

Here, Te is the electromagnetic torque, Kt is the torque constant, and Np is the pole
pairs. If TL is the load torque, J is the inertia, and B is the friction constant, then the dynamic
equation for the rotor speed (ωr) of PMSM would be as follows:

dωr

dt
=

1
J
(Te − TL − Bωr) (4)

If θ is the rotor position angle, the d-q axes of vd and vq can be returned to the α-β
frame by using Park’s inverse function:

vα = vd cos θ − vq sin θ (5)

vβ = vd sin θ + vq cos θ (6)
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The three-phase currents (ia, ib, and ic) from the PMSM are turned into two-phase α-β
currents using the Clarke transform:

Iα = ia (7)

Iβ =
1√
3

ia +
2√
3

ib (8)

The two-phase α-β currents are then transformed into currents in the d-q axis as id and
iq with the Park transform as follows:

id = Iα cos θ + Iβ sin θ (9)

iq = −Iα sin θ + Iβ cos θ (10)

Figure 1 indicates that the FOC process comprises two control loops, typically called
the inner loop and the outer loop. The inner loop control is the control of id and iq. The
outer loop control is the speed control. Both types of control are achieved using PI control
strategies. Furthermore, a Simulink-based control simulation with sensors is performed to
obtain the desired training data information for vα, vβ, Iα, Iβ, sin θ and cos θ.

3. Proposed ML-Based Rotor Observer
3.1. Machine Learning

A flowchart of ML is presented in Figure 3. ML is the study of computer algorithms
that can learn and develop on their own with experience and data [38].
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An ML algorithm is initially a computational algorithm with a particular structure that
provides random output. After each round of learning with training data, the algorithm
capability is updated and the outputs are improved. A validation data set is then used to
test the performance of the model. During testing, the ML model should give the correct
output for each corresponding input with a low error rate. After updating its estimation
capabilities, the model gives the desired output in accordance with previously learned
input data features.

3.2. Modified ENN

In this study, the ENN was used as the core of the ML-based observer. The ENN is a
network with memory neurons and a context layer [24]. The context-layer neurons store
data generated by the hidden-layer neurons during each cycle; the stored data are then
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used as inputs for the hidden-layer neurons in the next cycle. The context and hidden
layers have the same number of neurons.

Figure 4 shows how values from the output layer are fed back to the input layer
to improve ML performance. The number of input neurons is increased to handle this
feedback. The initial four neurons (vα, vβ Iα and Iβ) were increased to six neurons due to
the additional feedback of sin θ and cos θ.
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During the training process, the updating weight in this algorithm is the difference
between the output neuron value and target output value. This process is the same as that
in the BPNN. However, because the modified ENN has more input neurons and has a
context layer, the required training time and execution time are longer than for the BPNN.
Nonetheless, with the addition of this input, the observer’s performance becomes much
better because it can overcome the problem of speed transition.

The modified ENN algorithm depicted in Figure 4 was developed with the following
steps:

• Step 1. The number of neurons in each layer is initially established. The input layer
has six neurons (k + n), the output layer (n) has two neurons, and both the hidden layer
and the context layer have seven neurons (m). The learning-rate value (lr) is 0.001.

• Step 2. The weights for each input layer (wil), context layer (wcl), and hidden layer
(whl); the bias value of the hidden layer (bhl) and output layer (bol); and the memory
coefficients of the context layer (mcho and mch) are randomly generated.

• Step 3. In the first iteration of the training process, the context-layer neuron values
must be initiated (z′).

• Step 4. Each neuron from the input layer (x and y′) and context layer (z′) is distributed
to the input of each neuron in the hidden layer. Finally, these values are summed
with an appropriate bias value (vb). The summation results are then input into the
activation function to obtain the output value of each hidden-layer neuron (z).
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• Step 5. The output values of the hidden-layer neurons (z) are fed back to the context
layer and become z′ for the next iteration. Moreover, z is weighted (w) and is dis-
tributed to the next layer for each neuron in the output layer (y). All inputs from each
hidden-layer neuron (z) are summed with an appropriate bias (wb). The summation
results are then used on the activation function to obtain the value of each output-layer
neuron (y).

• Step 6. The activation function calculation result for the output-layer neurons is the
output of the network. This output is fed back to the input layer as y′ and is compared
with the target output to obtain an error value.

• Step 7. The weights and biases of the network are updated on the basis of the error
values and learning rate.

• Step 8. Steps 4–7 are repeated until the desired number of training cycles (maximum
epoch) is reached or the convergence condition is met.

Next, the generated model had to be tested using actual learning data. Data were
obtained by running a sensored PMSM-FOC simulation on MATLAB Simulink.

3.3. Learning Process

In the learning step, ML requires both training data and validation data. The learning
data must be gathered from a reliable source [16]. A sensored PMSM-FOC simulation based
on MATLAB Simulink was performed and was used to acquire learning data (Figure 5).
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The motor parameters are presented in Table 1. In the simulation, the PI control
parameters for the current loop were Kp = 1.7011 and Ki = 3098.9, whereas the PI control
parameters for the speed loop were Kp = 0.4595 and Ki = 6.0661. The sampling frequency
was 10 kHz. To optimize the computational process, the values of several variables using a
per-unit system (p.u system) were used to scale the international value system of unit or SI
values as p.u-values from −1 to 1 [39].
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Table 1. PMSM parameters.

Parameter Value Parameter Value

Flux 0.0064 Wb Rated Speed 3000 rpm
Inductance (Ld = Lq) 0.2 mH Rated Voltage 24 V

Resistance (Rs ) 0.36 Ohm Rated Current 7.1 A
Inertia Coefficient (J ) 7.06 × 10−6 Kg·m2 Rated Torque 0.27 Nm

Friction Coefficient (B ) 2.64 × 10−5 Kg·m2/s Pole Pair 4 Pairs

3.3.1. Training Data and Validation Data

A control system has a certain control range; this is also true in the present ML-based
control system. The ML network must learn from training data that cover the entire range
of motor speeds and torque control operations, including both speed and torque transitions.
The speed variation commands and load variation profile for training data acquisition are
shown in Figure 6a. Validation data were acquired using the profiles displayed in Figure 6b.
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For the training and validation processes, learning data were recorded from a simula-
tion. An example of the acquired data is presented in Figure 7. Data were recorded and
saved as arrays; each data array contained six values: vα, vβ, Iα, Iβ, sin θ and cos θ. The
sizes of the training and validation data arrays were 660.000 and 100.000, respectively.
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3.3.2. Training and Validation

A set of training-routine programs was successfully created using MATLAB on the
basis of the algorithm described in Section 3.2. The training process was executed several
times to obtain the optimal training parameters and results. The optimal learning rate was
0.001, and the optimal number of neurons in the hidden layer was seven. The mean square
error reached 3 × 10−6; the epoch error graph during training is presented in Figure 8. The
trend of the graph shows that the ML model trains properly.
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Figure 8. Mean square error performance curve.

The ML model’s “brain” is the value of its weights, biases, and other coefficients at
the end of the training process. A testing procedure with validation data can be used to
confirm that the ML model has high performance for real data. Only steps 3, 4, and 5
(Section 3.2) were used during testing. A MATLAB testing routine program was created
and successfully executed. Figure 9a,b presents the error histograms for the training and
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validation data, respectively. Most errors in Figure 9a,b are close to zero; thus, the existing
ML model is accurate and can be applied further as the core of the ML-based observer.
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3.4. ML-Based Observer
3.4.1. ML Function Block

The obtained ML model was used to estimate the values of sin θ and cos θ. A func-
tion block of the model was constructed to implement the ML model in the simulation
(Figure 10).
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3.4.2. PLL

The ML model output can be used to estimate sin θ and cos θ; however, Figure 1
indicates that in sensorless control, the observer should be able to estimate the rotor
position. Thus, a PLL was used to estimate the rotor position [11]. The PLL architecture is
presented in Figure 11.
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The serial connection between the ML block and the PLL is the proposed ML-based
observer.

4. Simulation Results

In this section, a simulated implementation of the proposed ML-based observer for
a sensorless PMSM-FOC is discussed. The goal of the simulation was to determine the
validity and performance of the proposed observer when it is implemented in a full-control
process environment. The simulation was performed with MATLAB Simulink and was
based on the architecture displayed in Figure 1. Full PMSM and inverter models are
available in the Motor Control Blockset library of Simulink.

4.1. Rotor-Speed Simulation Results

Figure 12a presents the rotor-speed simulation results. The load was 0.1 p.u-torque
(0.027 Nm). From the standstill condition and for a predetermined time (4 s), the motor
rotated in a ramp speed with the Volt/Hz strategy to the 0.1 p.u-speed (410 rpm). When the
reference speed exceeded 0.1 p.u-speed, the sensorless closed-loop process was enabled.

In the increasing speed simulation, the speed step references were 0.18, 0.26, 0.32, and
0.48 p.u-speed and continued to 0.36, 0.44, 0.54, and 0.6 p.u-speed; the ramp speed was
increased from 0.24 to 0.65 p.u-speed. Most of the stepped reference-speed and ramping
reference-speed values were not included in the training data (Figure 6); however, the
simulated system still performed highly.

A similar result was observed in the decreasing speed simulation. Decreasing speed
variations from 0.65, 0.55, 0.45, and 0.25 p.u-speed and speed variations from 0.65 to 0.2 p.u-
speed were also not included in the training data. However, the proposed observer was
still effective. Figure 12a reveals that the suggested method’s rotor speed value and the
actual rotor speed both smoothly tracked the given speed reference. Thus, the proposed
observer method worked successfully in transition speeds.
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Figure 12. Simulation results for (a) rotor speed responses and for rotor positions at (b) 0.18, (c) 0.32,
(d) 0.48, and (e) 0.65 p.u-speed.
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4.2. Rotor-Position Simulation Results

The performance of the proposed observer for determining the rotor position can
be observed in Figure 12b–e. The position responses are presented at the four speeds of
0.18, 0.32, 0.48, and 0.65 p.u-speed, respectively. Overall, the positions of the observer and
encoder were almost identical; the average position error was close to zero (0.0127 p.u-
position).

Figure 12b, for example, presents the results for 0.18 p.u-speed (738 rpm). The simula-
tion result reveals that the time required for one electrical position cycle was 0.0203 s, and
the time for one mechanical cycle was 0.0812 s. The rotation frequency was thus 12.4376 Hz,
or 738.92 rpm. The other three speed calculation results are presented in Table 2.

Table 2. Speed calculations from rotor position response.

Speed (PU) Speed (rpm)
Electrical
Rotation
Time (s)

Mechanical
Rotation
Time (s)

Speed
Response

(rpm)

Error rpm
(%)

0.18 738 0.0203 0.0812 738.92 0.12
0.32 1312 0.0114 0.0456 1315.79 0.29
0.48 1968 0.0076 0.0304 1973.68 0.29
0.65 2665 0.0056 0.0224 2678.57 0.51

4.3. Current Response in the d-q Axis

Figure 13 presents the d-q current simulation responses. The proposed method is
effective for the sensorless control strategy. In the sensorless mode, the current reference iq*
was discovered to increase or decrease in accordance with the speed setting. For example,
if the speed setting was increased from 0.26 p.u-speed to 0.32 p.u-speed, the motor required
more current, causing an increase in the current iq* from 0.0308 to 0.0310 p.u-current, and
vice versa. In general, the current iq smoothly followed the reference current iq*. The current
id was close to zero, following the setting of the current reference id*. A small spike in id
was observed when the speed setting changed. A similar spike was observed for iq* and iq
in response to a stepped speed change. Larger speed changes resulted in larger spikes.
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4.4. Simulation Response for a Varied External Load

The simulation response for a varied external load is presented in Figure 14. The load
variation is given at 0.45 p.u-speed. The motor was initially loaded with 0.1 of rated torque,
and the load was increased to 0.2 of rated torque at t = 25 s. At t = 35 s, the load was
reduced back to 0.1 of the rated torque.
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torque) at 0.45 p.u-speed.

As the load was increased, a spike occurred in the rotor-speed reduction to the mini-
mum value of 0.443 p.u-speed at t = 25.174 s. Simultaneously, the current began to increase
from 0.0313 to 0.0610 p.u-current. Under the decreased load condition (t = 35 s), the rotor
speed spiked to a maximum value of 0.458 p.u-speed at t = 35.165 s, causing the current to
decrease from 0.0610 to 0.0313 p.u-current. Although a spike in the motor speed occurred in
response to a change in the load, the motor speed could return to its initial value, indicating
that the proposed system is robust to load variations.

5. Experimental Hardware Realization

The proposed method was implemented on a hardware platform. The platform is
depicted in Figure 15. The platform comprised a motor drive control module, a PMSM
motor with the parameters listed in Table 1, a generator, and an electronic load module.

The proposed control algorithm was implemented on a TI motor-drive control con-
sisting of TI DSP LAUNCHXL-F28069M and TI BOOSTXL-DRV8301 motor drivers. This
DSP had a 90-MHz CPU, 256 kB of flash memory, 96 kB of RAM, 16 enhanced pulse-width
modulation (e-PWM) channels, and 16 analog-to-digital converter (ADC) channels. Addi-
tionally, the DSP supports various serial communication protocols, including SCI, SPI, and
I2C. It enables real-time command and response data transmissions to and from hardware
via a Simulink host file.

In the hardware implementation, the speed control and current loop had sampling
frequencies of 1 kHz and 10 kHz, respectively. The inverter’s PWM switching frequency
was set at 10 kHz.
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5.1. Experimental Rotor-Speed Results

Figure 16a presents the experimental results for the rotor speed. The PMSM motor was
attached to a generator but was not loaded. Initially, the motor was rotated at a ramp speed
of 0.1 p.u-speed by using the Volt/Hz method. Later, at t = 15 s, the reference speed was
increased to 0.15 p.u-speed, enabling the application of the sensorless control technique.

The variable speed-step references for the increasing speed experiment were 0.15, 0.25,
0.35, 0.45, 0.55, and 0.65 p.u-speed. The experimental results revealed that both the actual
motor speed and speed estimated by the proposed ML-based observer could successfully
track the reference speed. The observer also successfully tracked the speed reference when
the speed was reduced from 0.65 to 0.55, 0.45, 0.35, 0.25, and 0.15 p.u-speed. Thus, the
proposed observer method also worked successfully in transition speeds on this hardware
realization.

5.2. Experimental Rotor-Position Results

The proposed observer’s performance in determining the rotor position on the ex-
perimental platform is presented in Figure 16b–e. The position responses are shown for
four speed conditions: 0.15, 0.25, 0.45, and 0.65 p.u-speed. In general, the observer’s rotor
positions and actual rotor positions nearly matched, and the average position error was
close to zero (0.0607 p.u-position). For example, Figure 16b presents the rotor position at
0.15 p.u-speed (615 rpm). The duration of one electrical position cycle was 0.026 s; therefore,
the time for one mechanical cycle was 0.104 s. The rotational frequency was 9.6154 Hz
(576.92 rpm). The results for the remaining three speeds are presented in Table 3.

Table 3. Speed calculations from the rotor-position responses for the experimental platform.

Speed (PU) Speed (rpm)
Electrical
Rotation
Time (s)

Mechanical
Rotation
Time (s)

Speed
Response

(rpm)

Error rpm
(%)

0.15 615 0.026 0.104 576.92 6.19
0.25 1025 0.015 0.060 1000.00 2.44
0.45 1845 0.008 0.032 1875.00 1.63
0.65 2665 0.006 0.024 2500.00 6.19



Appl. Sci. 2022, 12, 2963 16 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 21 
 

 

(a) 

  

(b) (c) 

  

(d) (e) 

Figure 16. Experimental results for (a) rotor speed responses and for rotor positions at (b) 0.15,
(c) 0.25, (d) 0.45, and (e) 0.65 p.u-speed.
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5.3. Experimental Current Response in the d-q Axis

On the basis of the experimental speed variation presented in Figure 16a, Figure 17
displays the experimental results for the d-q current responses. For example, if the speed
setting was adjusted from 0.25 to 0.35 p.u-speed, the current reference iq* increased from
0.0122 to 0.0129 p.u-current. As the motor speed decreased—for example, from 0.55 to
0.45 p.u—the current decreased from 0.0141 to 0.0134 p.u. The current iq can generally track
the current reference iq*. A spike in iq* and iq was observed in response to the stepped
speed adjustment. The experimental results indicated that the current id trace was close to
zero relative to the reference id*.
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5.4. Experimental Response of the Speed and Current with Varied External Load

The experimental response to varying external loads is presented in Figure 18. The
motor was started using the Volt/Hz control technique; the generator was not loaded. The
speed was then gradually increased from 0.1 to 0.25 p.u-speed and finally to 0.4 p.u-speed
by using the proposed method. At t = 26.26 s, the generator was connected to an electrical
load by using a 3 Ω resistor. The speed dropped temporarily but quickly recovered to 0.40
p.u-speed. At t = 26.39 s, a minimum speed of 0.367 p.u-speed was reached. After the load
was connected, the currents iq* and iq increased by 0.033 p.u-current from 0.013 to 0.046
p.u-current. At t = 35.64 s, the load was disconnected. A short spike in speed was observed
on the speed response graph to a maximum at 0.440 p.u-speed. The currents iq* and iq
immediately returned to 0.013 p.u-current.

A similar result was observed when the speed was increased to 0.65 p.u-speed and a
3-Ω load was applied. The speed sharply decreased to a minimum of 0.590 p.u-speed and
sharply increased to a maximum of 0.710 p.u-speed when the load was applied (t = 50.90 s)
and removed (t = 65.85 s). Applying the load also caused increases in the currents iq* and iq.
These experiments revealed that the motor speed can recover quickly in response to a load,
demonstrating that the proposed system is also robust when implemented in hardware.
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The next part discusses clarifying and verifying the roles of and linkages between
the previous sections in realizing the PMSM sensorless control with ML-based observers.
The proposed ML-based observer use modified the ENN as a basic algorithm of the ML
model. The development of the ML model needs several steps. Section 3.2 outlined the
steps. Then in Section 3.3.2, the ML model was trained and validated offline using a
data-driven method, which was previously recorded from the simulation (Section 3.3.1).
The validated ML model was attached to the ML function block (Section 3.4.1). The output
of the function block was linked to the PLL function block (Section 3.4.2). The combination
of these two function blocks formed the proposed ML-based observer. Then, the proposed
ML-based observer was implemented in a full-control process environment to verify its
performance. As a result, the simulation of the full-control process environment (Section 4)
and experimental hardware (Section 5) confirmed that the proposed ML-based observer
could be used in sensorless PMSM drive control. It can follow the transition of speed
command changes well and is also robust to load changes.

6. Conclusions

An ML-based observer was successfully designed and implemented in a DSP-based
sensorless PMSM-FOC process. A modified ENN algorithm, used as the ML model’s basic
architecture, was proven to overcome the speed transition problem. Data for training
and validation were obtained from a simulated control process. The trained ML model
combined with a PLL was the ML-based observer. The proposed observer was tested in a
full-environment-control process simulation. An open-loop Volt/Hz startup strategy was
used at the beginning of the control process, followed by the proposed sensorless control
strategy. A hardware control platform based on DSP F28069M was used to experimentally
implement the proposed observer. Compared to the actual rotor position, the rotor position
estimated by the proposed ML-based observer has an average error of 0.0127 p.u-position
on simulation and 0.0607 p.u-position on hardware implementation. Thus, the sensorless
PMSM drive can be controlled well to follow the commanded speed and is robust to
changes in load. Both the simulation and experimental results indicate that the proposed
observer is effective as a sensorless PMSM-drive control system.
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