
����������
�������

Citation: de Almeida, M.G.; Canedo,

E.D. Authentication and

Authorization in Microservices

Architecture: A Systematic Literature

Review. Appl. Sci. 2022, 12, 3023.

https://doi.org/10.3390/

app12063023

Academic Editors: Leandros

Maglaras, Helge Janicke and

Mohamed Amine Ferrag

Received: 5 February 2022

Accepted: 8 March 2022

Published: 16 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Authentication and Authorization in Microservices
Architecture: A Systematic Literature Review
Murilo Góes de Almeida * and Edna Dias Canedo *

Department of Computer Science, University of Brasília (UnB), P.O. Box 4466, Brasilia 70910-900, Brazil
* Correspondence: murilo.almeida@aluno.unb.br (M.G.d.A.); ednacanedo@unb.br or edna.canedo@gmail.com

(E.D.C.); Tel.: +55-61-98114-0478 (E.D.C.)

Abstract: The microservice architectural style splits an application into small services, which are
implemented independently, with their own deployment unit. This architecture can bring benefits,
nevertheless, it also poses challenges, especially about security aspects. In this case, there are several
microservices within a single system, it represents an increase in the exposure of the safety surface,
unlike the monolithic style, there are several applications running independently and must be secured
individually. In this architecture, microservices communicate with each other, sometimes in a trust
relationship. In this way, unauthorized access to a specific microservice could compromise an entire
system. Therefore, it brings a need to explore knowledge about issues of security in microservices,
especially in aspects of authentication and authorization. In this work, a Systematic Literature Review
is carried out to answer questions on this subject, involving aspects of the challenges, mechanisms
and technologies that deal with authentication and authorization in microservices. It was found
that there are few studies dealing with the subject, especially in practical order, however, there is a
consensus that communication between microservices, mainly due to its individual and trustworthy
characteristics, is a concern to be considered. To face the problems, mechanisms such as OAuth
2.0, OpenID Connect, API Gateway and JWT are used. Finally, it was found that there are few
open-source technologies that implement the researched mechanisms, with some mentions of the
Spring Framework.

Keywords: microservice; authentication; authorization; security; SLR

1. Introduction

The microservice architectural style is represented by an ecosystem of small services,
each running in its own process and communicating through lightweight protocols, such
as HTTP (Hypertext Transfer Protocol), built around business resources and deployed
independently [1]. Breaking an application into microservices can bring some benefits, such
as optimizing management, scalability, availability and reliability [2,3]. However, it may
bring challenges in relation to security, because, in this case, an individual attention about
it must be observed in each microservice developed, different from the monolithic style
where security strategies are applied in a single application [3,4]. Furthermore, there are
few practical demonstrations in the literature describing solutions to improve the security
of [4] service-oriented architectures.

Regardless of the implemented architecture, the authentication and authorization
aspects are relevant, considering them as key elements for the security mechanisms [5].
Authentication is the process of determining whether someone or something is, in fact, who
they claim to be. Authorization is the process of giving someone or something permission
to do or possess something [6]. There are protocols that deal with authorization and
authentication issues, such as OAuth 2.0, the standard for delegated authorization, and
OpenID Connect, the authentication layer on top of OAuth 2.0 [7]. It is important to
note that there is a distinction between user authentication and service authentication. In

Appl. Sci. 2022, 12, 3023. https://doi.org/10.3390/app12063023 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12063023
https://doi.org/10.3390/app12063023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4545-9099
https://orcid.org/0000-0002-2159-339X
https://doi.org/10.3390/app12063023
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12063023?type=check_update&version=1

Appl. Sci. 2022, 12, 3023 2 of 20

the case of authentication between microservices, there are specific mechanisms for this,
such as Mutual Transport Layer Security (MTLS) [7]. Using MTLS, each microservice will
legitimately identify who it talks to, while also ensures data confidentiality and integrity in
this communication [8].

According to some studies, microservices are usually designed in such way that there
is a relationship of trust between them [3,9]. However, it is possible to find microservice
architectures that use the “zero-trust” paradigm [10]. In this last case, there is a premise
that trust is never granted implicitly but must be continually evaluated [11]. Thus, a lack
of observation about authentication and authorization in a single microservice can affect
the entire ecosystem. It is important that studies related to security issues in microservices
emphasize aspects involving authentication and authorization. Therefore, in this paper, we
carried out a Systematic Literature Review (SLR) to identify in the literature the studies
that address authentication and authorization in microservice environments, what are
their challenges, security mechanisms used to deal with these challenges and open-source
technologies that implement the mechanisms identified in the review. The focus on open-
source is to provide technologies that can reduce costs, free access to source code and
customization [12]. There are advantages for use open-source in the public sector, such
as avoiding monopoly dominance in the market [12]. Last, but not least, even software
developed by commercial firms is being released under open-source licenses as well [13].
It is important to note that the adoption of open-source, although it has the advantage of
free use, it will not necessarily bring an adequate cost/benefit for the organization [14].
Therefore, it is recommended that its adoption be based on metrics such as the Total Cost
of Ownership (TCO), an instrument that assesses the cost of adapting, managing and
maintaining the proposed software [14].

Our main findings reveal that authentication and authorization challenges involving
microservices are mostly related to the communication between them and the complexity
of implementing security in each microservice, generating a complexity both in the devel-
opment and in the increase of the attack surface, since individual attention must be given
to each microservice. The most mentioned mechanisms in the literature that address the
challenges of authentication and authorization in microservices are OAuth 2.0, JWT, API
Gateway and OpenID Connect, in addition to Single Sign-on strategy. These mechanisms
can be implemented together, with their respective role in the security context. The API
Gateway acts as an intermediary between the external client and the microservices, provid-
ing a private network environment that allows the exchange of data between them [15].
Single Sign On (SSO) allows users to authenticate only once and use all apps associated
with their user accounts, without requiring them to enter their credentials each time they
access a different app [16]. Finally, we identified that the Spring Framework is widely used
in the context of open-source applications.

2. Systematic Literature Review

To achieve the research goal, we performed a Systematic Literature Review (RSL),
in accordance with the guidelines proposed by Kitchenham and Charles [17] and the
structuring applied by Kitchenham et al. [18]. According to the authors, an RSL is “a
means of identifying, evaluating and interpreting all available research relevant to a specific
research question, or topic area, or phenomenon of interest” [17]. In addition, we used the
online tool Parsifal [19] to support the screening and analysis of the identified studies.

2.1. Research Questions

We conducted the SLR to answer the following research questions (RQ):

1. RQ.1. What are the challenges mentioned in the literature to perform authentication
and authorization in the context of microservice architecture systems?

2. RQ.2. What mechanisms are used in the literature to deal with the challenges related
to authentication and authorization in a microservices architecture?

Appl. Sci. 2022, 12, 3023 3 of 20

3. RQ.3. What are the main open-source technology solutions that implement the
authentication and authorization mechanisms identified in the literature?

2.2. Search Process

To identify studies in the literature, we performed an automatic search in the main
digital databases in the field of Computer Science. The digital databases used in the
systematic literature review were: DBLP (https://dblp.uni-trier.de, accessed on 4 February
2022), IEEE Digital Library (http://ieeexplore.ieee.org, accessed on 4 February 2022) and
Scopus (http://www.scopus.com, accessed on 4 February 2022). The search string used in
digital databases was defined according to the keywords that must appear in the search
results. The search string used was:

(“MICROSERVICE” OR “MICROSERVICES”) AND (“SECURITY” AND “AU-
THENTICATION” AND “AUTHORIZATION”) AND (“CHALLENGE*” OR
“PROBLEM*” OR “ISSUE*” OR “SOLUTION*” OR “PROTOCOL*” OR “MECH-
ANISM*” “STRATEG*” OR “IMPLEMENTATION*” OR “OPENSOURCE” OR
“OPEN-SOURCE” OR “OPEN SOURCE”).

We also applied the “snowballing” process which aims to prevent relevant studies
from being omitted [20]. In this process, references about the research object in each selected
study are verified. Thus, we searched for papers where selected studies were cited.

2.3. Inclusion and Exclusion Criteria

The selection criteria for primary studies seek to identify papers that provide infor-
mation about the research questions. Therefore, we defined the following inclusion and
exclusion criteria, based on the research questions:

Inclusion Criteria

• IC.1 Studies dealing with challenges involving authentication and authorization in
microservices;

• IC.2 Studies related to security mechanisms that deal with authentication and autho-
rization challenges in microservices;

• IC.3 Studies related to open-source technologies that implement security mechanisms.

Exclusion Criteria

• EC.1 Studies that do not address the research object;
• EC.2 Studies prior to 2010;
• EC.3 Duplicate studies;
• EC.4 Studies published as short paper.

2.4. Quality Assessment

To differentiate selected studies according to quality criteria we check in each selected
study whether they answer the research questions. The criteria adopted were:

1. Is the research objective clearly described?
2. Do the authors describe the limitation of the study?
3. Does the study identify problems and/or challenges involving authentication and

authorization in microservices architecture?
4. Does the study identify the mechanisms that mitigate the problems and/or challenges

involving authentication and authorization in microservices architecture?
5. Does the study present solutions that implement security mechanisms using open-

source technology?

The answer of each quality criterion question received a score, as follows:

1. Yes (1);
2. Partially (0.5);
3. No (0).

https://dblp.uni-trier.de
http://ieeexplore.ieee.org
http://www.scopus.com

Appl. Sci. 2022, 12, 3023 4 of 20

Although the primary studies were selected using specific criteria, there is an individ-
ual assessment of the quality for each study, to verify which of them are more aligned with
the research questions that were defined.

2.5. Data Collection and Analysis

The following data were collected in the selected primary studies: (1) Authentication
and/or authorization challenges found in microservices; (2) The mechanisms that deal with
the authentication and/or authorization challenges found in microservices; (3) Open-source
technologies that implement mechanisms which deal with authentication and authorization
challenges in microservices.

The identified challenges, mechanisms and solutions were organized in a ranking
to verify the most mentioned in the primary studies. This ranking aims to show what
manuscripts have more answers about the research questions, this does not mean that the
lowest rated manuscripts are worse than the first ones, it just means that the top-rated
manuscripts have more information to answer our questions. Subsequently, the items most
present in the studies were submitted to an individual analysis for a better understanding
of their basic concepts. Finally, it was verified which specific mechanisms deal with the
challenges found.

3. SLR Results

This section presents the results of performing the systematic literature review. Figure 1
shows the complete execution process of the proposed protocol to execute the SLR, with the
respective quantity of studies identified in each step of the protocol. In the automatic search
performed in the digital databases using the initial query, 22 papers were found. These
studies were submitted to the snowballing process, resulting in 13 new selected papers. Of
the 22 papers found initially, 11 were eliminated due to the exclusion criteria (5 studies that
do not address the research object and 6 duplicate). Thus, 11 primary studies were selected
from the digital databases and 13 studies on snowballing execution, totaling 24 primary
studies. The selected primary studies are shown in Table 1. The filters applied during the
SLR based on inclusion and inclusion criteria are demonstrated in Figure 2.

Figure 1. Protocol application process.

Appl. Sci. 2022, 12, 3023 5 of 20

Table 1. Selected Studies.

ID Year Title Ref

S1 2021 Security in microservice-based systems: A Multivocal literature review [4]

S2 2021 Security in microservices architectures [3]

S3 2020 Authentication and authorization in microservice-based systems: survey
of architecture patterns

[8]

S4 2020 Information system development for restricting access to software tool
built on microservice architecture

[21]

S5 2020 Research on Unified Authentication and Authorization in Microservice
Architecture

[22]

S6 2020 Secure Edge Computing Management Based on Independent Microser-
vices Providers for Gateway-Centric IoT Networks

[23]

S7 2019 Applying Spring Security Framework and OAuth 2.0 To Protect Microser-
vice Architecture API

[24]

S8 2019 A survey on security issues in services communication of Microservices-
enabled fog applications

[25]

S9 2019 Enhancing security to the MicroService (MS) architecture by implement-
ing Authentication and Authorization (AA) service using Docker and
Kubernetes

[26]

S10 2019 Implementing secure applications in smart city clouds using microser-
vices

[16]

S11 2019 Microservice Security Agent Based On API Gateway in Edge Computing [15]

S12 2019 Securing Microservices [27]

S13 2019 Security Mechanisms Used in Microservices-Based Systems: A Systematic
Mapping

[28]

S14 2018 Authentication and authorization orchestrator for microservice-based
software architectures

[29]

S15 2018 Defense-in-depth and Role Authentication for Microservice Systems [30]

S16 2018 Fine-Grained Access Control for Microservices [31]

S17 2018 Overcoming Security Challenges in Microservice Architectures [7]

S18 2018 Security considerations for microservice architectures [32]

S19 2018 Unified account management for high performance computing as a ser-
vice with microservice architecture

[33]

S20 2017 A Secure Microservice Framework for IoT [34]

S21 2017 Access control with delegated authorization policy evaluation for data-
driven microserviceworkflows

[35]

S22 2017 Authentication and Authorization of End User in Microservice Architec-
ture

[36]

S23 2017 Integrating Continuous Security Assessments in Microservices and Cloud
Native Applications

[37]

S24 2015 Security-as-a-Service for Microservices-Based Cloud Applications [9]

Appl. Sci. 2022, 12, 3023 6 of 20

IC1: 4

IC2: 5

IC3: 2

22 papers found

DBLP

Inicial query
application

IEEE
Digital
Library

Scopus

EC1

EC3

5 studies

6 studies

Exclusion

11 primary studies
Merge Papers

Snowballing

13 papers found

IC1: 5

IC2: 6

IC3: 2

24
primary
studies

Filters applied in SLR based on inclusion/exclusion criteria

Caption:

EC: Exclusion Criteria

IC: Inclusion Criteria

Figure 2. Filters applied in SLR process.

3.1. Quality Assessment of Reviews Carried out

According to the quality criteria, the selected studies were analyzed and scored, as
shown in Table 2. All primary studies mentioned challenges involving authorization and
authentication in microservices (AQ3), as well as mechanisms to mitigate such problems
(AQ4), even if partially. However, there is a smaller amount of work (15) mentioning
open-source technologies that implement the mechanism (AQ5). In general, the studies are
clear about the objective (AQ1), but 11 of them do not describe its limitations (AQ2).

Appl. Sci. 2022, 12, 3023 7 of 20

Table 2. Ranking of scores according to Quality Assessments.

ID AQ1 AQ2 AQ3 AQ4 AQ5 Total

S1 1 1 1 1 1 5.0
S8 1 0.5 1 1 1 4.5
S16 1 1 1 1 0.5 4.5
S23 1 1 1 0.5 1 4.5
S17 1 1 1 1 0.5 4.5
S21 1 0.5 0.5 1 1 4.0
S5 1 0 1 1 1 4.0
S6 1 0.5 0.5 1 1 4.0
S13 1 1 1 1 0 4.0
S7 1 0.5 0.5 0.5 1 3.5
S3 1 0 1 1 0.5 3.5
S15 0.5 0 1 1 1 3.5
S10 1 0.5 1 1 0 3.5
S11 1 0 0.5 1 1 3.5
S20 1 1 0.5 0.5 0 3.0
S14 1 0 1 1 0 3.0
S12 1 0 1 1 0 3.0
S2 1 0 1 1 0 3.0
S19 1 0.5 0.5 0.5 0.5 3.0
S4 0.5 0 1 0.5 0.5 2.5
S24 0.5 0.5 1 0.5 0 2.5
S22 0.5 0 0.5 0.5 0.5 2.0
S18 0.5 0 0.5 0.5 0 1.5
S9 0 0 0.5 0.5 0 1.0

3.2. Quality Factors

We have done a verification to understand if there is any kind of relationship between
the quality score and the year the study was published. Although it is possible to verify
that the average score increased over the years, the standard deviation and the coefficient
of variation show that the data are heterogeneous, and it is not possible to conclude that
the quality has increased over the period, as shown in the Table 3. It is possible to verify in
this situation that the standard deviation increases in the same proportion as the average,
in addition to the coefficient of variation being in a high degree.

Table 3. Average study quality score by year.

2015 2017 2018 2019 2020 2021

Number of Studies 1 4 6 7 4 2

Rating Average 2.5 3.38 3.33 3.29 3.50 4.00

Standard deviation 0 1.1087 1.1255 1.1127 0.7071 1.4142

Coefficient of variation 0 0.3285 0.3376 0.3386 0.2020 0.3536

We performed analyzes on data extracted from selected studies to answer the research
questions.

3.3. RQ.1. What Are the Challenges Mentioned in the Literature to Perform Authentication and
Authorization in the Context of Microservice Architecture Systems?

The challenges identified about authentication and authorization in the context of
microservice architecture systems are presented in Table 4. Such challenges were presented
according to the number of mentions in the selected studies, therefore, it does not mean
that these are the most critical in terms of vulnerabilities or how much they occur in
a microservices environment. The number of mentions of the challenges found in the
studies does not necessarily reflect a level of priority in which they should be observed

Appl. Sci. 2022, 12, 3023 8 of 20

in a practical environment. Among the identified challenges, the five most mentioned
in the literature were: “Communication between microservices” (13 mentions), “Trust
between microservices compromised by unauthorized access” (12 mentions), “Individual
concern for each microservice” (12 mentions), “Increased attack surface” (12 mentions),
and “Microservice Access Control” (10 mentions).

Table 4. Challenges related to authentication and authorization in microservices

Pos Challenge ID Number of Occurrences

1st Communication between
microservices

S1, S2, S3, S4, S7, S9, S10, S15,
S16, S17, S18, S23, S24 13

2nd
Trust between microservices

compromised by
unauthorized access

S1, S2, S4, S6, S8, S12, S15, S16,
S19, S21, S23, S24 12

3rd Individual concern for each
microservice

S1, S2, S5, S10, S12, S13, S15,
S16, S21, S22, S23, S24 12

4th Increased attack surface
(compared to monolithic)

S1, S2, S3, S7, S8, S13, S14, S16,
S17, S23 10

5th Microservice access control S5, S8, S10, S11, S14, S15, S19,
S20, S21 9

6th Authorization between
services

S1, S7, S8, S15, S16, S17, S18,
S21 8

7th Lack of studies about
microservices S1, S2, S4, S8, S10, S13, S17 7

8th Lack of security patterns in
microservices S1, S13, S15, S17, S20, S21 6

9th

Different teams working on
different microservices must

have the same understanding
of security

S3, S15, S17, S20, S23 5

10th Bypass on Api Gateway S3, S4, S6, S12 4

11th Intrusion
detection/monitoring S1, S12, S24 3

12th Escalation of privileges S2, S16, S24 3

13th
Lack of study demonstrating
practical implementation of

security in microservices
S7, S13, S23 3

14th Coordinate authentication
server with new microservices S1, S22 2

15th Lack of attention in attack
reaction/recovery S1, S13 2

16th Token validation at each
microservice request S5, S6 2

17th Public Images may be
compromised S1 1

18th

Many applications in
commercial microservices

without possibility to
evaluate code

S4 1

19th

Use of
authentication/authorization

server that handles all
microservices

S3 1

20th Possibility of development in
various technologies S23 1

In general, the studies that mentioned the existing challenges made comparisons
between monolithic and microservices architectures, explaining that in the monolithic
model, there is only one surface to be protected, however, in the microservice environment,
each autonomous service must be a point of concern regarding security, making it more

Appl. Sci. 2022, 12, 3023 9 of 20

complex to keep this entire ecosystem properly protected. Although each service needs
particular attention, Yarygina and Bagge [7] alerted that manual security provisioning of
hundreds or thousands of service instances is infeasible. Pereira-Vale et al. [4] compared
monolithic with microservices using a KLOC metric (kilo Lines of Code), they say that
in a monolithic application, every 100 kloc will have an average of 39 vulnerabilities.
The same quantity of lines of code in a microservice application, will have an average of
180 vulnerabilities. They also alert about the decomposition of monolithic into microservices
because security needs to be a global property, not the sum of local security defenses.

Nehme et al. [27] argue the importance of authentication and authorization in the con-
text of microservice security. They mentioned that “Microservices should only be invoked
after requesting authentication and, ideally, authorization if levels of privileges are avail-
able.”. Pereira-Vale et al. [28] performed a systematic mapping about security mechanisms
used in microservices and they discovered that the most reported security mechanisms
are related to authorization, authentication and credentials. Banat et al. [29] also agreed
that authentication and authorization need to be carefully observed in a microservice
architecture, because this scenario presents many points of access for users and the other
parts of the application. They argued that the data being especially sensitive, the crucial
point of the development is the authentication and the authorization process. Cao et al. [33]
proposed the implementation of a global authentication and authorization mechanism
named Unified Account Management as a Service (UAMS). In this implementation, they
used a RESTful API divided into several microservices. All sensitive data is transferred
encrypted by the HTTPS protocol.

The studies also highlighted that microservices have the characteristic of communi-
cating with each other, usually through the HTTP protocol, and this is a point of attention
that differs from the traditional monolithic approach and should be properly analyzed and
observed in terms of security. Regarding the communication issue, the authors mentioned
the implementation of Transport Layer Security (TLS), used to protect the communication
channels [30].

The challenges presented, in general, complement each other, or even act transversally.
Mateus-Coelho et al. [3] stated that “Microservices are often designed to trust their peers
and, if one of them is compromised and accessed improperly, it is possible that there
is a great advantage for all others to be exploited”. Dongjin et al. [25] agreed when
they affirmed that “When a single service is controlled by an attacker, the service may
maliciously influence other services”. Nehme et al. [31] mentioned an access control
problem that may be found in microservice architecture named “confused deputy attack”,
in their words, it is a privilege escalation attack in which a microservice that is trusted by
other microservices is compromised. Sun et al. [9] brought the concern about trust between
services, they affirmed that the “compromise of a single microservice may bring down
the entire application”. They also reported the challenge of monitoring and auditing the
microservices interaction over the network and proposed a design of a security-as-service
infrastructure for microservices-based cloud applications, that helps to monitor the network
aiming to find possible non-expected behaviors in the communication between them.

Pereira-Vale et al. [4] stated that the communication between microservices is exposed
through the network environment, which creates a potential attack surface. The authors
also mentioned the problem of increasing the attack surface, as the decomposition of
an application into several services increases the attack surface and the security of the
application becomes more difficult to manage, because it becomes the sum of several
independent defenses, rather than being managed in a global way, as was done in the
monolithic approach.

Nguyen and Baker [24] warned that network communication between microservices
can occur in the internet environment, which increases, in addition to exposure, the number
of possible attackers. Kramer et al. [16] reinforce this concern to implement secure applica-
tion in smart city clouds using microservices, because it will handle with a huge amount
of data, including sensitive information about infrastructure and citizens. Xu et al. [15]

Appl. Sci. 2022, 12, 3023 10 of 20

shared the same concerned, in this case, using microservice in IoT devices. Lu et al. [34]
is also concerned about security in IoT devices using microservices architecture, mainly
because of sensitive data that can be shared among services. They encourage the use of API
gateways, that will remove all the concerns about microservices, because all interactions
with the components will be performed with the API Gateway. Safaryan et al. [21] are also
concerned about communication among different microservices because it is carried out
through network interaction, being necessary to secure each of the service and the network.
They also alert about the need of a pattern to be implemented. The lack of a correct pattern
can compromise the network environment. Nguyen and Baker [24] agreed about the need
to observe communication between the services. Banati et al. [29] argued that the network
used in microservices communication can be secured using system administration tools
such as VPN, Firewall and HTTPS.

Dongjin et al. [25] and Jander et al. [30] raised a concern that if a single service were
controlled by an attacker, it could maliciously influence all other services. Concerns related
to communication between microservices, increased surface exposure, access control and
individual concern in each microservice, the API Gateway strategy, and use of mechanisms
such as OAuth 2.0 and JWT were widely mentioned. They are also concerned about the
industry, which are not fully aware about security issues involving microservices.

API Gateway helps to limit exposure between microservices as requests will be cen-
tered on it, and no longer on a microservice directly [3,8]. Jin et al. [23] mention that API
gateway will secure a microservices environment because it will filter all requests. They
also proposed an edge gateway to manage microservices. Nehme et al. [27] not recom-
mended the access token validation in the gateway level, this role need to be performed in
an authentication server. In contrast, Torkura et al. [37] proposed a security gateway used
as security control for enforcing security policies. They also alerted about discoverability,
that means, a gateway feature that allows a microservice to subscribe in it. If the discovery
service can accept any subscription, vulnerable microservices could be pushed to produc-
tion environments. OAuth 2.0 is a popular authorization protocol and could protect access
to microservices from unauthorized access as access tokens are issued to trusted clients
that could access certain services [25]. Nguyen and Baker [24] explained that OAuth 2.0 is
not only used in web-based application but can be applied into backend services with no
need of web browser or user interaction. ShuLin and JiePing [22] mentioned that the JWT
is an open standard (RFC 7519) that defines a compact and independent way to securely
transmit information between parties as a JSON object. This information can be verified
and trusted because it is digitally signed.

Barabanov and Makrushin [8] warned that implementing authorization directly in
the source code of each microservice can lead to future problems, especially in different
teams working on independent microservices, because of new security updates must
be performed in all projects, individually. He and Yang [36] followed in the same line,
they alerted that imitate the way of monolithic structure in each microservice has several
deficiencies, mainly when a new service join in the system, it will be necessary to implement
the security function in this case. They proposed a solution creating a specific service
focused on authentication and authorization, as a result, each service is focused on its own
business, ensuring better scalability and decoupling the system.

Jander et al. [30] mentioned that different teams can implement their own internal
security approach in the microservice which they have responsibility for, but this may
require more specialized knowledge from the teams. Torkura et al. [37] brought the concern
that development by different teams can bring microservices using not only different
standards in development, but also different technologies, which must implement the same
security standards.

Lu et al. [34] stated that the development of microservices by different teams and
even different companies is completely possible, is there is an alignment on the security
implementations in each microservice. Finally, it is important to mention that the lack of
security patterns in microservices, added to the few studies on the subject, both theoret-

Appl. Sci. 2022, 12, 3023 11 of 20

ical and practical, can influence the management of the development of the architecture.
Torkura et al. [37] warned that there are several literatures that highlight security problems
in microservice architectures, however, none of them offer practical solutions to deal with
these situations.

Pereira-Vale et al. [4] alerted about the use of an authentication and authorization
service to be used in an architecture of microservices. The use of this server must be robust
enough to authenticate the user and carry out the token validations that are made with each
client request. The lack of concern about these challenges can cause a single point of failure
of failure (SPOF), that is, if this part of system fails, will affect the entire application [38].
ShuLin and JiePing [22] stated that the authentication server may affect the performance of
the entire system, mainly if there are several requests to this server.

Preuveneers and Joosen [35] alerted about the flow of the data among microservices.
Even if each individual microservice is protected, it is important to note if the workflow is
valid. In that work, they presented a workflow-oriented framework to avoid not expected
communication between microservices.

Mateus-Coelho et al. [3] enumerated some examples of mechanisms which must be
observed during the developing in a microservice architecture: complex passwords, authen-
tication, web security flaws (what are the most flaws observed), people and processes. They
also listed the most critical web application security risks: injection, broken authentication
and session management, cross-site scripting, broken access control, security misconfig-
uration, sensitive data exposure, insufficient attack protection, cross-site request forgery,
components with known vulnerabilities and under protected APIs. All of them may be
exploited in a microservice environment. Nguyen and Baker [24] also pointed some web
security risks and carried out some experiments using CSRF attack, XSS attack and Brute
Force attack in an API endpoint protected by OAuth 2.0. In this case, all of tests were
prevented by the configuration proposed in the Proof of Concept presented in that work.

3.4. RQ.2. What Mechanisms Are Used in the Literature to Deal with the Challenges Related to
Authentication and Authorization in a Microservices Architecture?

The mechanisms identified in the literature used to deal with authentication and
authorization challenges in microservices architecture are presented in Table 5. The OAuth
2.0 protocol was the most mentioned (16 mentions), followed by JWT (14 mentions), API
Gateway (14 mentions), Single Sign-ON (8 mentions) and OpenID Connect (7 mentions).
Figure 3 shows the number of occurrences of the mechanisms used in the selected studies.
Some mechanisms were used in only one study. It is important to emphasize that, in
general terms, the identified mechanisms do not need to be implemented in a unique way,
that is, they can coexist in the same environment, each one acting with a specific purpose.
We identified in the selected studies some implementations in which the mechanisms act
together, to mitigate possible vulnerabilities involving authentication and authorization in
the microservices environment. It important to observe that some studies only point the
mechanisms without explain deeply or demonstrate a practical implementation of them,
such as the work of Pereira-Vale et al. [28], which is more concerned in perform a systematic
mapping of security mechanisms.

Appl. Sci. 2022, 12, 3023 12 of 20

Table 5. Security mechanisms used in microservices architecture

Pos Mechanism ID Number of Occurrences

1◦ OAuth 2.0
S1, S3, S5, S6,S7, S8, S10, S11,
S12, S13, S14, S15, S16, S17,

S20, S21
16

2◦ JWT S1, S3, S4, S5, S6, S9, S11, S12,
S13, S14, S15, S17, S21, S22 14

3◦ API Gateway S2, S3, S4, S5, S6, S11, S12, S13,
S14, S16, S17, S19, S20, S22 14

4◦ Single Sign-ON SSO S1, S2, S9, S10, S14, S19, S21,
S22 8

5◦ OpenID Connect S1, S3, S8, S12, S16, S17, S21 7
6◦ HTTPS S2, S10, S14, S15, S17, S19, S20 7
7◦ RBAC S1, S3, S5, S13, S14, S17, S21 7
8◦ ABAC S1, S8, S14, S17, S20, S21 6
9◦ XACML S1, S3, S13, S15, S16, S21 6
10◦ HMAC S2, S3, S5, S14, S21 5
11º SAML S1, S2, S13, S14, S21 5
12º TLS S1, S10, S14, S15, S16 5
13º OAuth S1, S5, S8, S16 4
14º Multilevel Security S1, S3, S13 3
15º DAC S14, S21 2
16º IAM S14, S21 2
17º RSA S5, S11 2
18º SASL S1, S13 2
19º SSL S2, S13 2
20º MTLS S1, S17 2
21º OpenID S2, S14 2
22º API Keys S2 1
23º Captcha S19 1
24º CAS S8 1
25º X509 Certificates S1 1
26º EAS S3 1
27º ECDSA S5 1
28º GSI S8 1
29º IDS S12 1
30º LDAP S8 1
31º MFA S19 1
32º NGAC S3 1
33º PBAC S1 1

We will present a brief description of the most mentioned mechanisms in the selected
studies:

• OAuth 2.0 (Open Authorization): The OAuth 2.0 protocol is defined by RFC 6749 [39].
According to Banati et al. [29] OAuth 2.0 is an authorization framework that allows
users to access different services without having to share their credentials. In a
practical scenario, the user authenticates to an authorization server and receives an
authorization code or an access token, which can be used to access resources, without
the need to contact the authorization server again or have to inform the username and
password [25]. Access tokens are validated on each request for some service [15,35].
This procedure poses a risk for affecting the performance of a distributed architec-
ture because if there is a large number of requests, the authentication server may be
affected [22]. OAuth 2.0 is one of the protocols most used by microservice architec-
tures for access delegation [25,31] and can be applied both in web applications and in
backend services, in addition to meeting both the authentication and authorization
proposal [24,28]. It is important to mention that OAuth 2.0 is widely used as an
authorization protocol to protect services that use the REST (Representational State

Appl. Sci. 2022, 12, 3023 13 of 20

Transfer) [23,25,27], in addition to adopting the HTTPS protocol in data communica-
tion [25].

• JWT (JSON Web Token): The JWT is defined by RFC 7519 [40]. It is an open standard
that provides a compact and independent way to securely transmit information be-
tween applications using a JSON (Javascript Object Notation) object. This information
is verifiable and trustworthy as it is digitally signed using a secret [22]. It has a format
divided into three parts: Header, Payload and Signature. The header is separated into
two parts, token type and the algorithm, that may be a HMAC, SHA256 or RSA [29].
The JWT has an advantage over traditional tokens, this verification can be done di-
rectly on the resource server, without connecting to the authentication server [22,36].
Using JWT it is possible to retrieve user information directly from the token [22,26].
In addition to user information, it is common to find in a JWT their permissions and
expiration time of the token [36]. The JWT has adherence to “stateless” applications,
that is, those that do not keep a session on the server side, but stay data with the
client side, and must be used in each client request to the resource [26]. In a mi-
croservices environment, JWTs can be transferred during the communication between
them [35]. Finally, it is important to know that JWT can be integrated with the OAuth
2.0 protocol [4,23].

• API Gateway: In the microservices environment, API Gateway acts as an intermediary
between the client and the microservices, providing a private network environment
that allows the exchange of private data [3,15], that is, clients do not communicate
directly with services, but only with a Gateway, which is responsible for communicates
with the requested service. It can be an input that performs the filtering of client
requests, making the appropriate forwarding to the microservice [23], and it can
check the user’s credentials, to find out if he owns the proper authorization [7,37].
We realized that API Gateway is a technique to decrease microservice exposure.
Nevertheless, it is important in a future work compares the communication in different
scenarios. These scenarios could be using or not using the API gateway between the
client and microservices. Consequently, it will be possible to collect the strengths and
weakness of both approaches and verify the possibility of hybrid scenarios.
Lu et al. [34], stated that the API Gateway can aggregate multiple microservices in
a single client interface, being an element that stands between the client and the
requested service. Using the API Gateway helps to reduce the exposure of systems,
then, the microservices are all protected behind the API Gateway [8]. Although
several advantages for its implementation have been observed, its use may not prove
advantageous when it becomes a single decision point, because, in case of failure in
this element, the entire application may become inaccessible [8]. An API Gateway can
use services such as JWT and OAuth 2.0 [7,8,15,23,25,34,36].

• OpenID Connect: OpenID Connect is an open authentication standard that ensures
users have only one digital identity for multiple applications or services [29]. Dongjin
et al. [25] stated that it is an authentication layer over the OAuth protocol, allowing ser-
vices to read the user’s basic information. Nehme et al. [27,31] observed that OpenID
Connect is built on top of the OAuth protocol. Yarygina and Bage [7] reinforced
that OpenID Connect provisions the user’s identity. OpenID Connect can be used
in conjunction with OAuth 2.0 [4,8,35]. There is a difference between OpenID and
OpenID Connect (OIDC). According to the OpenID Foundation website, “OpenID
Connect performs many of the same tasks as OpenID 2.0, but does so in a way that is
API-friendly, and usable by native and mobile applications” [41]. They also explain
that “OpenID Connect defines optional mechanisms for robust signing and encryption.
Whereas integration of OAuth 1.0a and OpenID 2.0 required an extension, in OpenID
Connect, OAuth 2.0 capabilities are integrated with the protocol itself” [41].

• SSO (Single Sign-On): SSO allows a user to be authenticated only once when log-
ging into a particular system, therefore, users can access all authorized resources and
services on a system without needing another authentication [29,36]. According to

Appl. Sci. 2022, 12, 3023 14 of 20

Banati et al. [29], the main purpose of this mechanism is the exchange of authorization
credentials and not the authentication by itself. The authors also reinforced that the
mechanism guarantees unified authentication in microservices and the implementa-
tion of this feature can improve the user experience [33]. In the same way as the API
Gateway, the implementation of an SSO server may cause a “Single Point of Failure”,
that is, if there are problems in this system, every application can be compromised, as
it centralizes all authentication of a system [36]. It is possible to implement a Single
Sign-On system based on OAuth 2.0 [16,29,35].

• HTTPS: The Hyper Text Transfer Protocol Secure is defined by RFC 2818 [42]. It
describes the use of HTTP over TLS (Transport Layer Security). Using the HTTPS
protocol will ensure that the communication be encrypted [16]. It provides a channel
between two hosts identified by certificates [30]. The use of HTTPS not just limited to
encrypt data, but ensures that a given client is communication with whom he wants
to [3].

• RBAC: Role-Based Access Control is used in authorization process [4]. It is a very
know identity-based access control model [35]. The use of a role-based access control
will increase the flexibility of the system because the role will define what access the
client is allowed [22]. RBAC is user-centric access control model, it does not account for
relationship between the requesting entity and the resource [7]. RBAC authorization
roles can be incorporated into JWT tokens as an additional attribute [7].

• ABAC: Attribute-Based Access Control, based in the words of Preuveneers and
Joosen [35] “grants access rights to subjects through the use of policies or rules that
combine various types of attributes to facilitate user access to the right resources
under the right conditions”. They complemented that it offers more expressivity and
flexibility compared to another access control models such as RBAC. The primary
goal of ABAC in the words of Yu et al. [25] is “an access control model is to fulfill
the requirements of highly heterogeneous environments such as multi-cloud envi-
ronment”. They also pointed the benefit of centralized security management and
orchestration that will protect the application according to consistent policies. ABAC
is recommended to be used when there is fine-grained authorization of resources, such
as access to a specific API call [7].

• XACML: eXtensible Access Control Markup Language is defined by RFC 7061 [43].
According to this document, XACML “defines an architecture and a language for
access control (authorization). The language consists of requests, responses, and
policies”. It is used to create access control policies and can be used with OAuth 2.0
protocol [31]. Nehme et al. [31] proposed a model using XACML along with OAuth
2.0. In this case, OAuth 2.0 acts as an authorization service and XACML with policy
administration and decision points. Barabanov and Marushin [8] discourage the use
of XAML because it use a complicated syntax, causing more work for developers,
adding to the fact that there were not many open-source integrations.

• HMAC: Hash-based Message Authentication Code is defined by RFC 2104. It provides
a way to check the integrity of an information transmitted in a medium [44]. In the
words of Mateus-Coelho et al., HMAC consists in “hash-based messaging code to sign
the request”. According to the same authors, there are many examples that can be
found in internet suggesting the use of HMAC over HTTP. HMAC algorithm can also
be used to sign a JWT [22].

• SAML: The Security Assertion Markup Language (SAML) 2.0 is defined by RFC
7522 and is defined as an XML-based framework that allows identity and security
information to be shared across security domains [45]. In a microservices environment,
SAML is used to exchange user attributes stored at the identity provider [35]. Mateus-
Coelho et al. [3] affirmed that “SAML and OpenID is perfect for Authentication
and Authorization of someone’s on a system but it’s also great for service-to-service
authentication as well”. Nevertheless, they admitted that SAML is complex when it is
compared to other technologies such as Api Keys.

Appl. Sci. 2022, 12, 3023 15 of 20
Version March 7, 2022 submitted to Appl. Sci. 13 of 20

0 2 4 6 8 10 12 14 16
Occurrences

API Keys

Captcha

CAS

X509 Certificates

EAS

ECDSA

GSI

IDS

LDAP

MFA

NGAC

PBAC

OpenID

DAC

IAM

MTLS

RSA

SASL

SSL

Multilevel Security

OAuth

HMAC

SAML

TLS

ABAC

XACML

HTTPS

RBAC

OpenID Connect

Single Sign-ON SSO

API Gateway

JWT

OAuth 2.0

M
ec

ha
ni

sm

Figure 3. Number of occurrences versus security mechanisms found

protocol to protect services that use the REST (Representational State Transfer) [23,25, 362

27], in addition to adopting the HTTPS protocol in data communication [25]. 363

• JWT (JSON Web Token): The JWT is defined by RFC 7519 [40]. It is an open standard 364

that provides a compact and independent way to securely transmit information be- 365

tween applications using a JSON (Javascript Object Notation) object. This information 366

Figure 3. Number of occurrences versus security mechanisms found

3.5. RQ.3.What Are the Main Open-Source Technology Solutions That Implement the
Authentication and Authorization Mechanisms Identified in the Literature?

The main open-source solutions that implement the authentication and authorization
mechanisms identified in the literature are presented in Table 6. It is possible to notice
that the Spring [46] ecosystem libraries are the most mentioned (Spring Security, Spring
Cloud, Spring Boot, Gateway Zuul and Eureka Server), totaling 10 mentions. We realized
that Spring Boot and Eureka are not focused on security, but they have specific security
libraries that can be used together. For instance, implementing Spring Boot allows to
implement Spring Security library, and Eureka helps to implement an API Gateway using
Spring Cloud. Some of these studies demonstrated a practical implementation of Spring
framework using security mechanisms [21,22,24,25].

Although the research found several references to the Spring ecosystem, which is
built by Java programming language, it is important to mention that there are alternative

Appl. Sci. 2022, 12, 3023 16 of 20

frameworks based in other languages that implement the security mechanisms found into
a microservice environment, such as GoKit (Golang) [47], Flask (Python) [48] and .NET
Core (C#) [49].

The other open-source solution mentioned more than once is called Kong [50] (2 men-
tions), the others being mentioned only once. It is important to note that the Spring
Framework uses the Java programming language and has several libraries for implement-
ing security mechanisms in microservices, such as API Gateway, OAuth 2.0 and OpenID
Connect [46]. The Kong application refers to the “Kong API Gateway”, that is, among all
the mechanisms raised, it supports the implementation of an API Gateway.

Table 6. Open-source technologies that implement security in microservices architecture.

Open-Source ID

Spring Security S1, S4, S5, S7, S8
Kong S6, S11

Spring Boot S6, S7
Gateway Zuul S4, S5
Eureka Server S5

Jadex S15
Jarvis S1

Lagom S15
VertX S15

4. Discussions

Given the challenges, mechanisms and open-source solutions presented, it was verified
which of the mechanisms and solutions could be implemented to face the challenges,
according to what was collected in this RSL. Table 7 presents the solutions that act on the
related challenges. It was verified that part of the challenges does not have a direct link on
the open-source mechanism and/or implementation. The mechanisms identified could be
applied to face 09 challenges of the 20 listed in Table 4. Although it seems a low number,
these challenges are the most mentioned by the authors.

The mechanisms were widely mentioned by the authors, most of them can face the
challenges, with emphasis once again on the implementation of OAuth 2.0, JWT, API
Gateway, OpenID Connect and Single Sign ON (SSO). Nevertheless, it does not mean that
they are better or will solve any kind of security issues related to microservices architecture.
Even the less mentioned mechanisms could be more appropriate, depending on the case.
It is important to know what each mechanism is individually and what it does, for then,
implement a good security architecture in a system.

Appl. Sci. 2022, 12, 3023 17 of 20

Table 7. Linking Challenges, Mechanism and Open-Source Solutions.

Challenge Mechanism Open-Source

Increased attack surface (compared to
monolithic)

API Gateway (S2, S3, S4, S6, S12, S13, S16,
S17, S20, S22), OAuth 2.0 (S7, S12, S13),

SSO (S14)
Spring (S4, S7), Kong (S6, S11)

Authorization between services

OAuth 2.0 (S1, S5, S6, S7, S8, S10, S12, S13,
S14, S15, S16, S17, S21), SAML(S2),

OpenID(S2, S14, S16, S17), JWT (S9, S12,
S13, S14, S15, S17, S21)

Spring (S1, S5)

Bypass in Api Gateway
XACML (S3), NGAC (S3), JWT (S3, S6,
S12), OpenID (S3, S12, S16), OAuth 2.0
(S3, S6, S12, S16), TLS (S3), IDS (S12)

Spring (S4), Kong (S6)

Communication between microservices

TLS (S1, S10, S14, S15), MTLS (S17), SSL
(S2), HTTPS (S2, S10, S14, S15, S17, S20),
SAML(S2, S14, S21), XACML (S16, S21),

OpenID(S2, S3, S8, S16, S17), JWT (S4, S5,
S6, S12, S13, S14,15, S16, S17, S21), OAuth
2.0 (S5, S6, S7, S8, S10, S13, S15, S17, S21),

GSI (S8)

Spring (s5), Kong (S6)

Trust between microservices
compromised by unauthorized access

JWT (S1, S3, S4, S5, S6, S9, S11, S12, S13,
S14, S15, S17, S21, S22), OAuth 2.0 (S1, S3,
S5, S6, S7, S8, S10, S11, S12, S13, S14, S15,
S16, S17, S20, S21), OpenID Connect S1,

S2, S3, S8, S12, S14, S16, S17, S21)

Spring (S4, S5)

Microservice Access Control

OAuth 2.0 (S1, S5, S8, S10, S11, S12, S13,
S14, S15, S16, S20, S21), OpenID (S1, S2,

S3, S8, S12, S14, S16), TLS(S1), MTLS(S1),
SASL (S1), SSO (S1, S2), JWT (S1, S5, S11,
S12, S13, S14, S15, S21), HMAC(S2, S21),

ABAC (S8, S17, S20, S21), RBAC (S17,
S21), CAS (S8), RSA (S11), XACML (S16),
Captcha (S20), Multiple FA (S20), DAC

(S21), IAM (S21)

Spring (S1, S5, S11)

Coordinate authentication server with
new microservices

LDAP (S8), SSO (S1, S2, 10, S13, s14, S20,
S21, S22), OAuth 2.0 (S12, S14, S16),

OpenID (S12, S14, S16),

Individual concern for each microservice

JWT (S1, S3, S4, S5, S6, S9, S11, S12, S13,
S14, S15, S17, S21, S22), OAuth 2.0 (S1, S3,
S5, S6, S7, S8, S10, S11, S12, S13, S14, S15,
S16, S17, S20, S21), OpenID Connect (S1,

S2, S3, S8, S12, S14, S16, S17, S21)

Spring (S4, S5)

Use of authentication/authorization
server that handles all microservices

SSO (S1, S2, 10, S13, s14, S20, S21, S22),
OAuth 2.0 (S12, S14, S16)

Study Limitations

The study was performed with searches in DBLP, IEEE and Scopus databases. To
prevent relevant works from being discarded, the snowballing process was applied. Even
with this concern, it is possible that, increasing the number of databases for consultations,
new studies may be found. However, as verified in some studies collected, there is currently
a lack of studies on the subject [3,4,7,16,21,25,28]. It was also verified that there is a lack of
studies demonstrating the practical implementation of security in microservices [24,28,37].
Hence, it is likely that over the next few years, if the research related to the subject in
question increases, a new systematic review will be necessary, in order to complement
the knowledge collected in this work. We cannot conclude that the mechanisms less
mentioned in the studies are less used, therefore, it is important to explore all of them, that
can be done in a future work. Finally, it is important to note that this study is more focused
on identifying answers to the research questions, that is, it is possible that the answers to
these questions may be the subject of further studies pointing out which challenges are

Appl. Sci. 2022, 12, 3023 18 of 20

most critical in terms of vulnerability, how much they occur in a practical environment, or
even which of these challenges should be addressed with priority. The mechanisms can
also be implemented and tested in order to find out in a practical environment which of the
challenges are mitigated with the implemented mechanism.

5. Final Remarks

As verified during the execution of this work and demonstrated in Table 4, there is a
lack of studies related to security in microservices architecture. The lack increases when
the study is specific for authentication and authorization, especially in a practical approach.
It is important that the subject be better explored, because, as verified in this work, within
a microservice environment, it is necessary to be concerned with security aspects in each
service, individually, as the adoption of this architecture can increase the attack surface
and still generate attention points in the communication between them, in this way, the
lack of attention in these questions can make the applications vulnerable to unauthorized
accesses. Of all the points listed in Table 4, there are issues related to the implementation of
technologies themselves, however, there are other aspects related to the subject, such as the
organization of development teams working on different microservices within the same
system, therefore, is a theme with vast field to be explored.

Several mechanisms were found that mitigate the main points of attention observed, all
of them listed in Table 5, with OAuth 2.0 being the most mentioned, along with the Json Web
Token (JWT) and the use of API Gateway. The correct implementation of these can reduce
the possibility of any type of unauthorized access to one or more microservices, making
the environment better protected. There are few studies on practical implementations, thus,
a scenario for future work is foreseen, especially with proposals for specific patterns within
this context.

Finally, it was found that the literature indicates few open-source solutions that
implement the mechanisms found. In this case, a viable alternative expands the search
into new sources, including gray literature, which is literature produced at all levels of
government, academic, business and industrial, in print and electronic formats, but which
is not controlled by commercial publishers, that is, where publication is not the primary
activity of the producing body[51]. Such findings can be properly experimented with
scientific rigor and identified as technical solutions that solve the challenges collected in
this work.

Author Contributions: Writing—original draft preparation, M.G.d.A. and E.D.C.; writing—review
and editing, M.G.d.A. and E.D.C.; visualization, M.G.d.A. and E.D.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lewis, J.; Fowler, M. Microservices—A Definition of This New Archtectural Term; EA PAD: Redwood City, CA, USA, 2014.
2. Merson, P. Microservices beyond the Hype: What You Gain and What You Lose; SEI Digital Library: San Diego, CA, USA, 2015.
3. Mateus-Coelho, N.; Cruz-Cunha, M.; Ferreira, L.G. Security in microservices architectures. Procedia Comput. Sci. 2021, 181,

1225–1236. doi: [CrossRef]
4. Pereira-Vale, A.; Fernandez, E.B.; Monge, R.; Astudillo, H.; Márquez, G. Security in microservice-based systems: A Multivocal

literature review. Comput. Secur. 2021, 103, 102200. doi: [CrossRef]
5. Pippal, S.K.; Kumari, A.; Kushwaha, D.S. CTES based Secure approach for Authentication and Authorization of Resource and

Service in Clouds. In Proceedings of the 2011 2nd International Conference on Computer and Communication Technology
(ICCCT-2011), Allahabad, India, 15–17 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 444–449.

http://doi.org/10.1016/j.procs.2021.01.320
http://dx.doi.org/10.1016/j.cose.2021.102200

Appl. Sci. 2022, 12, 3023 19 of 20

6. Halonen, T. Authentication and authorization in mobile environment. In Tik-110.501 Seminar on Network Security; Citeseer:
Princeton, NJ, USA, 2000.

7. Yarygina, T.; Bagge, A.H. Overcoming Security Challenges in Microservice Architectures. In Proceedings of the 12th IEEE
International Symposium on Service-Oriented System Engineering, SOSE 2018 and 9th International Workshop on Joint Cloud
Computing, JCC 2018, Bamberg, Germany, 26–29 March 2018; pp. 11–20. doi: [CrossRef]

8. Barabanov, A.; Makrushin, D. Authentication and authorization in microservice-based systems: Survey of architecture patterns.
arXiv 2020, arXiv:2009.02114.

9. Sun, Y.; Nanda, S.; Jaeger, T. Security-as-a-service for microservices-based cloud applications. In Proceedings of the IEEE 7th
International Conference on Cloud Computing Technology and Science, CloudCom 2015, Vancouver, BC, Canada, 30 November–3
December 2015; pp. 50–57. doi: [CrossRef]

10. Mehraj, S.; Banday, M.T. Establishing a Zero Trust Strategy in Cloud Computing Environment. In Proceedings of the 2020
International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 22–24 January 2020; pp. 1–6.
doi: [CrossRef]

11. Rose, S.; Borchert, O.; Mitchell, S.; Connelly, S. Zero Trust Architecture; Technical Report; National Institute of Standards and
Technology: Gaithersburg, MA, USA, 2020.

12. Rossi, B.; Russo, B.; Succi, G. Adoption of free/libre open source software in public organizations: Factors of impact. Inf. Technol.
People 2012, 25, 156–187. doi: [CrossRef]

13. Hippel, E.V.; Krogh, G.V. Open source software and the “private-collective” innovation model: Issues for organization science.
Organ. Sci. 2003, 14, 209–223. [CrossRef]

14. Lavazza, L. Beyond Total Cost of Ownership: Applying Balanced Scorecards to Open-Source Software. In Proceedings of the
International Conference on Software Engineering Advances (ICSEA 2007), Cap Esterel, France, 25–31 August 2007; p. 74. doi:
[CrossRef]

15. Xu, R.; Jin, W.; Kim, D. Microservice security agent based on API gateway in edge computing. Sensors 2019, 19, 4905. doi:
[CrossRef] [PubMed]

16. Krämer, M.; Frese, S.; Kuijper, A. Implementing secure applications in smart city clouds using microservices. Future Gener.
Comput. Syst. 2019, 99, 308–320. doi: [CrossRef]

17. Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; EBSE: Goyang,
Korea, 2007.

18. Kitchenham, B.; Brereton, O.P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software
engineering—A systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. doi: [CrossRef]

19. Freitas, V. Parsifal, 2021. Available online: https://parsif.al (accessed on 17 October 2021).
20. Wohlin, C. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering. In Proceedings

of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014; EASE
’14; Association for Computing Machinery: New York, NY, USA, 2014. doi: [CrossRef]

21. Safaryan, O.; Pinevich, E.; Roshchina, E.; Cherckesova, L.; Kolennikova, N. Information system development for restricting access
to software tool built on microservice architecture. E3S Web Conf. 2020, 224, 01041. doi: [CrossRef]

22. Shulin, Y.; Jieping, H. Research on Unified Authentication and Authorization in Microservice Architecture. In Proceedings of the
International Conference on Communication Technology Proceedings, ICCT, Nanning, China, 28–31 October 2020; pp. 1169–1173.
doi: [CrossRef]

23. Jin, W.; Xu, R.; You, T.; Hong, Y.G.; Kim, D. Secure edge computing management based on independent microservices providers
for gateway-centric IoT networks. IEEE Access 2020, 8, 187975–187990. doi: [CrossRef]

24. Nguyen, Q.; Baker, O. Applying Spring Security Framework and OAuth2 To Protect Microservice Architecture API. J. Softw.
2019, 14, 257–264. doi: [CrossRef]

25. Yu, D.; Jin, Y.; Zhang, Y.; Zheng, X. A survey on security issues in services communication of Microservices-enabled fog
applications. Concurr. Comput. Pract. Exp. 2019, 31, e4436. doi: [CrossRef]

26. Bhutada, S.; Jyothi, K.K. Enhancing Security to the Microservice (MS) Architecture By Implementing Authentication and
Authorization Service using Docker and Kubernetes. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 401–407.

27. Nehme, A.; Jesus, V.; Mahbub, K.; Abdallah, A. Securing Microservices. IT Prof. 2019, 21, 42–49.
MITP.2018.2876987 [CrossRef]

28. Pereira-Vale, A.; Marquez, G.; Astudillo, H.; Fernandez, E.B. Security mechanisms used in microservices-based systems: A
systematic mapping. In Proceedings of the 2019 45th Latin American Computing Conference, CLEI 2019, Panama City, Panama,
30 September–4 October 2019. doi: [CrossRef]

29. Banati, A.; Kail, E.; Karoczkai, K.; Kozlovszky, M. Authentication and authorization orchestrator for microservice-based software
architectures; Authentication and authorization orchestrator for microservice-based software architectures. In Proceedings of
the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO),
Opatija, Croatia, 21–25 May 2018.

30. Jander, K.; Braubach, L.; Pokahr, A. Defense-in-depth and Role Authentication for Microservice Systems. Procedia Comput. Sci.
2018, 130, 456–463. doi: [CrossRef]

http://dx.doi.org/10.1109/SOSE.2018.00011
http://dx.doi.org/10.1109/CloudCom.2015.93
http://dx.doi.org/10.1109/ICCCI48352.2020.9104214
http://dx.doi.org/10.1108/09593841211232677
http://dx.doi.org/10.1287/orsc.14.2.209.14992
http://dx.doi.org/10.1109/ICSEA.2007.19
http://dx.doi.org/10.3390/s19224905
http://www.ncbi.nlm.nih.gov/pubmed/31717617
http://dx.doi.org/10.1016/j.future.2019.04.042
http://dx.doi.org/10.1016/j.infsof.2008.09.009
https://parsif.al
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1051/e3sconf/202022401041
http://dx.doi.org/10.1109/ICCT50939.2020.9295931
http://dx.doi.org/10.1109/ACCESS.2020.3030297
http://dx.doi.org/10.17706/jsw.14.6.257-264
http://dx.doi.org/10.1002/cpe.4436
http://dx.doi.org/10.1109/MITP.2018.2876987
http://dx.doi.org/10.1109/CLEI47609.2019.235060
http://dx.doi.org/10.1016/j.procs.2018.04.047

Appl. Sci. 2022, 12, 3023 20 of 20

31. Nehme, A.; Jesus, V.; Mahbub, K.; Abdallah, A. Fine-Grained Access Control for Microservices. Lect. Notes Comput. Sci. Incl.
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform. 2019, 11358 LNCS, 285–300. doi: [CrossRef]

32. Richter, D.; Neumann, T.; Polze, A. Security considerations for microservice architectures. In Proceedings of the CLOSER
2018-Proceedings of the 8th International Conference on Cloud Computing and Services Science, Funchal, Portugal, 19–21 March
2018; pp. 608–615. doi: [CrossRef]

33. Cao, R.; Lu, S.; Wang, X.; Xiao, H.; Chi, X. Unified Account Management for High Performance Computing as a Service with
Microservice Architecture. In Proceedings of the Unified Account Management for High Performance Computing as a Service
with Microservice Architecture, Taipei, Taiwan, 16–23 March 2018.

34. Lu, D.; Huang, D.; Walenstein, A.; Medhi, D. A Secure Microservice Framework for IoT. In Proceedings of the Proceedings-11th
IEEE International Symposium on Service-Oriented System Engineering, SOSE 2017, San Francisco, CA, USA, 6–9 April 2017;
pp. 9–18. doi: [CrossRef]

35. Preuveneers, D.; Joosen, W. Access Control with Delegated Authorization Policy Evaluation for Data-Driven Microservice
Workflows. Future Internet 2017, 9, 58. doi: [CrossRef]

36. He, X.; Yang, X. Authentication and Authorization of End User in Microservice Architecture. J. Phys. Conf. Ser. 2017, 910, e012060.
doi: [CrossRef]

37. Torkura, K.A.; Sukmana, M.I.; Meinel, C. Integrating continuous security assessments in microservices and cloud native
applications. In Proceedings of the UCC 2017-Proceedings of the10th International Conference on Utility and Cloud Computing,
Austin, TX, USA, 5–8 December 2017; pp. 171–180. doi: [CrossRef]

38. Dooley, K. Designing Large Scale Lans: Help for Network Designers; O’Reilly Media: Sebastopol, CA, USA, 2001.
39. Hardt, D. Rfc 6749: The oauth 2.0 authorization framework. Internet Eng. Task Force IETF 2012, 10, 1–75.
40. Jones, M.; Bradley, J.; Sakimura, N. Rfc 7519: Json Web Token (jwt); IETF: Fremont, CA, USA, 2015.
41. Foundation, O. How Is OpenID Connect Different than OpenID 2.0? 2022. Available online: https://openid.net/connect/

(accessed on 4 February 2022).
42. Rescorla, E. Rfc 2818: HTTP over TLS; Internet Engineering Task Force (IETF): Fremont, CA, USA, 2000.
43. Sinnema, R.; Wilde, E. Rfc 7061: eXtensible Access Control Markup Language (XACML) XML Media Type; Internet Engineering Task

Force (IETF): Fremont, CA, USA, 2013.
44. Krawczyk, H.; Bellare, M.; Canetti, R. MAC: Keyed-Hashing for Message Authenticatio; Internet Engineering Task Force (IETF):

Fremont, CA, USA, 1997.
45. Campbell, B.; Mortimore, C.; Jones, M. Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client Authentication

and Authorization Grants; Internet Engineering Task Force (IETF): Fremont, CA, USA, 2015.
46. Pivotal. Spring Cloud. 2021. Available online: https://spring.io/projects/spring-cloud (accessed on 14 October 2021).
47. Kit, G. Go Kit—A Toolkit for Microservices. 2022. Available online: https://gokit.io/ (accessed on 4 February 2022).
48. Projects, P. Flask Web Development. 2022. Available online: https://flask.palletsprojects.com/ (accessed on 4 February 2022).
49. Microsoft. NET Core. 2022. Available online: https://dotnet.microsoft.com/ (accessed on 4 February 2022).
50. Kong. Kong API Gateway. 2021. Available online: https://konghq.com/kong (accessed on 14 October 2021).
51. Garousi, V.; Felderer, M.; Mäntylä, M.V. Guidelines for including grey literature and conducting multivocal literature reviews in

software engineering. Inf. Softw. Technol. 2019, 106, 101–121. [CrossRef]

http://dx.doi.org/10.1007/978-3-030-18419-3_19
http://dx.doi.org/10.5220/0006791006080615
http://dx.doi.org/10.1109/SOSE.2017.27
http://dx.doi.org/10.3390/fi9040058
http://dx.doi.org/10.1088/1742-6596/910/1/012060
http://dx.doi.org/10.1145/3147213.3147229
https://openid.net/connect/
https://spring.io/projects/spring-cloud
https://gokit.io/
https://flask.palletsprojects.com/
https://dotnet.microsoft.com/
https://konghq.com/kong
http://dx.doi.org/10.1016/j.infsof.2018.09.006

	Introduction
	Systematic Literature Review
	Research Questions
	Search Process
	Inclusion and Exclusion Criteria
	Quality Assessment
	Data Collection and Analysis

	SLR Results
	Quality Assessment of Reviews Carried out
	Quality Factors
	RQ.1. What Are the Challenges Mentioned in the Literature to Perform Authentication and Authorization in the Context of Microservice Architecture Systems?
	RQ.2. What Mechanisms Are Used in the Literature to Deal with the Challenges Related to Authentication and Authorization in a Microservices Architecture?
	RQ.3.What Are the Main Open-Source Technology Solutions That Implement the Authentication and Authorization Mechanisms Identified in the Literature?

	Discussions
	Final Remarks
	References

