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Abstract: In this paper, we propose a novel training strategy named Feature Mining for convolutional
neural networks (CNNs) that aims to strengthen the network’s learning of the local features. Through
experiments, we found that different parts of the feature contain different semantics, while the
network will inevitably lose a large amount of local information during feedforward propagation. In
order to enhance the learning of the local features, Feature Mining divides the complete feature into
two complementary parts and reuses this divided feature to make the network capture different local
information; we call the two steps Feature Segmentation and Feature Reusing. Feature Mining is a
parameter-free method with a plug-and-play nature and can be applied to any CNN model. Extensive
experiments demonstrated the wide applicability, versatility, and compatibility of our method.

Keywords: classification; convolutional neural network; training strategy; regularization

1. Introduction

Convolution neural networks (CNNs) have made significant progress on various
computer vision tasks, e.g., image classification [1–4], object detection [5–7], and segmen-
tation [8,9]. However, the large scale and tremendous parameters of CNNs may result in
overfitting and reduce generalization, which brings great challenges to network training. A
series of training strategies have been proposed to solve these problems, including data
augmentation [10–12], batch normalization [13], and knowledge distillation [14]. Those
approaches aim to improve the performance and generalization of CNNs by changing the
input, feature space, or output.

In particular, some methods improve the generalization by strengthening the learning
of the feature. As a representative regularization method, Dropout [15] randomly discards
parts of the internal features in the network to improve the influence of the remaining
features. SpatialDropout [16] randomly discards all the channels rather than individual
activations for the CNN. DropBlock [17] randomly drops some contiguous regions of a
feature map. Besides, self-distillation distills the knowledge itself to improve the utilization
of internal features. Be your own teacher (BYOT) [18] improves the efficiency of network
training by squeezing the knowledge in the deeper portion of the networks into the shallow
ones. As a state-of-the-art self-distillation method, classwise self-knowledge distillation [19]
improves the generalization of the same kind of images from the perspective of intra-class
distillation. In this paper, we focused on developing a new training strategy for CNNs to
strengthen the network’s learning of the local features. Different from the above methods,
which enhance the local feature learning by discarding parts of the feature or using a distil-
lation technique, our method divides the complete feature into two complementary parts
and reuses this divided feature to make the network capture different local information,
which is able to achieve better generalization with negligible extra computation cost.
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Our motivation stems from a phenomenon in the training process of CNNs: infor-
mation loss inevitably occurs after going through the pooling layer, which may lead to
the CNN’s inadequate learning of the local features. We performed several visualization
experiments [20] to explore the difference between the global features and the local fea-
tures. The result empirically suggested that different parts of the feature contain different
semantics, and the local features contain different semantics compared with the global fea-
tures. However, the network will inevitably lose the local information during feedforward
propagation. Making the network contain more local feature knowledge is a benefit to the
training, but how to make the local features of images sufficiently mined by the network is
a great challenge.

Based on the above observations, we propose a parameter-free training method:
Feature Mining, which aims to make the network efficiently learn the local features. This
strategy requires two steps: Feature Segmentation and Feature Reusing. During Feature
Segmentation, we divide the feature into two complementary parts by two binary masks.
Feature Reusing denotes that these two parts of the feature will respectively pass through
a global average pooling layer and a fully connected layer to generate two independent
outputs, and the three cross-entropies will be added to form the final loss function. In
this way, different local features can jointly participate in the network training with the
global features, so that the network is able to learn more abundant feature expressions.
Feature Mining can also be extended to any layer of the CNN. Specifically, adding Feature
Mining in the last two layers of the network not only further improves the performance of
the network, but also strengthens the shallow layers’ learning ability. Due to its inherent
simplicity, Feature Mining has a plug-and-play nature. Besides, we do not need to set any
hyperparameters for Feature Mining, which can reduce the operating cost and maintain
the stability of our method for performance improvement.

We demonstrate the effectiveness of our simple, yet effective training method with
different network structures, such as ResNet [4], DenseNet [21], Wide ResNet [22], and
PyramidNet [23], for image classification tasks on various datasets including CIFAR100 [24],
TinyImageNet, and ImageNet [2]. A great accuracy boost was obtained by Feature Mining,
higher than the Dropout [15–17] and self-distillation methods [18,19]. In addition, our
training method has strong compatibility and can be superimposed on the mainstream data
augmentation [12] and self-distillation methods. Besides, we verified the wide applicability
of Feature Mining in fine-grained classification [25], object detection [26], and practical
scenarios [27,28].

In summary, we made the following principle contributions in this paper:

• We propose a novel training strategy, Feature Mining, which aims to make the network
learn the local features more efficiently. Our method enjoys a plug-and-play nature
and is parameter-free;

• The proposed training approach can obviously improve the network’s performance
with little extra training cost and can be superimposed on the mainstream training
methods;

• Experiments for four kinds of CNN architectures on three kinds of datasets were
conducted to prove the generalization of this technique. The performance in different
scenarios demonstrated the wide applicability of our method.

2. Related Works

Methods for reducing information loss in CNNs: The pooling layer decreases the
size of the activation maps to reduce the computational requirements of the CNN, which
would inevitably incur information loss. Many strategies try to alleviate this problem
by reforming the structure of the pooling layer. Random shifting [29] embeds random
shifting in the downsampling layers during the training process to generate more robust
features in the network. S3Pool [30] replaces the regular downsampling by a more general
stochastic version and can be seen as performing implicit data augmentation by introducing
distortions in the feature maps. Inspired by the human visual system, detail-preserving
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pooling [31] magnifies spatial changes and preserves important structural detail to make
the CNN focus on local spatial changes. Based on softmax normalization, SoftPool [32]
preserves the descriptive activation features, while remaining computationally and memory
efficient. Note that although our approach also attempts to reduce information loss and
strengthen local feature learning as the above methods, we did not change the structure of
the pooling layer, but reused the segmented features for efficient learning.

Dropout methods: The Dropout methods aim to improve the generalization of neural
networks. Dropout [15] injects noise into the feature space by randomly zeroing the
activation function to avoid overfitting. SpatialDropout [16] randomly discards all the
channels rather than individual activations to improve the generalization of the CNN.
DropBlock [17] randomly drops some contiguous regions of a feature map for better
network performance. Besides, References [33–36] also proposed variants of Dropout.
These Dropout methods enhance local feature learning by discarding other parts of the
feature, but Feature Mining divides the feature into different parts and reuses all of them.

Data augmentation methods: Data augmentation is an effective strategy for network
training. Random cropping and horizontal flipping [1] are the most commonly used data
augmentation techniques. By randomly removing contiguous sections of the input images,
Cutout [10] improves the robustness of the network. Random erasing [11] randomly
selects a rectangle region in an image and erases its pixels with random values. Input
Mixup [12] creates virtual training examples by linearly interpolating two input data and
the corresponding one-hot labels. Inspired by Cutout and Mixup, CutMix [37] cuts patches
and pastes them among the training images. Feature Mining is complementary to the above
data augmentation methods such as Mixup because it operates on the feature level without
changing the data processing.

Self-distillation methods: Knowledge distillation [14] is proposed for model compres-
sion. Unlike traditional knowledge distillation methods that require teacher and student
models, self-distillation distills knowledge itself. Data distortion [38] transfers knowledge
between different augmented versions of the same training data. Be your own teacher [18]
improves the efficiency of network training by squeezing the knowledge in the deeper
portion of the networks into the shallow ones. Classwise self-knowledge distillation [19]
improves the generalization of the same kind of images from the perspective of intra-
class distillation. Both self-distillation and Feature Mining could improve the utilization
of the internal features. Experiments showed that our method outperformed existing
self-distillation methods and can be superimposed on self-distillation.

3. Materials and Methods
3.1. Observation

In order to explore the semantic difference among the local features, we conducted an
experiment on the visualization of the CNN. During the network training, we multiplied
the feature of the last layer of the network by different fixed binary masks, so that only
part of the feature in the last layer of the network could participate in the network training.
We used class activation maps (CAMs) [20] to visualize the trained model. Specifically,
ResNet-50 [23] trained on CUB-200-2011 [25] was chosen as the baseline model. All the
models were trained from scratch for 200 epochs with a batch size of 32, and the learning
rate was decayed by a factor of 0.1 at Epochs 100 and 150. The choice of epochs and
batch size followed the common practice. Training with a few epochs cannot guarantee
network convergence, while training with too many epochs may lead to the overfitting of
the network. Network convergence can be guaranteed without overfitting when training
with 200 epochs. Theoretically, the larger the batch size, the better the network performance
is. However, a large batch size will result in a large memory overhead. When the batch size
was set to 32, we could obtain the best network performance under existing computing
resources.

As shown in Figure 1, the second line shows the visualization results of the global
features in the last layer, while the following lines show the visualization results of different
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local features. We can see that the complete features generally focused on the global
information of the target, while the local features focused more on the relevant local
information according to their locations. Obviously, the image information concerned in
the local features is different from that of the global features, and the semantic information
between different local features is different. However, the network only obtains the output
depending on the global feature information due to the feedforward mechanism of the
CNN, which may cause the loss of information contained in the local features. How can
we make full use of the local features in the network training? We see how to address this
issue next.

Figure 1. Class activation maps (CAMs) [20] for the ResNet-50 model trained on CUB-200-2011. Each
line represents the visualization results of the same network for different images. The second line
shows the visualization results of the global features in the last layer, and the following lines show
the visualization results of different local features, which means only part of the feature of the last
layer could participate in the network training. The first column represents the composition of these
binary masks; the gray area represents the discarded area, and only the feature in the white area
participates in the training.

3.2. Feature Mining

Feature Mining is designed to improve the learning of the local features by the CNN.
Here, we present some notations that will be used in the following. Formally, for a given
training sample (x, y), x ∈ RW×H×C denotes the training image and y ∈ Y = {1, 2, 3, . . . , C}
denotes the training label. For a network with N classifiers, we use X to represent the
network’s internal features and an to represent the output of the nth branch. Next, we
describe the proposed Feature Mining strategy in detail, which consists of two steps, i.e.,
Feature Segmentation and Feature Reusing, as depicted in Figure 2.
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Figure 2. This figure shows the details of a CNN trained with the proposed Feature Mining. There
are two stages in Feature Mining: Feature Segmentation and Feature Reusing. Feature Segmentation
means that the feature is divided into two complementary parts by two binary masks. Feature Reusing
means that these two parts of the feature would respectively pass through a global average pooling
layer and a fully connected layer to generate two independent outputs, and the three cross-entropies
including the original feature will be added to form the final loss function.

3.2.1. Feature Segmentation

In order to make the network learn different local features, we first divided the
high-dimensional feature into two complementary parts by using a binary mask. In the
training phase, the training sample (x, y) would be processed by the network, and we
could obtain the feature X of this sample. After obtaining the complete feature X0 before
the last pooling layer, we generate a binary mask M with a bounding box with coordinates
B = (rx, ry, rw, rh) indicating the cropping regions on the binary mask. As CutMix [37], the
box coordinates are uniformly sampled according to:

rx ∼ Unif(0, W), rw = W
√

1− λ

ry ∼ Unif(0, H), rh = H
√

1− λ
(1)

making the cropped area ratio rwrh
WH = 1− λ. λ is sampled from the uniform distribution

(0, 1). The elements in B are set to one, and other elements in M are set to zero. We define
the segmentation operation as:

X1 = X0 �M

X2 = X0 � (1−M)
(2)

where X1 and X2 are complementary parts of X0 and contain different local semantics of
X0, which means X1 only contains the feature information within B while X2 only contains
the feature information outside B. We used the block to segment the feature based on the
characteristics of the CNN: adjacent neurons have similar semantics, and the block-form
segmentation can ensure that the two parts of the feature have great differences, which
could make the network efficiently obtain different local features. Note that this operation
can also be applied to any layer to obtain different representative features and is not limited
by the network structure. For a detailed discussion of the effect of the segmentation method,
please refer to Section 4.5. Besides, many methods preprocess the data to improve the
Feature Segmentation. However, our approach only performs segmentation on the feature
space and is based on raw data.



Appl. Sci. 2022, 12, 3318 6 of 14

3.2.2. Feature Reusing

After Feature Segmentation, we obtain a set of extra complementary features X1 and
X2 from the complete feature X0. Based on the observation in Section 3.1, the semantics
of X0, X1, and X2 are different from each other. In order to make the network learn the
information of these three parts of the knowledge simultaneously, we added two groups of
global average pooling layers and fully connected layers as two new branches based on
the original network. X1 and X2 will respectively enter their own global average pooling
layer and fully connected layer to obtain the new outputs a1 and a2, and the output of the
complete feature X0 is a0. We used softmax to compute the predicted probability of the nth
output for class i:

pn
i =

exp(an
i )

∑C
j=1 exp(an

j )
(3)

where C denotes the number of ground-truth labels. The probabilities p1 and p2 correspond
to these two outputs and will also be calculated with the real label of the image to obtain the
new cross-entropies. We added these cross-entropies to the cross-entropy of X0 to obtain
the final loss function. To sum up, the loss function of the whole neural network consists of
the cross-entropy of each branch, which can be written as:

loss =
n

∑
i=0

CrossEntropy(pi, y) (4)

where n denotes the number of branches including the main branch and two new branches
and y denotes the ground-truth label. These independent cross-entropies work together on
the backpropagation of the network and affect the gradient update of the network parame-
ters to make the neural network learn the knowledge information of the whole feature and
the local features simultaneously, so as to achieve the purpose of Feature Reusing.

3.2.3. Application

Feature Mining can be theoretically plugged behind any convolutional layer within
a CNN and can be superimposed on multiple layers at once during training. In practice,
we chose the last one or two layers for our method. Note that the binary masks used
for the segmentation were generated randomly in each network iteration, which makes
the network continuously learn the different complementary parts of the feature so that
the training of the whole network is more efficient and robust. We stress again that, as a
lightweight parameter-free strategy, Feature Mining was added to these networks only in
the training phase, and the network in the test phase was unchanged.

4. Results and Discussion

In this section, we investigate the effectiveness of Feature Mining for multiple com-
puter vision tasks. We first conducted extensive experiments on image classification
(Section 4.1) and fine-grained image classification (Section 4.2). Next, we studied the effect
of Feature Mining on object detection (Section 4.3). Besides, we evaluated the performance
of our method in practical scenarios (Section 4.4). We also show the ablation study of
Feature Mining in Section 4.5. All experiments were performed with Pytorch [39] on Tesla
M40 GPUs. The highest validation accuracy over the full training course was chosen as the
result. If not specified, all results reported were averaged over four runs. Note that all the
accuracy results are pixel based.

4.1. Image Classification
4.1.1. CIFAR Classification

The CIFAR100 dataset [24] consists of 60,000 32 × 32 color images of 100 classes, each
with 600 images including 500 training images and 100 test images. For ResNet [4] and
Wide ResNet [22], the mini-batch size was set to 128, and the models were trained for
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300 epochs with an initial learning rate of 0.1 decayed by a factor of 0.1 at Epochs 150 and
225. We changed the batch size to 64 when training with DenseNet [21]. As mentioned
in [23], we changed the initial learning rate to 0.5 and decreased it by a factor of 0.1 at
Epochs 150 and 225 when training PyramidNet [23].

Comparison with the Dropout methods: We adopt ResNet-56, ResNet-110, ResNet-
164, DenseNet-100-12, Wide ResNet-28-10, and PyramidNet-110-270 as the baselines to
evaluate Feature Mining’s generalization for different layers and structures of networks.
We tested Feature Mining with the last layer and the last two layers. Dropblock [17]
was applied to the output of the first two groups. Dropout [15] and SpatialDropout [16]
were applied to the output of the penultimate group. Table 1 shows that Feature Mining
outperformed other baselines consistently. In particular, Feature Mining improved the
top-1 accuracy of the cross-entropy loss from 74.98% to 78.31% (independent-samples t test,
p-value = 0.000177 < 0.001) of ResNet-164 under the CIFAR100 dataset.

Table 1. Validation accuracy (%) on the CIFAR100 dataset using the CNN architectures of ResNet-56,
ResNet-110, ResNet-164, DenseNet-100, WRN-28-10, and PyramidNet-110-270 (top accuracy in bold).
FM denotes Feature Mining. The p-value is the statistical comparison between FM (2 layers) and the
best-performing Dropout method within the independent-samples t test.

Method ResNet-56 ResNet-110 ResNet-164 DenseNet-100 WRN-28-10 PyramidNet-110

Baseline 73.71 ± 0.28 74.71 ± 0.23 74.98 ± 0.23 77.25 ± 0.20 79.35 ± 0.20 81.54 ± 0.31
Dropout 73.81 ± 0.27 74.69 ± 0.33 75.15 ± 0.11 77.45 ± 0.12 79.21 ± 0.15 81.31 ± 0.24
SpatialDropout 74.38 ± 0.17 74.76 ± 0.12 75.34 ± 0.09 77.97 ± 0.16 79.63 ± 0.09 81.60 ± 0.17
DropBlock 73.92 ± 0.10 74.92 ± 0.07 75.51 ± 0.14 77.33 ± 0.09 79.44 ± 0.24 81.57 ± 0.21

FM (1 layer) 74.55 ± 0.11 75.79 ± 0.08 76.51 ± 0.13 78.24 ± 0.12 79.75 ± 0.16 82.13 ± 0.25
FM (2 layers) 75.35 ± 0.07 76.90 ± 0.13 78.31 ± 0.21 78.78 ± 0.09 80.90 ± 0.22 82.87 ± 0.15

p-Value 0.018003 0.000634 0.000193 0.039 0.00495 0.01008

Our method, only used in the last layer, was better than the performance of the
three Dropout methods, and we considered the reason to be that Dropout and its variants
strengthen the part of the neurons’ learning by discarding other parts of the neurons,
which may cause information loss during the training phase. Feature Mining can make
the network simultaneously learn the different regions of the feature without information
loss, so that the network can achieve better performance. We can also find that the network
performance of Feature Mining used in the last two layers was much better than that
only used in the last layer, which indicates that the local feature in the front layer is also
beneficial to the network training.

Comparison with self-distillation methods: We also compared our method with self-
distillation techniques such as be your own teacher (BYOT) [18] and classwise knowledge
distillation (CS-KD) [19]. BYOT improved the performance of the network by making the
shallow network learn the knowledge of the last layer. Therefore, we took the output of the
last layer in ResNet-110 as the teachers of all the front layers and provided the final results
after ensembling for a fair comparison. Besides, CS-KD improved the generalization of the
same kind of images from the perspective of intra-class distillation. Note that we only chose
ResNet-110 as the baseline model due to the limitation of computing resources, but it can
be seen from the results in Table 1 that the improvement of our method in a deeper network
(ResNet-110) was more obvious than that in a shallow network (ResNet-164). Therefore,
the performance of our method on ResNet-110 was able to prove its advantage because of
its generalization.

As shown in Table 2, Feature Mining showed better top-1 accuracy on ResNet-110
compared with BYOT and CS-KD. Note that BYOT added extra overhead in the training,
while the time of our method was negligible. Besides, we combined Feature Mining with
these two methods and improved the top-1 accuracy of ResNet-110 from 76.68% to 77.34%
(independent-samples t test, p-value = 0.046 < 0.05) of BYOT and from 75.92% to 77.68%
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(independent-samples t test, p-value = 0.000322 < 0.001) of CS-KD. This shows that Feature
Mining does not conflict with these methods; even in the case of improving the performance
of the front layer (BYOT) or reducing the gap within the class (CS-KD), the performance
can still be improved by strengthening the learning of the local features.

Table 2. The performance comparison with self-distillation methods on the CIFAR100 dataset.

Method Validation Accuracy (%)

ResNet-110 74.71 ± 0.23
ResNet-110+BYOT 76.68 ± 0.14
ResNet-110+CS-KD 75.92 ± 0.08
ResNet-110+FM 76.90 ± 0.21
ResNet-110+FM+BYOT 77.34 ± 0.16
ResNet-110+FM+CS-KD 77.68 ± 0.11

Comparison with the data augmentation method: We investigated orthogonal usage
with other types of regularization methods such as Mixup [12]. Mixup utilizes convex
combinations of input pairs and corresponding label pairs for training. We combined
our method with Mixup regularization by combining the input and label processed by
Mixup with ResNet-110, which uses Feature Mining on the last two layers. Table 3 shows
the effectiveness of our method combined with Mixup regularization. Interestingly, this
simple idea significantly improved the performance of the classification task. In particular,
our method improved the top-1 accuracy of Mixup regularization from 79.22% to 81.04%
(independent-samples t test, p-value = 0.001 < 0.01) on ResNet-164, which proves our
method is also compatible with the data augmentation method.

Table 3. The performance comparison with Mixup on the CIFAR100 dataset.

Method Validation Accuracy (%)

ResNet-110 74.71 ± 0.23
ResNet-110+Mixup 77.78 ± 0.25
ResNet-110+FM 76.90 ± 0.12
ResNet-110+FM+Mixup 79.13 ± 0.17

ResNet-164 74.98 ± 0.23
ResNet-164+Mixup 79.22 ± 0.12
ResNet-164+FM 78.31 ± 0.09
ResNet-164+FM+Mixup 81.04 ± 0.20

4.1.2. Tiny ImageNet Classification

The Tiny ImageNet dataset is a subset of the ImageNet [2] dataset with 200 classes.
Each class has 500 training images, 50 validation images, and 50 test images. All images
have a 64 × 64 resolution. The test set label is not publicly available, so we used the
validation set as a test set for all the experiments on Tiny ImageNet following the com-
mon practice. The results are summarized in Table 4. Feature Mining achieved the best
performance 65.22% on Tiny ImageNet compared with the Dropout methods, BYOT and
CS-KD, +2.80% (independent-samples t test, p-value = 0.000062 < 0.001) higher than the
baseline. This proves that our method is also generalized for datasets with different data
sizes. These results also show that Feature Mining has wide applicability and performs
better than other regularization or self-distillation methods on different datasets.
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Table 4. The performance comparison on the Tiny ImageNet dataset. The best accuracy is achieved
by Feature Mining.

Method Validation Accuracy (%)

ResNet110 62.42 ± 0.25
ResNet110+Dropout 62.32 ± 0.05
ResNet110+Spatial Dropout 62.55 ± 0.10
ResNet110+DropBlock 63.13 ± 0.29
ResNet110+BYOT 63.03 ± 0.17
ResNet110+CS-KD 64.29 ± 0.11
ResNet110+FM 65.22 ± 0.06

4.1.3. ImageNet Classification

ImageNet-1K [2] contains 1.2M training images and 50K validation images labeled
with 1K categories. To verify the scalability of our method, we evaluated our method on
the ImageNet dataset with ResNet-50, which is the commonly used model for ImageNet
with high performance and acceptable computing overhead. The model was trained from
scratch for 300 epochs with a batch size of 256, and the learning rate was decayed by a factor
of 0.1 at Epochs 75, 150, and 225. As reported in Table 5, our method improved by 0.94%
(independent-samples t test, p-value = 0.001 < 0.01) the top-1 accuracy compared with the
baseline. This shows that our training strategy is also effective for image recognition in
large-scale datasets.

Table 5. The performance comparison on the ImageNet dataset on ResNet-50.

Method Validation Accuracy (%)

ResNet-50 76.32 ± 0.02
ResNet-50+FM 77.26 ± 0.04

4.2. Fine-Grained Image Classification

Fine-grained image classification aims to recognize similar subcategories of objects
under the same basic level category. The difference of fine-grained recognition compared
with general category recognition is that fine-grained subcategories often share the same
parts and usually can only be distinguished by the subtle differences in the texture and
color properties of these parts. CUB-200-2011 [25] is a widely used fine-grained dataset
that consists of images of 200 bird species. There are about 30 images for training for each
class. We used ResNet-50 to test the performance of our method on CUB-200-2011 to verify
the generalization of different types of computer vision tasks. For a fair comparison, the
model was trained from scratch for 300 epochs with a batch size of 32, and the learning rate
was decayed by a factor of 0.1 at Epochs 150 and 225.

As shown in Table 6, we improved the accuracy of ResNet-50 from 66.73% to 76.26%
(independent-samples t test, p-value = 2.8532× 10−7 < 0.001), +9.53% with Feature Mining,
which significantly surpassed previous self-distillation methods. It also shows that fully
utilizing feature information has a high gain effect even on fine-grained image classification,
which requires more subtle differences. Figure 3 shows the validation accuracy comparison
among the baseline, BYOT, and Feature Mining on CUB-200-2011 with ResNet-50. The
accuracy of BYOT and our method was much higher than the baseline, and the accuracy of
Feature Mining was higher than that of BYOT.
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Figure 3. Validation accuracy comparison among the baseline, BYOT and Feature Mining on CUB-
200-2011 with ResNet-50.

Table 6. The performance comparison with self-distillation methods on the CUB-200-2011 dataset.

Method Validation Accuracy (%)

ResNet-50 66.73 ± 0.34
ResNet-50+BYOT 74.60 ± 0.41
ResNet-50+CS-KD 74.81 ± 0.23
ResNet-50+FM 76.26 ± 0.27

4.3. Object Detection

In this subsection, we show that Feature Mining can also be applied for training the
object detector on the Pascal VOC dataset [26]. The RetinaNet [40] framework was chosen
as the baseline model, which is composed of a backbone network and two task-specific
subnetworks. The ResNet-50 backbone was initialized with the ImageNet-pretrained model
and then fine-tuned on Pascal VOC 2007 and 2012 trainval data. The models were evaluated
on the VOC 2007 test data using the mAP metric. We followed the fine-tuning strategy of
the original method.

As shown in Table 7, the ResNet-50 pre-trained with Feature Mining achieved a better
accuracy (71.11%), +0.97% (independent-samples t test, p-value = 0.013 < 0.05) higher than
the baseline performance. The result suggests that the model trained with Feature Mining
is also an effective training approach for object detection.

Table 7. The performance comparison on the Pascal VOC dataset.

Method Validation Accuracy (%)

RetinaNet 70.14 ± 0.17
RetinaNet+FM pre-trained 71.11 ± 0.14

4.4. Practical Scenarios

A. Label noise problem: In practical scenarios, the dataset is full of error labels
because of the expensive and time-consuming labeling process, which could seriously
affect the performance of the model. This phenomenon is known as the label noise problem.
We set up experiments with noisy datasets to see how well Feature Mining performed for
different types and amounts of label noise.

Following [27,41], we corrupted these datasets manually on CIFAR-100. Two types of
noisy labels were considered: (1) symmetry flipping: each label was set to an incorrect value
uniformly with a certain probability; (2) pair flipping: labelers may only make mistakes
within very similar classes. We use ε to denote the noise rate.

Table 8 compares the results with and without Feature Mining using ResNet-110. Our
method made huge improvements on different types and amounts of noise compared
with the baseline (which only uses cross-entropy to classify). One possible implication
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of the improvement is that our method can make the convolutional layers’ training more
sufficient, and the robust network has stronger anti-noise ability. Together, these results
provide strong proofs that Feature Mining helps raise the internal noise tolerance of the
network.

B. Small sample size problem: In some real industrial scenarios, the size of the dataset
may be small, which would bring difficulty to the network training. Besides, Reference [42]
mentioned that reducing the size of the training dataset can measure the generalization
performance of the models. Therefore, we evaluated the effectiveness of Feature Mining on
the small sample size problem along with varying the size of the training data. Due to the
limitation of the computing resources, we chose ResNet-56 as the baseline model.

We constructed a series of sub-datasets of CIFAR-100 via randomly choosing samples
for each class. Figure 4 compares the results obtained from ResNet-56 trained with and
without our strategy. Feature Mining was used on the last two layers of the network. From
the graph, we can see that our method yielded much higher accuracies compared to the
vanilla setting on all of the sub-datasets, in accordance with the expectations. The perfor-
mance of Feature Mining proves that our method can effectively improve the generalization
of CNNs.

Table 8. Average test accuracy on noisy CIFAR-100 using ResNet-110 with and without Feature Mining.

Noise Type ε Method Accuracy (%)

Symmetric
Flip

0.5 ResNet-110 45.73
ResNet-110+FM 53.31 (+7.58)

0.2 ResNet-110 61.16
ResNet-110+FM 68.12 (+6.96)

Pair
Flip

0.5 ResNet-110 35.73
ResNet-110+FM 38.78 (+3.05)

0.2 ResNet-110 63.83
ResNet-110+FM 71.22 (+7.39)

Figure 4. Accuracy(%) of ResNet-56 with and without Feature Mining under varying numbers of
training samples per class in CIFAR-100.

4.5. Ablation Study

A. Influence of different choices of Feature Mining on network performance: We
explored different design choices for Feature Mining, and these choices were classified into
two groups.

As shown in Table 9, the first group discusses the number of layers using Feature
Mining. ResNet-56 contains three layers, and we tested the Feature Mining on the last
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layers, the last two layers, and all three layers. All three models outperformed the baseline
model from 74.55% to 75.35%, while the model with the last two layers using Feature
Mining performed better than others. This shows that the penultimate layer’s local feature
is beneficial to the network training. While the feature of the first layer does not contain
mature semantics, adding learning of the feature in the first layer is not beneficial for the
network training.

The second group focuses on the Feature Segmentation approach. The Feature Seg-
mentation determines the additional feature pattern of the network learning, which plays a
crucial role in the performance of our method. Dropout-FM denotes that the binary mask is
set by random points as the Dropout. SpatialDropout-FM denotes that the feature is divided
by channels as the SpatialDropout. The performance of these segmentation approaches
could not compete with Feature Mining, which proves the segmentation feature based on
the block region can ensure a larger difference between the two parts and make the network
learn more feature information. Non-complementary FM denotes that we randomly chose
two parts of the feature instead of the complementary ones; its performance was still not as
good as the complementary way, which again verifies that the difference between the two
parts of the feature is important.

B. Analysis of time and memory overhead: Table 10 provides some complexity statis-
tics of Feature Mining, which shows that the computation cost introduced by Feature
Mining is negligible, especially when our method is only used in the last layer. Besides,
this additional cost is introduced only in the training phase, and the inference cost is not
increased.

Table 9. Performance of Feature Mining variants on ResNet-56.

Method Accuracy (%)

ResNet-56 73.71 ± 0.28
ResNet-56+FM (1 layer) 74.55 ± 0.11
ResNet-56+FM (2 layers) 75.35 ± 0.07
ResNet-56+FM (3 layers) 75.29 ± 0.12

ResNet-56+Dropout-FM 74.12 ± 0.23
ResNet-56+SpatialDropout-FM 74.01 ± 0.17
ResNet-56+non-complementary FM 74.23 ± 0.09

Table 10. Computation cost introduced by Feature Mining. The statistics were obtained on a Tesla
M40 GPU with a batch size of 128. The training time is averaged over the first 300 iterations.

Method GPU Memory
(MB)

Training Time
(s/iter)

ResNet-56 1740 0.094
ResNet-56+FM (1 layer) 1773 0.098
ResNet-56+FM (2 layers) 1959 0.113

5. Conclusions

In this paper, we proposed a novel training strategy named Feature Mining that aims
to strengthen a CNN’s learning of the local features. Feature Mining divides the complete
feature into two complementary parts and reuses the divided feature to make the network
capture different local information for efficient training. Our method has a plug-and-
play nature and can be applied to any CNN model. Extensive experiments proved that
Feature Mining brought stable improvement to different classification datasets on various
models and could be applied to various tasks, including fine-grained image classification,
object detection, label noise, and the small data regime. On CIFAR-100 classification,
applying Feature Mining to ResNet-164 brought +3.33% top-1 accuracy improvement. On
CUB-200-2011, fine-grained image classification, applying Feature Mining to ResNet-50,
significantly improved the performance of the baseline by +9.53%. Besides, Feature Mining
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is complementary to data augmentation and self-distillation methods. For future work,
we plan to find better segmentation strategies for Feature Mining by using reinforcement
learning.
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