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Abstract: Plasma agriculture is a growing field that combines interdisciplinary areas with the aim
of researching alternative solutions for increasing food production. In this field, plasma sources are
used for the treatment of different agricultural goods in pre- and post-harvest. With the big variety
of possible treatment targets, studied reactors must be carefully investigated and characterized for
specific goals. Therefore, in the present study, a cone-shaped corona reactor working with argon was
adapted for the treatment of small seeds, and its basic properties were investigated. The treatment
of rapeseed using different voltage duty cycles led to an increase in surface wettability, possibly
contributing to the accelerated germination (27% for 90% duty cycle). The discharge produced by
the conical reactor was able to provide an environment abundant with reactive oxygen species that
makes the process suitable for seeds treatment. However, operating in direct treatment configuration,
large numbers of seeds placed in the reactor start impairing the discharge homogeneity.

Keywords: plasma agriculture; corona discharge; plasma source; non-thermal plasma (NTP); rape-
seed; seed; germination acceleration

1. Introduction

Non-thermal plasmas (NTP) are chemically active media composed of electrons,
neutral particles, ionized atoms and molecules, photons, and reactive species [1]. NTPs can
be generated in a reactor by means of an electrical discharge in a variety of gases (noble
and molecular gases) and at different pressure ranges [2]. The possibility of producing
cold plasma at atmospheric pressure cheapens the process broadening the spectrum of
applications. Due to the reactive composition and low temperature, NTPs have been used
and studied for application in a diversity of fields, such as material processing [3], surface
cleaning [4], decontamination [5], medicine [6], and agriculture [7,8].

Plasma agriculture is a novel plasma application that has rapidly grown in the past
20 years [7]. A large number of published articles in this field focused on the plasma
application for post-harvest [9], such as the treatment of fruits and vegetables for preserva-
tion and increased shelf life [10,11]. However, investigations on the use of cold plasmas in
pre-harvest stages are gaining considerable attention. NTPs are being explored as a possible
green alternative to the use of agrochemicals, given the substantial negative impact of the
latter on the ecosystem [7]. Plasma has demonstrated promising effects that could lead to
decreased infections by pathogens in seeds, growing plants and soil [12–14], improve crop
abiotic stress tolerance [15], and increase plantation yield [16]. Effects of plasma treatment
have been studied for a wide variety of plant species (such as soybean [17], wheat [18],
barley [19], maize [20], tomato [21], radish [22], and pea [23]) and different plasma sources,
including low pressure and atmospheric pressure devices, have been developed.
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Oilseed crops are grown worldwide given their economic value and relevance for the
production of edible oils and renewable energy [24]. Rapeseed is an essential oilseed crop
being the second most produced oil crop in the world with a harvest of 75.9 million tons
in 2017/2018 [25]. However, with climate change and the ongoing COVID-19 pandemic,
the global production of rapeseed is prone to decline [25], which contrasts with the rapidly
increasing consumption demand. Given the impractical solution of increasing the cultiva-
tion land area, it is important to find alternatives for securing and possibly increasing crop
yield. Genetic improvement of rapeseed to develop climate-adapted cultivars can help to
increase production under abiotic stress [26]. Another alternative for improving resistance
to abiotic stress is the use of chemical priming of the seeds [26]. As a physical method,
plasma treatment is being investigated for securing yield and enhancement of biotic stress
resistance and thus, can be an advantageous option for the treatment of rapeseed.

Recently, diverse plasma sources have been reported in the literature for the treatment
of rapeseed for different purposes. Li et al., 2018 [27], investigated the effects of a low-
pressure radio frequency (RF) discharge treatment of rapeseed and observed enhancement
of seed germination, plant growth, and yield. Islam et al., 2019 [28], studied the treatment
response of exposed rapeseed to low-pressure dielectric barrier discharge (DBD). It was
concluded that plasma stimulates germination and increases amylase activity [28]. Other
studies investigated the decontamination of rapeseed seed surfaces using plasma [29,30].
Puligundla et al., 2017 [29], used a corona discharge plasma jet for the treatment of rapeseed
and reported a maximum reduction of 2.2 log of total aerobic bacteria. In this study, the
corona discharge had a dual effect, promoting germination and seedling growth in addition
to reducing the microbial load [29]. Wannicke et al., 2020 [30], reported the indirect
treatment of rapeseed seeds and other crop seeds using plasma-processed air produced
in an atmospheric pressure microwave reactor. Artificially contaminated rapeseed seeds
treated under multiple filling conditions presented a reduction in Bacillus atrophaeus spores
of almost 2.7 log [30]. However, the same treatment condition affected the seed’s viability,
and a complete loss of germination was observed. In contrast, single filling only affected
seed germination to a lower degree, while reaching a decontamination efficiency of 2.6 log
units [30], indicating that plasma parameters need to be defined for appropriate treatment
effects. A low-pressure RF capacitive coupled plasma (CCP) reactor was used by Ling et al.,
2015 [31], for enhancing the germination of rapeseed under drought stress. According
to the study, plasma treatment improved water uptake by the seeds and increased the
accumulation of soluble sugars and proteins [31]. Kriz et al., 2017 [16], observed yield
enhancement in field experiments of treated rapeseed using a low-pressure microwave
discharge in combination with beneficial fungi spores.

On the one hand, plasma technology seems promising as an environmentally friendly
alternative for agriculture, because the species produced are limited in space and time and
do not encompass non-natural compounds. On the other hand, the diversity of plasma
sources and the complexity of generated discharges lead to diverging results (improvement
or impairment of germination, water uptake, growth, and others). Therefore, the reactor and
discharge parameters have to be carefully studied and adjusted for securing or enhancing
seed germination.

Among the many possible ways of generating NTP at atmospheric pressure, corona
discharge stands out as a well-known and easy option. It occurs in strongly non-uniform
electric fields and is generated using asymmetric electrodes. The most frequent configura-
tion comprises a pin-to-plate set of electrodes. In the present work, a pin-to-plate corona
discharge reactor with a horn-like nozzle was studied. The original version of this reactor
was previously reported elsewhere [32]. Filamentary corona discharges are usually very
inhomogeneous. Mui et al., 2018 [32], reported an improvement in treatment uniformity
of PET samples when changing the reactor nozzle size. The use of a conical nozzle led to
a uniform treatment area underneath the reactor (up to 30 cm2) [32]. Here, this conical
reactor was adapted for the treatment of seeds with small and round shapes. The funnel
reactor was mounted on top of a glass Petri dish in which small seeds could be placed.
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Thus, the system remained closed, and the seeds were prevented from being blown away.
The new reactor configuration was characterized and its suitability for seed treatment
was investigated using rapeseed. The discharge power could be easily controlled by the
applied voltage duty cycle, which also contributed to gas temperature regulation. For this
direct treatment reactor configuration, an influence of the number of seeds on the discharge
parameters was observed. The effects of plasma treatment parameters on seed surface
hydrophilicity and germination kinetics were studied.

2. Materials and Methods
2.1. Plasma Source

The reactor used in this work was a modified version of the corona plasma jet device
with a conical nozzle reported by [32]. In contrast to the previous version, here, the plasma
jet horn nozzle was placed directly on a glass Petri dish leaving no open gap between them,
thus forming a virtually closed (but not air-tight) system. The schematic setup of the reactor
is presented in Figure 1. It consists of an upside-down borosilicate glass funnel (80-mm-
diameter and angle of 60◦) mounted on top of an 80-mm-diameter glass Petri dish where
seeds were placed for treatment. A tungsten pin electrode (1 mm thick and 10.3 mm long)
was inserted in the straight part of the funnel, as shown in Figure 1. The pin passes through
an insulating piece and is connected to a high voltage generator (AL-1400-HF-A, Amp-Line,
West Nyack, NY, USA). Below the Petri dish, a 5.85-mm-thick glass plate was used as an
additional dielectric layer under which a grounded electrode was located. Argon (4.0 slm)
was introduced on the top part along with the pin electrode. When high voltage was
applied, the electric field at the electrode’s tip increased and discharge filaments (streamer
corona discharge) were formed. The filaments tended to be homogeneously distributed
throughout the horn volume and at higher voltage they stretched out, reaching the bottom
of the Petri dish. The reactor was operated with a frequency of 10 kHz and the voltage
was amplitude modulated (burst mode) into bursts with a repetition period of 100 ms. The
applied voltage amplitude and/or signal duty cycle were varied during the experiments in
Section 3.1.
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2.2. Discharge Characterization
2.2.1. Electrical Characterization

The electrical characterization of the plasma source was performed by measuring
the transferred charge at the grounded electrode underneath the glass plate. The charge
was obtained by the voltage drop across a serial 1.0 nF mica capacitor (“C” in Figure 1).
The voltage signals were monitored using a digital oscilloscope (DPO 2024, Tektronix,
Beaverton, OR, USA), and the discharge power was calculated using the area of the formed
Q-V Lissajous figure as shown in Equation (1):

P =
EcN
Tr

, (1)

where Ec corresponds to the Lissajous figure area for 1 cycle, N is the number of cycles in a
burst, and Tr is the repetition period of the voltage bursts.

2.2.2. Optical Emission Spectroscopy

Optical emission spectroscopy (OES) was used to analyze the excited species in the
discharge produced by the conical-shaped reactor. A dual-channel spectrometer (AvaSpec-
2048-2-USB2, Avantes, Apeldoorn, The Netherlands) with a spectral resolution of 0.7 nm
was employed. The light emitted in the discharge was focused into a quartz optical fiber
by means of a set of collimating lenses assembled in a way that the focal point was in
the middle of the Petri dish (as shown in Figure 1). To avoid blocking the UV region, the
emitted light was acquired through a hole (diameter of 1 mm) in the sidewall of the Petri
dish. An irradiance calibration was performed prior to measurements.

2.2.3. Gas Temperature

A non-conductive fiber optic temperature sensor (TS2 and FOTOTEMP1-OEM, OP-
TOcon, Weidmann Technologies Deutschland GmbH, Dresden, Germany) was used to
measure the gas temperature inside the reactor through the Petri dish hole (as shown in
Figure 1). This GaAs-based sensor provides a voltage signal proportional to the tempera-
ture with a response time of less than 2 s. The increase in temperature was monitored using
a digital oscilloscope (DPO 2024, Tektronix, OR, USA) for up to 5 min. Experimental devia-
tion due to the positioning of the probe and to probe sensitivity (±0.2 ◦C) was considered
to be maximum ±0.5 ◦C.

2.3. Seeds and Plasma Treatment

Rapeseed (Brassica napus L., Cv. Atora) seeds were obtained from NPZ Innovation
GmbH (Holtsee, Germany). They are small (around 2 mm in diameter), round, and present
a smooth surface morphology. To investigate the influence of the number of seeds on the
produced discharge, the number of seeds was gradually increased from zero to around
1015 ± 2 (4.87 g) while the power density was measured. For the other experiments,
55 ± 2 seeds (around 0.26 g) were evenly distributed in the glass Petri dish prior to
plasma treatment. The seeds were treated for 3 min using different voltage duty cycle
values varying from 10% to 90%. Two control groups were considered: control “Ct” with
untreated seeds and gas control “Ctg”, where seeds were subjected to argon gas flow for
3 min with plasma off. Every treatment parameter was repeated 4 times (n = 4).

2.4. Seed Characterization
2.4.1. Temperature

The temperature at the seed surface was monitored using an infrared (IR) thermal
camera (Testo 865, Testo, Titisee-Neustadt, Germany). Temperature assessment was made
immediately after treatment on top of a wooden surface to avoid reflection interferences.
The measurements were performed in three different seeds after the treatment of a group
of 55 seeds.
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2.4.2. Water Contact Angle

The surface of the seeds was analyzed with water contact angle measurements (WCA)
using the sessile drop method. It was performed using a goniometer OCA 30 (DataPhysics
Instruments GmbH, Filderstadt, Germany) with deionized water (a drop of 0.5 µL). Three
seeds were analyzed per replicate, resulting in a set of 12 seeds for each parameter. The
image evaluation and angle assessment were carried out with the software SCA 20 (Data-
Physics Instruments GmbH, Filderstadt, Germany).

2.4.3. Germination Tests

The germination tests were performed immediately after plasma treatment. For each
treatment replicate, 50 seeds were placed inside 12 × 12 cm2 square Petri dishes containing
4 layers of absorbent paper moistened with 12 mL of tap water. Germination took place in
a climate chamber (Flohr Instruments, Nieuwegein, The Netherlands) with a controlled
temperature of 25 ◦C under dark conditions. The germination process was monitored
from 14 h until the seeds reached maximum germination (48 h). Seeds were considered
germinated when the emerged radicle was longer than 1 mm. The germination percentage
was calculated as described in [18].

2.5. Statistical Analysis

Significance between controls (Ct, Ctg) and treatments for WCA measurements was
proven using One-way analysis of variance (ANOVA) and the post-hoc test with multiple
comparisons versus control groups (Bonferroni t-test) after checking for normal distribution
of data. For the germination test, indices for maximum germination (Gmax), mean germi-
nation time (t50), and uniformity of germination (U25–75), as well as statistical differences
between treatments according to Student’s T-test, were extracted from the germination
assay using the Germinator package [33], as previously applied for wheat and barley [19].

3. Results and Discussion
3.1. Discharge Characterization

To understand the discharge generation by the conical reactor, the plasma source
was operated with a sinusoidal voltage signal with different amplitude values (without
amplitude modulation). Pictures of the discharge operating with different voltage values
are shown in Figure 2. At low voltage values (around 8 kV p-p), plasma generation
started as a corona discharge at the tip of the high voltage pin electrode. Raising the
applied voltage increased the region of the high electric field, expanding the discharge
outward until it transited to a glowing corona at around 10.5 kV p-p. Eventually (at around
13.5 kV p-p), the charged particles drifted far enough to sense the grounded electrode and
the formation of streamers reaching the Petri dish took place. Starting at 14.0 kV p-p on, the
generation of streamers was stable, and the discharge was distributed throughout the entire
funnel volume. The discharge pictures in Figure 2a are displayed together with the power
density for different applied voltage values. For the power density calculation, the funnel
internal volume (89.8 ± 0.1 cm3), in addition to the Petri dish volume (50.0 ± 0.1 cm3),
was used. A linear trend of the power density increase with the applied voltage was
observed for all tested ranges. However, once the discharge transited to streamer mode,
the transferred charge fluctuated substantially. This explains the higher standard deviation
for the calculated power densities starting from 14.2 kV p-p in Figure 2a. Under these
operation conditions, streamers reached the bottom surface of the Petri dish increasing the
volume of produced plasma.
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It has been demonstrated in previous works that operating a plasma source in burst
mode allows a fine variation in the resulting mean discharge power [18]. This precise
power control can be beneficial, especially for biological temperature-sensitive targets, such
as seeds. Thus, the conical reactor was operated with different voltage duty cycle values for
an applied voltage of 20.0 kV p-p (corresponding to around 105 mW/cm3 without bursting
the voltage signal), and the data are presented in Figure 2b. A linear increase in power
density can be observed. Thus, the discharge power density could be lowered to around
10 mW/cm3 using only 10% of the voltage duty cycle and keeping the amplitude voltage
value. For some reactor configurations, such as plasma jets, power could also be regulated
by the applied gas flow [34]. Mui et al. (2018) [32], studied the influence of the gas flow
rate in a reactor with a similar configuration. The discharge power was not much affected
by the gas flow rate variation when using a conical nozzle. Therefore, in the present study,
the argon flow rate was fixed to 4.0 slm.

The discharge power adjustment by duty cycle variation led to a reduction in the
discharge temperature [18]. Figure 3 presents the gas temperature for the voltage duty cycle
values ranging from 10% to 90%. The temperature was monitored for 5 min of operation
the time, including measurements prior to plasma ignition (around 20 ◦C). Within the
measured time frame, the use of 90% duty cycles led to temperatures above 80 ◦C. For
the same activity time (5 min), reducing the voltage duty cycle to 70%, 50%, 30%, and
10% decreased the gas temperature to around 68 ◦C, 54 ◦C, 41 ◦C, and 38 ◦C, respectively.
Thus, controlling the discharge power can effectively lower the gas temperature preventing
possible overheating when treating thermal sensitive targets.

Optical emission spectroscopy (OES) was used to identify excited species in the plasma.
The discharge produced by the funnel reactor generated a large variety of excited species,
as can be seen in the OES spectra presented in Figure 4a,c. Even though the funnel was
closed by the Petri dish, excited species from air molecules (O2 and N2) were observed in
the spectrum. Figure 4a shows a majority of N2 second positive system bands between
300 nm and 450 nm. It also exhibited a weak NO(γ) emission between 230 nm and 280 nm
and emission bands of OH at 308 nm, as depicted in Figure 4b. Figure 4c exhibits argon
lines emitted between 690 nm and 930 nm. A small peak corresponding to atomic oxygen at
777 nm could also be observed. The excited oxygen and nitrogen species identified by OES
can be directly related to the generation of reactive oxygen and nitrogen species (RONS) in
the plasma region, which are important for several plasma processing techniques, including
the field of plasma agriculture [35]. The identified excited species by OES are summarized
in Figure 4d according to the relative intensity values for the different applied voltage duty
cycles. It can be noticed that the OH band was the most intense from all analyzed species,
followed by N2, O, and NO. When increasing the voltage duty cycle, the intensity of those
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species increased almost linearly. Even though the intensity values cannot be directly
associated with the species concentration [36], they can be used as an indication. Thus,
Figure 4d suggests that the generation of especially reactive oxygen species (ROS) was high
using this reactor. Some ROS, such as the hydroxyl radical (OH) and singlet oxygen (O), are
associated with fast surface modification of seeds leading to an increase in wettability [35].
As investigated in previous work using a DBD plasma source operating with argon and
helium, a ROS-rich environment can be relevant for treatments of seeds, accelerating the
germination process [18]. Moreover, wheat and barley displayed chemical modification
of the caryopses surface, with altered surface wettability and water uptake [19]. The use
of argon as a carrier gas facilitates plasma generation and leads to the production of ROS.
An intensification of ROS generation could be easily obtained by introducing a small
percentage of air to the carrier gas. Once, the use of pure air required operation using even
higher voltage values. On the one hand, the conical corona reactor operating with argon
used in the present study was a laboratory model and could only be used for the treatment
of small numbers of seeds. On the other hand, the use of argon makes it difficult to apply
this plasma source on an industrial scale and the conical configuration does not facilitate
its upscaling. Therefore, this reactor configuration can only be used for small applications
and basic science investigations.
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3.2. Treatment of Rapeseed

The effects of plasma treatment on seed properties and germination, as well as the
influence of seeds on the discharge homogeneity, were investigated using seeds of rapeseed
as a test model. First, the reactor was tested with different filling conditions to verify the
effect on the discharge power. Figure 5 exhibits the power density values for different
numbers of seeds treated (ranging from an empty reactor to a completely filled Petri dish).
For this experiment, the voltage duty cycle was kept at 50% and new seeds were used
for each batch of filling conditions. Complete filling of the Petri dish was achieved with
approximately 1015 seeds (4.97 g). A small number of seeds (0.64 g, around 130 ± 2 seeds)
did not affect the discharge power, and thus, the power density value did not differ from
the empty reactor condition (60 mW/cm3). Further increasing the seed number led to large
fluctuations of power density values between 35 mW/cm3 and 115 mW/cm3. The large
standard deviations for power values observed from around 300 (1.59 g, 330 ± 2 seeds) to
1000 seeds (4.97 g, 1015 ± 2 seeds) suggest an impact on the discharge caused by the filling
condition. As a result, substantial inhomogeneity of the treatment with larger numbers
of seeds should be expected. Therefore, to maintain the discharge uniformity, further
treatments performed for this study comprised only 55 seeds of rapeseed for each batch.

When dealing with direct treatments, it is important to consider that the substrate
dielectric properties will affect the system leading to changes in the equivalent circuit
model [37]. In the case of seeds, a capacitor and a resistor in parallel, whose values
are excitation frequency-dependent, can represent the equivalent electrical circuit [37].
Therefore, the number of seeds placed inside a direct treatment reactor will impact the
gap capacitance, resulting in variation in the discharge power. A large number of seeds
inside the Petri dish resembles a packed-bed reactor. In such reactors, the discharge gap is
completely filled with beads and the electric field at the voids (small space between the
closely packed beads) is greatly enhanced [38,39]. Van Laer et al., 2017 [39] reported an
influence of the beads’ dielectric constant on the electron density in the voids. In addition,
the electrons’ density is lower for higher dielectric constant values (dielectric permittivity
(ε) > 25 depending on the applied voltage). Kovalyshyn et al. (2020) [40] investigated
the electrical properties of rapeseed seeds and reported a frequency-dependent ε ranging
from 8.5 to 13 (for 1000 kHz and 1 kHz, respectively). Thus, the increase in power density
observed in Figure 5 for larger numbers of seeds can be associated with an intensification
of the electric field in the small regions (voids) between the seeds caused by surface charge
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accumulation. Since the space in the conical reactor is not fully packed with seeds as in
a packed bed reactor, the seeds can drift during treatment. Therefore, the voids between
the rapeseed will have variable sizes leading to inconsistent discharge power with large
measurement uncertainty. To avoid operating the reactor in the heterogeneous plasma
density regions, for further seed treatments, the number of seeds placed in the reactor was
kept with 55 seeds per batch.
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Another important aspect that should be considered when treating any kind of plant
material is the temperature. As discussed in Section 3.1, raising the duty cycle leads to
an increase in produced ROS. Yet, the duty cycle also affects the discharge temperature.
Since most seeds should not be manipulated at high temperatures to prevent damage (for
long time exposure), the temperature evolution caused by duty cycle variation needs to be
investigated. In a study about the effects of seed germination conditions on the germination
of Pinus bungeana seeds, Guo et al. (2020) [41], reported the importance of temperature.
Increasing the temperature to which seeds are exposed benefits the seed germination
process until an optimum value, after which it decreases promptly [41]. Figure 6 exhibits
temperature curves assessed for different voltage duty cycles after 3 min of plasma exposure:
for the gas temperature and the temperature measured at the seed coat. Three minutes of
treatment was chosen as a middle point from the gas temperature assessment (Figure 3).
For this exposure time, the gas temperature rose linearly with an increase in duty cycle
reaching up to 70 ◦C for D = 90%. Differently, the estimated temperature at the seed coat
increased initially with a similar pace but saturated for higher duty cycles, reaching a
maximum of 50 ◦C for 90% of the voltage duty cycle. Therefore, even though the overall
temperature remarkably rose inside the reactor after 3 min of plasma treatment, the seeds
were not excessively heated.

When plasma is applied to a material’s surface, its characteristics are modified [42].
Following the advance of plasma agriculture studies, the modifications caused by plasma
on the surface of seeds have been investigated [43]. Several studies reported chemical
modification of the seed coat after exposure to plasma. Gómez-Ramírez et al., 2017 [44],
reported that plasma treatment can oxidize the seed coat and attach new nitrogen radicals.
Brust et al., 2021 [19], observed an increase in oxygen–carbon ratio in wheat and barley
seeds after treatment using a DBD reactor operating with argon. Some studies also reported
physical changes after plasma treatment. Hosseini et al., 2018 [45], reported the formation
of cracks in the seed coat caused by treatment using low-pressure RF nitrogen plasma. As a
result of physical and chemical changes in the seed coat, its wettability may also change.
This can be accessed via contact angle measurements. Studies, such as Li et al., 2016 [46],
and Teerakawanich et al., 2018 [47], had already reported reductions in apparent contact
angle in seeds after treatment using cold atmospheric discharges. Ling et al. (2015) [31],
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reported a maximum reduction of 30.4% in apparent contact angle in rapeseed treated with
low-pressure plasma. Other studies also observed a reduction in the apparent contact angle
in treated rapeseed seeds, such as a reduction of 20% in [16] and a maximum reduction of
41.57% in [27]. Wannicke et al. (2020) [30], reported no significant reduction in the water
contact angle in rapeseed treated indirectly using plasma processed air.
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Figure 7 presents the WCA measurements of rapeseed seeds treated with the funnel
reactor using different voltage duty cycles. Seeds used in this study displayed a hydropho-
bic surface with a WCA of around 110◦. After plasma treatment for 3 min, the seed surface
wettability increased for all used voltage duty cycles. The seed coat became hydrophilic,
and the contact angle value decreased for higher duty cycle percentages. For D = 10%, the
water contact angle dropped to around 65◦ (reduction of 37.7%) and this value reduced
even more for D = 90%, where a contact angle of 40◦ (reduction of 64.2%) was obtained.
Interestingly, only a small wettability recovery of around 20% was observed after one
week (data not shown), where the fastest recovery period happened in the first two days.
Suggesting that plasma modifications persisted on the seed coat for longer periods as
investigated in [19]. For higher duty cycle values, the period of plasma on was increased.
As indicated in Figure 4d, the increase in voltage duty cycle might also lead to a higher
production of RONS. Therefore, seeds treated with higher duty cycle values were not only
exposed to plasma for longer periods but also might be exposed to higher amounts of
reactive species.

The reduction in water contact angle on the seed coat is often associated with an
improvement in water uptake by the seed. The ruptures caused by plasma treatment on
the seed coat of artichoke seeds reported by Hosseini et al., 2018 [45], were pointed out
as one of the responsible aspects that led to increased water uptake. Other studies also
reported cracking of the seed coat and investigated its correlation with the increased water
uptake and consequent improvement in germination [48,49]. In addition to morphological
changes at the seed coat, another factor that contributes to improved germination is the
surface activation by incorporation of radicals via etching [44].



Appl. Sci. 2022, 12, 3292 11 of 15Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 15 
 

 
Figure 7. Water contact angle of rapeseed treated with the funnel reactor for 3 min using different 
voltage duty cycle values. (*) Represents a statistically significant difference (p < 0.001). 

The reduction in water contact angle on the seed coat is often associated with an im-
provement in water uptake by the seed. The ruptures caused by plasma treatment on the 
seed coat of artichoke seeds reported by Hosseini et al., 2018 [45], were pointed out as one 
of the responsible aspects that led to increased water uptake. Other studies also reported 
cracking of the seed coat and investigated its correlation with the increased water uptake 
and consequent improvement in germination [48,49]. In addition to morphological 
changes at the seed coat, another factor that contributes to improved germination is the 
surface activation by incorporation of radicals via etching [44]. 

In this study, the germination rate of rapeseed treated with the funnel reactor using 
different duty cycles was investigated. Figure 8 shows the germination curves for gas con-
trol and treated seeds with different duty cycles (D = 10%, 50%, and 90%). Acceleration in 
germination below 22 h of observation time could be detected for all treatment conditions 
(D = 10%, 50%, and 90%). A maximum increase in germination was observed after 17 h of 
germination time, where an increase of around 20% was obtained for D = 10%, 50%, and 
70% and an increase of around 27% for D = 90%. This moderate increase in germination 
caused by plasma treatment contrasts with the considerable decay in WCA for all duty 
cycle values. Such discrepancy was also reported and discussed in previous works [18,19]. 
It indicates that other factors besides improvement in surface wettability play a role when 
improving seed germination. Some reactive species, such as hydrogen peroxide and nitric 
oxide, might impact metabolic processes in plants [50]. Such species can be generated by 
further reactions between plasma-produced ROS and water and be taken up during the 
imbibition process [18]. 
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In this study, the germination rate of rapeseed treated with the funnel reactor using
different duty cycles was investigated. Figure 8 shows the germination curves for gas
control and treated seeds with different duty cycles (D = 10%, 50%, and 90%). Acceleration
in germination below 22 h of observation time could be detected for all treatment conditions
(D = 10%, 50%, and 90%). A maximum increase in germination was observed after 17 h of
germination time, where an increase of around 20% was obtained for D = 10%, 50%, and
70% and an increase of around 27% for D = 90%. This moderate increase in germination
caused by plasma treatment contrasts with the considerable decay in WCA for all duty
cycle values. Such discrepancy was also reported and discussed in previous works [18,19].
It indicates that other factors besides improvement in surface wettability play a role when
improving seed germination. Some reactive species, such as hydrogen peroxide and nitric
oxide, might impact metabolic processes in plants [50]. Such species can be generated by
further reactions between plasma-produced ROS and water and be taken up during the
imbibition process [18].
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Seed germination tests can provide a variety of information, such as maximum ger-
mination capacity (Gmax), mean germination speed (t50), and germination uniformity
(U25–75) [19]. The indices can be extracted from the germination curve acquired for different
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times until maximum germination is reached. The seeds of rapeseed used in this study
presented high maximum germination (Gmax) of around 90%. All the values extracted from
the germination curves are displayed in Table 1. For all conditions, maximum germination
was achieved within 48 h and the seeds treated with a duty cycle of 70% exhibited a signifi-
cantly higher Gmax (around 96%) when compared to gas control (Table 1). It is important to
highlight that plasma treatment did not negatively affect the maximum germination value
of rapeseed for any of the tested treatment conditions. Puligundla et al., 2017 [29], also
investigated the effects of a corona discharge on rapeseed. An impact of treatment time on
the maximum germination was detected, where an improvement was observed for shorter
treatment times (1 and 2 min) and a significant reduction for 3 min treatment. This contrasts
with the obtained results for the conical reactor for 3 min treatment time and is possibly
a consequence of the shorter gap size and different high voltage electrode configurations
implemented by [29]. Germination impairment of rapeseed treated indirectly with multiple
filling conditions of plasma processed air (microwave discharge) for decontamination
purposes was also reported by [30]. On the other hand, single filling conditions did not
completely harm the seeds which emphasize the importance of precisely investigating
various parameters for different plasma sources.

Table 1. Effect of plasma treatment on the germination of rapeseed treated with different duty cycles.
Values of maximum germination (Gmax), mean germination time (t50), and uniformity of germination
(U25–75) were extracted from the fitted germination curves (Hill function). Bold numbers significantly
deviated from control group (Ct) * and gas control (Ctg) ** with p < 0.05.

Treatment Gmax (%) t50 (h) U25–75 (h)

Ct 92 ± 2 21.3 ± 0.6 5.8 ± 0.2
Ctg 91 ± 1 20.9 ± 0.7 4.7 ± 0.4

D = 10% 92 ± 1 18.6 ± 0.2 */** 5.5 ± 0.4
D = 30% 90 ± 1 19.6 ± 0.5 5.4 ± 0.6
D = 50% 88 ± 1 18.6 ± 0.3 */** 5.9 ± 0.7
D = 70% 95.6 ± 0.4 ** 18.8 ± 0.2 */** 6.0 ± 0.5
D = 90% 94 ± 2 18.0 ± 0.1 */** 5.9 ± 0.2 **

The germination acceleration is also indicated in Table 1, where a significant decrease
in t50 value was observed for D = 10%, 50%, 70%, and 90% when compared to both control
groups. The t50 value is the time when 50% of the viable seeds are germinated. Therefore, a
reduction in this value indicates a faster germination rate. Germination acceleration caused
by non-thermal plasmas has been observed for other plant species, such as wheat [18],
barley [19], radish [22], chickpea [51], and beans [52]. In the case of rapeseed, Kriz et al.,
2017 [16], and Li et al., 2018 [27], also observed faster germination for treatments using
low-pressure discharges. In addition, Ling et al., 2015 [31], reported an acceleration in
the germination of rapeseed under drought stress after treatment using a low-pressure
CCP reactor.

Another important parameter that can be assessed via a fitted germination curve
is the germination uniformity (U25–75). Li et al., 2018 [27], reported an improvement in
the germination uniformity of rapeseed in a discharge power-dependent manner after
treatment using a low-pressure RF discharge. Here, the uniformity of rapeseed germination
was not affected by plasma (Table 1).

4. Conclusions

A corona discharge reactor with a horn-like nozzle was adapted for the treatment of
small seeds. The discharge generated by this new configuration was characterized and its
effects on rapeseed were investigated.

Rapeseed seeds exposed to the plasma produced by the funnel-shaped reactor ex-
hibited accelerated germination. Observed improvements concerning seed germination
showed to be dependent on the discharge power. The ROS-rich plasma environment
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produced by this reactor led to the incorporation of oxygen radicals at the seed coat con-
tributing to the pronounced increase in surface wettability. Given the direct treatment
approach, the number of seeds that can be put in between the electrodes was revealed to be
an important parameter regarding process homogeneity and reproducibility.

The conical configuration of the reactor presented in this study is designed for the
treatment of small numbers of seeds and basic science investigations. However, considering
the positive results on seed germination and surface wettability improvement, a large-scale
corona reactor (possibly working with air) can be easily manufactured for certain future
field applications.

Given the large variety of plasma sources already studied for applications in agricul-
ture, each plasma system intended for seed treatment has to be individually investigated
and optimized. The set of parameters determined to obtain specific results is unique for
each plasma source. In addition, in direct systems, such as the funnel reactor, the bio-
logical target strongly affects the plasma treatment (homogeneity and expected results).
Therefore, the precise adjustment of discharge parameters is of utmost importance to reach
positive results, and also the process has to be carefully investigated for seeds from other
plant species.
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