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Abstract: Ship mechanical system health prognosis is one of the major tasks of ship intelligent
operation and maintenance (O&M). However, current failure prediction methods are aimed at single
pieces of equipment, and system-level monitoring remains an underexplored area. To address this
issue, an integration method based on a synthesized health indicator (SHI) and dynamic hybrid
prediction is proposed. To accurately reflect the changes in system health conditions, a multi-state
parameter fusion method based on dynamic kernel principal component analysis (DKPCA) and
the stacked autoencoder (SAE) is presented, along with construction of a system SHI. Taking into
consideration that the system degradation process includes global degradation trends, local self-
healing phenomena, and local interference, a dynamic hybrid prediction model is established after
SHI decomposition. The performance of the proposed approach is applied to a ship fuel-oil system to
show its effectiveness.

Keywords: operation and maintenance; synthesized health indicator; degradation process;
failure prognosis

1. Introduction

The newest generation of artificial intelligence technology has promoted the process
of ship autonomy and unmanned operation. Ship mechanical systems should make full
use of new technology to achieve scientific O&M based on improving safety, reliability, and
efficiency [1,2]. The main research focus of ship O&M includes all-round state perception,
real-time condition monitoring and evaluation, health condition prognostics, independent
decision-making [3], and other technologies.

More and more academic researchers and O&M engineers have been involved in
machinery failure prognostics. For single-component equipment, some research has shown
that incorporating prognostic information helps make more reasonable O&M decisions [4,5].
Modern merchant vessels are complex systems constructed from numerous subsystems,
with equipment and components provided by multiple different suppliers and integrated
by a shipyard. There are often one or more types of economic, structural, and stochastic
interactions between components. Intelligent O&M usually needs to consider the whole-
system health condition in order to optimize system-level and even plant-level decision
making [6–8]. The existence of these interdependencies makes the single-equipment prog-
nostic model no longer applicable.

At present, system-level failure prediction mainly includes two main problems, one is
to establish a suitable SHI that can accurately describe the health condition of the system, the
other is to select an appropriate prediction method according to the HI to realize the failure
prediction [8]. Ship systems are complex mechanical systems designed to complete specific
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functions and lack the dominant physical characteristics which can directly represent their
health condition. Therefore, it is necessary to use all kinds of sensor data to extract valuable
data. Thus, the concept of a health indicator (HI) is introduced. A suitable HI is expected
to simplify prognostic modeling and produce accurate prediction results. Zhang et al. [9]
use the improved radar chart method for constructing a system HI to produce the system
condition evaluation. Wen et al. [10] employ composite HI to realize complex systems
RUL prediction based on condition-monitoring signals. Through these HI construction
methods, the multi-dimensional data from the sensors is defined as a virtual SHI that may
be able to describe the health condition of a system. For ship mechanical systems, the
construction of physical HIs is relatively complex, so virtual SHIs are the best choice. Some
researchers constructed virtual SHIs based on principal-component analysis (PCA) [11,12],
self-organizing maps [13], Mahalanobis distance [14], and stacked autoencoders (SAE) [15].
SAE is an effective unsupervised, feature-extraction network, which is very suitable for
adaptive and online extraction of HI in multi-parameter systems [15,16]. In addition,
the degradation of ship mechanical systems includes at least three phenomena: global
degradation, local self-healing, and other noise. Due to the coupling of multiple signals
of SHI, it is unrealistic to directly select the prediction method to realize the prediction.
Therefore, in order to improve the prediction accuracy, it is necessary to decompose the
SHI to separate the degradation trend from fluctuations. Empirical mode decomposition
(EMD) and variational mode decomposition (VMD) are often used in decomposition
algorithms [17,18]. The VMD could specify the number of decompositions according
to the understanding of the physical process to reduce the complexity of the prediction.
After signal decomposition, different prediction methods could be chosen according to
different signals with the goal of realizing hybrid prediction. The hybrid prediction model
comprehensively considers the advantages of each model, realizes the complementarity
between models in the construction process, and improves prediction accuracy and decision
rationality [19,20].

The health condition of ship mechanical systems will directly affect safe and reliable
navigation by an autonomous ship. Therefore, using the system running-state parameters
to predict and track system health conditions is an important means for achieving system
health management. To produce these assumptions, a system health condition prediction
model based on SHI was proposed in this study. This model is an integrated method that
can take into account the interactions between components, the impact of uncertainty, and
the effects on function output on a system’s degradation. The main contributions of this
study are summarized as follows:

(1) The system-level adaptive SHI construction method is proposed. The fixed HI
construction was transformed into automatic SHI extraction with the DKPCA and SAE
fusion method, which improved the expression ability of the HI for system degradation
characteristics.

(2) A method of decomposing SHI according to specified degradation characteristics
is proposed. VMD was used to separate the SHIs into global degradation, local self-healing,
and local interference.

(3) A dynamic hybrid prediction model was proposed. Considering the different
characteristics of the decomposed signal, a relevance vector machine (RVM) and long
short-term memory (LSTM) were used to achieve hybrid prediction.

The remainder of this article is organized as follows. Section 2 describes the typi-
cal problem of ship mechanical systems and the framework. The proposed health state
prediction model is described in Section 3. The parameters of a fuel-oil supply system
were chosen as examples to verify the feasibility of the method, as described in Section 4.
Conclusions are drawn in Section 5, along with discussions of future challenges as well as
opportunities for machinery prognostics.
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2. Problem Formulation and Framework
2.1. Problem Formulation

The main challenge in ship system-level health condition prognosis is the development
of a modeling framework that allows the various factors influencing the evolution of system
degradation to be taken into account, including the mutual interactions of the components,
the impact of uncertainty, and O&M requirements. Before establishing the method for dy-
namic reliability assessment and health prognostics, some general specifications regarding
the considered ship mechanical system are presented as follows:

(1) The ship mechanical system is an agent or intelligent unit composed of various
components used to complete specific functions. From the perspective of intelligent O&M,
the health prediction focuses on whether the system can meet the functional requirements.

(2) The system proposed in this study is a continuous-operation system. The system
does not stop for maintenance, and the prediction end point is that the system function is
lost or does not meet the actual demand.

(3) There are many state variables of the ship mechanical system that often lack
dominant failure characteristics. The ship mechanical systems consist of m components,
the state of each component at time t is denoted as xi,t, and the states of all components
are xi,t = (x1,t, x2,t, . . . , xm,t). When the system is in the process of degradation, a single xi,t
cannot accurately describe the health condition of the system. Therefore, it is necessary to
integrate multiple sensor information to form an SHI to represent the health condition.

(4) The system works alternately in a variety of working modes. When the modes are
different, the optimal value (baseline value) and limit (threshold) value of the same variable
will be significantly different. Therefore, the influence of different mode parameters must
be considered when quantifying health status.

(5) The health conditions of the ship mechanical system are mainly affected by three
factors. One factor is the global degradation caused by uncertainty. The second factor is the
local self-healing influenced by the switching, self-clearing, and recoil of some devices and
components. When the equipment in the system recovers some performance, the function of
the whole system will also recover to a certain extent. This phenomenon has a great impact
on system failure and should be considered in the prediction process. The third factor is
local fluctuations caused by wind, waves, current, and other instantaneous disturbances.

2.2. Framework

The present work is based upon two main fields of research, the construction of SHI
and failure prognostics. Consequently, the complete framework is depicted by Figure 1.
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Figure 1. Schematic diagram of the proposed method for failure prognosis framework. Figure 1. Schematic diagram of the proposed method for failure prognosis framework.

Step 1: The system operation parameters were measured by various sensors. These
sensors usually included temperature, pressure, flow, liquid level, viscosity, etc. They
were conventional sensors installed in ship systems. The measurement data needed to be
processed before being used for failure prediction. The data processing technology included
outlier filtering and data imputation, and those processes were completed by the alarm and
monitoring system (AMS) at the ship’s end. The dataset cited in this paper came from the
AMS, meaning it was processed data. To meet the needs of green and economic navigation,
the ship system usually includes a variety of working modes. Using the fuel supply system
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as an example, it usually includes two working modes. Heavy oil mode is adopted for
normal navigation in the ocean. When sailing in ports or special areas, the ship needs to
switch to light oil mode in order to meet the demand for low emissions. The change of
working modes leads to a great change of system state parameters and significantly affects
the prediction results. This article studied failure prediction under one working mode, so
the data obtained need to be classified and stored according to working modes.

Step 2: To further characterize degradation characteristics and improve prediction
accuracy, for multivariate feature data, the DKPCA method was adapted to reduce the
dimensions of the data, and the SAE method was used to fuse the processed data to obtain
the SHI. The DKPCA implemented dynamic dimension analysis according to the change of
the system state parameters, and the SAE could map multiple features to a single HI.

Step 3: The VMD method was used to decompose the SHI. According to the character-
istics of the system degradation, the SHI sequence was decomposed into global degradation,
local self-healing, and local interference signals.

Step 4: According to the characteristics of different decomposed signals, different
prediction methods were selected to achieve hybrid prediction. According to the global
degradation characteristics, considering the influence of the uncertainty, the RVM method
was used to achieve the prediction. Compared with RVM, the LSTM prediction method has
greater advantages in processing strong periodic and nonlinear signals. Therefore, LSTM is
used to analyze local self-healing and interference signals.

Step 5: The health prediction was achieved by fusing the prediction results. The
decision was made according to the change of the health condition.

3. Methodology
3.1. Data Acquisition

Through the ship–shore communication system, data from the alarm monitoring
system (AMS) was transferred to the shore end. After imputation and outlier filtering, data
was stored in an elastic cloud server. The data selected in this article was read directly from
the server.

To adapt to different countries, ports, and navigation areas, a ship’s mechanical system
usually needs multiple modes to meet the requirements of navigation and environmental
safety, such as low emission requirements of ports and different navigation modes for sea
conditions. If the working modes of the system are different, the monitoring parameters
change greatly. The effect of changing operational conditions has far greater significance
than the influence of degradation uncertainty on system life. Therefore, when predicting the
health condition of a system, the working mode of the system needs to be identified first.

If the state parameters are recorded with pattern information, pattern recognition is
not needed. Otherwise, a pattern recognition algorithm is needed to identify the working
mode ot according to the measured data. The pattern recognition algorithms include
k-means clustering [21], fuzzy c-means algorithm [22], and Bayes classifiers [23]. The
measurement data for each time in this study were classified into the known M working
modes o = {o1, o2, . . . , oM}. The data that could not be classified into the known working
mode could be discarded temporarily. When enough similar data are accumulated, a new
working mode could be established.

3.2. SHI Construction

The change of system health condition is reflected by the characteristic parameters.
To further reveal the degradation processes of ship mechanical systems, an adaptive SHI
fusion method based on SAE is proposed in this paper. The method includes two parts.
Firstly, DKPCA is used to complete the dynamic selection of parameters and preliminary
feature extraction. Then, the mapping from multivariate features to SHI is realized by the
SAE method.
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3.2.1. Parameters Selection and Feature Extraction

In different degradation stages, the focus of the health condition was different, and
different characteristics were needed to reflect the change. Therefore, it was of great
significance to dynamically extract system features from many state features to represent
the system state changes. Due to the large inertia and multi-parameter data of the ship
mechanical system, DKPCA based on correlation dimension was proposed to select the
number of characteristic principal components of the nonlinear dynamic data. First, the
input-standardized data were preprocessed with the fractal theory and dynamic theory,
and the optimal lag dynamic data matrix X̃ was constructed to reduce the autocorrelation
and correlation between data, where X̃ , [X(t)X(t− ∆) . . . X(t− l∆)] ∈ R(N−l)×m(l+1),
which is the reconstruction matrix, and X(t) is the m-dimensional observation data at time
t, ∆ is the interval time, l is the lag time factor, and N is the number of samples. The l was
substituted into Equation (1) to calculate:

rn = r−
l−1

∑
i=0

(l − i + 1)× rn(i), (1)

where rn was a cyclic function, and the initial rn(i) was calculated when l = 0. And
r = m(l + 1)− CD, where CD is the correlation dimension of the dynamic data matrix [24].
Its calculation method is shown in Equation (2):

CD(ε) =
2

ND(ND − 1)

ND

∑
i=1

ND

∑
j=i+1

H(ε− δij), (2)

where ε is the distance of two points on the attractor and related to δij, δij =
∥∥xj − xi

∥∥2

is the Euclidian distances between ij rows to the input matrix X̃, and ND = N − l. The
H represents an indicator function defined as H(z) = {1

0
i f
else

z≥0

z<0
. As the ε gets smaller,

Equation (2) can be rewritten as:

CD = lim
ε→0

log(CD(ε))

log(ε)
. (3)

In Equation (3), assuming a sufficient number of points have been acquired lying
closely in the underlying space, then the slope of the linear part of the log – log plot of CD
versus ε represents the CD.

Calculate rn using Equations (1)–(3) until rn ≤ 0, then the value of the correlation
dimension corresponding to l in different cases can be obtained, and the most appropriate
lopt can be selected to construct X̃opt ∈ RND×m(lopt+1).

The KPCA was used to analyze the matrix X̃opt to obtain the mapping data matrix
as follows:

tk =
1√
λk

N

∑
i=1

ak
i K(xi, x), (4)

where k = 1, 2 . . . , N, K(xi, x) represents the core matrices after centering, and λk and αk
i

are the eigenvalues and eigenvectors, respectively, of matrix K(xi, x). The eigenvalue size
was used to simply filter the data to reduce the amount of data calculation and obtain the

corresponding data matrix Gp =
{

tk
j

}p

k=1
∈ RND×p, where j = 1, 2, . . . , ND.

The CD was applied to obtain the number of principal components of Gp and Gt
(Gt = Gp A, and the matrix A is the loading matrix obtained with an orthogonal transfor-
mation of the covariance matrix) and obtain the correlation dimension dG P and dGt . Then,

the number of principal components of the matrix data was γ = max
([

dGp

]
, [dGt ]

)
, and

the [] is rounded up [25].
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Using the correlation dimension to select the principal elements could improve the
accuracy of the feature data extraction to a certain extent [26], and the output matrix

Gγ =
{

tk
j

}γ

k=1
∈ RND×γ could finally be obtained. The output matrix was used for the

analysis and calculation of the SHI. The specific process of feature extraction is shown in
Figure 2.
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3.2.2. Feature Fusion

The calculation process of the SHI was essentially a process of mapping the multi-
dimensional physical characteristic information of the system collected by sensors to a
one-dimensional virtual variable with a value range of (0, 1). The value of 1 indicated that
the system was working normally, and the value of 0 indicated that the system had a total
loss of function. Just like using physical characteristics to describe the health condition
directly, the SHI was also based on the fusion of the available and real-state monitoring
information to produce the health assessment of the system, and this method could describe
the health condition of the system accurately and comprehensively.

The SAE deep neural network was used to fuse the features extracted dynamically
to further reduce the dimensions and extract a fusion SHI that contained the degradation
characteristics of the system. SAE’s method of depth-feature fusion is to form a depth
network by infinite stacking, take the output of the upper layer as the input of the next layer,
and then minimize the reconstruction error of the input and output signals to complete the
layer-by-layer compression of the input data. The basic structure is shown in Figure 3a.
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The input and output of the network are x and x̂, hidden layer node output hj and
output layer node x̂k can be defined by Equations (5) and (6):

hj = f (
m0

∑
i=1

xiwij + b1), (5)

x̂k = f (
n0

∑
j=1

hjwjk + b2), (6)

where f (·) is the active function, wij and wjk are the weight matrices, b1, b2 are the bias
vectors, m0 is the number of feature fusion, and n0 is the number of input and output nodes
and is equal to the γ calculated in Section 3.2.1 above.

The coding process of the network refers to mapping n-dimension as the input sample
a into m-dimensional hj, with the decoding function hj remapping into n-dimensional x̂k
through decoding. The ρ̂j represents the average activation amount of hj, then:

ρ̂j =
1

Tn

Tn

∑
j=1

hj, (7)

where Tn is the number of training samples. In order to avoid useless learning, the sparsity
system is added to the network, and only a few nodes are allowed to be active, that is,
make ρ̂j close to ρ, and ρ is a sparse parameter approaching 0. Kullback–Leibler divergence
(KL) measures the deviation degree between ρ̂j and ρ, as shown in Equation (8):

KL(ρ‖ρ̂j) = ρ ln
ρ

ρ̂j
+ (1− ρ) ln

1− ρ

1− ρ̂j
. (8)

The overall cost function of the Tn samples can be defined as Equation (9):

J(w, b) =
1

Tn

Tn

∑
i=1
‖xi − x̂i‖2 + λ‖w‖2 + β

m0

∑
j=1

KL(ρ
∣∣ρ̂j ), (9)

where λ is the weight-decay parameter and β is the sparsity penalty term parameter used
to control the relative importance between the first reconstruction term and the second
penalty term.
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According to the feature data extracted dynamically, two SAE stacks were used to
form a trestle self-encoder for second-order parameter fusion.

One-level fusion: taking the initial parameters as the input and output of the network
structure shown in Figure 3a, the number of hidden layer nodes was less than the network
input. Network coding and decoding were conducted, and the network parameters from
the input layer to the hj layer were obtained. After the training, the decoding layer was
removed, leaving only the input layer to the hj layer, as shown in Figure 3b, and the output
of the hidden layer was the first-order fusion result.

Two-level fusion: the result of the first-order fusion was taken as the input and output
of the network structure shown in Figure 3b, and the number of hidden layer nodes was
set to 1; that is, the final fusion was a sequence. The fusion process was similar to the
first-order fusion, and the hidden layer output after removing the decoding layer was
the two-level fusion HI. In addition, the number of hidden layers was determined with
repeated experiments.

3.2.3. SHI Assessment

The evaluation of SHI performance is mainly considered from two aspects. Firstly,
whether the change characteristics of SHI are consistent with the changing trend of the
function indicator (while considering the overall trend and local characteristics); the second
is to calculate the correlation coefficient of SHI and functional indicators.

Spearman’s rank correlation coefficient has the widest application range and does
not need the variables to conform to normal distribution [27]. Therefore, it is selected to
measure the correlation between SHI and functional indicators.

For a data sample of size n, the SHI values Ai and function indicator Bi are converted
to ranks rg(Ai) and rg(Bi), rg is an arrangement method from largest to smallest. The rs is
described as follows:

rs = 1−
6 ∑ d2

i
n(n2 − 1)

, (10)

where di = rg(Ai)− rg(Bi) is the significant difference between the two ranked variables.
The value of rs is from +1 to −1. If the absolute value of rs is closer to 1, it indicates a
strong correlation.

3.3. SHI Decomposition

It was considered that the degradation of the ship mechanical system was at least a
complex degradation process composed of global degradation, local self-healing, and local
interference. Therefore, the number of modal components of the VMD was set to three.

The data of fusion SHI were H(t), and its VMD decomposition result could be ex-
pressed as:

H(t) =
S

∑
k=1

uk, (11)

where S is the number of modal components, and uk is a sub-signals (modes) of the
real-valued input signal.

3.4. System-Level Health Condition Prediction
3.4.1. Hybrid Prediction Model

A single prediction method has its advantages and disadvantages, so it is more-or-
less suitable for a given supervision problem. There is no universal prediction method
that outperforms all other methods in all situations. Therefore, the hybrid model that
takes into account the advantages of each model can predict the decomposed signals with
different characteristics, realizes the complementarity between models, and then improves
the prediction accuracy and decision rationality.

For the global attenuation trend decomposed signal, the RVM model with higher
computational accuracy and lower computational complexity than the SVM algorithm was
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selected for prediction, and it could output the uncertainty information of the prediction
results. The adaptive RVM method was adapted for online prediction [28]. For the decom-
posed signal with obvious nonlinear characteristics, the LSTM [29] algorithm with a better
nonlinear autonomous learning function was selected. The prediction results of the three
models were accumulated:

û = û1 + û2 + . . . + ûk. (12)

where ûk is the prediction results of uk and û is the hybrid model predicting the final
result. When the fusion features changed, the training sample of the hybrid prediction
model was updated, and the health condition prediction was conducted again. To highlight
the performance of the created SHI and limit the impact of the prediction methods on
the final results, the default hyperparameters used in the methods were used without
making adjustments.

3.4.2. Determination of Prediction Starting Time

A ship mechanical system has high reliability and a stable health value in the initial
stage of operation. The existing SHI sequence will often not be enough to reflect the
degradation trend of a system in the future. Using the existing data to complete the training
and prediction would mean the prediction results were not necessarily accurate. With the
increase of the system running time and the deepening of the degradation, the value of the
SHI decreased continuously. More and more feature data that could be used to identify
the degradation process were included in the SHI series, and the prediction results were
close to the real state. Therefore, it was necessary to determine the prediction starting point
according to the change trend of the SHI. The time-to-start (TTS) point was used to produce
the online prediction of the health condition using real-time measurement data [30]. Based
on this process, the baseline–threshold method was applied to determine the TTS.

(1) Baseline
The baseline was established with the system SHI. The baseline reflected the best

state of the system operation. To simplify the calculation, the arithmetic mean µ could be
selected to replace the baseline:

µ =
1

N0

N0

∑
i=1

xi, (13)

where N0 is the number of data. The baseline could also be calculated dynamically with
the adaptive baseline method according to previous research results [31].

(2) Threshold setting
The threshold included the adaptive threshold and failure threshold. The adaptive

threshold TAT was calculated from the baseline, and the upper and lower limits of the
adaptive threshold constituted the optimal distribution range of the health value:

σ =

√√√√ 1
N0

N0

∑
i=1

(xi − µ)2, (14)

TAT = µ± 2σ, (15)

where σ is the standard deviation and the mean value is µ.
The failure threshold is the health value corresponding to the system function not

meeting the requirements, which were usually determined by the range of the function
indicator parameters: HI = 0 indicates that the system had lost all functions. In practical
application, it is generally believed that when a system cannot meet the functional require-
ments, the health condition prediction will stop, so health value at this time was set as the
failure threshold.

Under normal conditions, the health value should fluctuate around the baseline and be
within the range of the upper and lower limits of the threshold. If the health value ran out
of the channel, the health condition changed. As shown in Figure 4, the trigger condition of
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the state prediction was that when the SHI deviated from the baseline (deviated and did
not recover, as shown at point (a) and quickly broke down the threshold (could not return
to the threshold range, as shown at point (b). Taking point b as the TTS, the data before this
point were taken as the training sample to complete training and prediction. The training
data included the data for stable operation and for the descent phase.
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3.4.3. Metrics for RUL Prediction

Root mean square error (RMSE) measures the accuracy of the predictions and is the
most commonly used regression metric [32]. RMSE is defined as the root mean square of
the RUL prediction errors during the time interval from TEND to TTTS and is expressed as:

RMSE =

√√√√ 1
TEND − TTTS

TEND

∑
t=TTTS

(Lt − L∗t)
2, (16)

where TEND and TTTS are the time indexes corresponding to the prediction start point and
end point, and Lt and L∗t are the predicted RUL and the ground truth RUL at time T. The
larger the value of RMSE, the greater the average prediction error.

4. Case Study

A ship system is a mechanical system, such as an air system, lubrication-oil system,
fuel-oil system, or cooling-water system. As described in this section, a main-engine fuel-oil
supply system (FOSS), as shown in Figure 5a, was selected as the research object to verify
the feasibility of the method. The function of the system is to provide suitable fuel for
combustion. If the system failed unexpectedly, the ship propulsion system would shut
down, and this would directly affect the safety of the ship.

The system consists of four types of components. One component type is the pumps,
consisting of the supply pump (SP) and circulating pump (CP), which provide pressure for
the system to maintain the system pressure stability. Another type is the filters, consisting
of the duplex filter (DF) and the auto filter (AF), which ensure the quality of the fuel and
protect the equipment downstream. The third type is the heat exchanger (HE), which is
mainly the atomization heater in the system used to ensure the proper viscosity of the fuel.
The fourth type is the accessory components, including the pipelines, valves, oil tanks, etc.
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Figure 5b illustrates the measurement parameters of the system, including: system
working mode, pump inlet and outlet pressure, filter differential pressure, tank level, and
fuel viscosity.

4.1. Working Mode Identification and Parameter Selection
4.1.1. Working Mode

Because different working modes have a great influence on system parameters, it was
necessary to store the state parameters according to the working modes and to establish
prediction models according to different modes. The working mode of FOSS usually has a
judgment mark (by three-way valve), so an algorithm was not needed to achieve pattern
recognition in this study. The system had two working modes: a diesel oil mode and
a heavy oil mode. Because the system only worked in diesel oil mode for a short time,
this mode had little impact on system performance. In the whole lifecycle of the system
the heavy oil mode was dominant, and the diesel oil mode was equivalent to the local
fluctuation of the system, so only the data from the heavy oil mode were used to produce
the health-condition prediction.

4.1.2. System Parameters

To meet the condition monitoring, the acquisition parameters of FOSS were as shown
in Table 1. The parameter ranges in the table were used to filter outliers.

All of the data described in the following sections were from the real ship operation
parameters (from a training ship). The data set consisted of two parts:

(1) Dataset A:
A system maintenance cycle from March 2019 to September 2019 was selected from

the database of the AMS. During this period, the main factor that dominated the health of
the system was the performance degradation of the system components. When the system
ran for about 5300 h, the system was out of function. The change of each state parameter in
the system is shown in Figure 6a.

(2) Dataset B:
Another system maintenance cycle between May 2020 and December 2020 was selected

from the database of the AMS. During this period, in addition to the dominant degradation,
the health condition of the system was affected by double pump switching; the degradation
process changed and the system life increased. When the system ran for about 6195 h, the
output pressure and flow of the whole system were insufficient due to the filter. This data
sample was used to compare the prediction results of different prediction processes.



Appl. Sci. 2022, 12, 3329 12 of 20

Table 1. Description of sensor data sets.

Variable Parameter Descriptions Unit
Benchmark Data

Lower Limit Optimal Value Upper Limit

1 SP outlet pressure MPa 0.3 0.5 0.8
2 SP inlet pressure m 0 3 3
3 CP outlet pressure MPa 0.6 0.8 1.2
4 CP inlet pressure m 0 3 3
5 Fuel oil viscosity cSt 7.0 12.0~14.0 20.0
6 AF pressure differential MPa 0.02 0.02 0.08
7 DF pressure differential MPa 0.02 0.02 0.08
8 MB pressure MPa 0.3 0.45 0.6
9 Service oil tank level m 0.3 2.12 2.66

10 Three-way valve position 0/1
11 Main engine fuel oil inlet pressure (Function) MPa 7 8.5 16
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4.2. System Failure Prognostics
4.2.1. System Health Prediction Based on Degradation

When the system was in normal production operation, the function of the system was
mainly affected by the state of the filter. After cleaning, the system recovered some function,
and the health state was characterized by local self-healing. According to the TTS setting
method, when the health value reached the trigger condition, the training samples were
constructed, and the prediction end point was set according to the threshold. Data set A
was selected to verify the effectiveness of the method. The calculation steps of the health
condition prediction were as follows:

(1) A dynamic feature extraction algorithm was used to achieve feature extraction.
The system presented different state features in the life cycle, so the dynamic feature

extraction algorithm could capture the dynamic features of the system more accurately to
represent the health state. DKPCA was used to extract the features of the data, and the
calculation steps were as follows.

Step 1: The size of the data matrix was limited. According to the analysis requirements
for the operation of the unmanned ship (>500 h), the matrix size had to be larger than the
unmanned running time, so the number of samples was selected as N = 520, and the data
matrix was X ∈ R520×9. To reduce the impact of the data amplitude differences, the matrix
needed to be standardized.

Step 2: According to experimental experience, the selected value of the interval time
is 1 (∆ = 1). Then Equations (1)–(3) were applied to obtain the lag time lopt = 3 of the

reconstruction matrix, and the reconstruction matrix was X̃ ∈ R
(N−3)×36

. Using Equation (4)

to obtain the mapping data matrix gives GND =
{

tk
j

}ND

k=1
.

Step 3: After obtaining the mapping matrix, the λp ≥ 10−5 p = 1, 2, 3 . . . , ND con-
dition was applied to filter GND , and the matrix Gp was obtained.

Step 4: The correlation dimension was used to solve the number of principal compo-
nents of the matrix. The result is shown in Figure 7. It can be seen from the figure that the
number of pivotal elements of the data in different time periods of the data was constantly
changing, and this was not unique.
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As depicted in Figure 7, the 13 features could describe the system state in the initial
state. When the system fluctuated, the number of features increased to 14. With the system
state in the transition processes, the number of features varied from 12 to 13. Finally, when
the system was in the late degradation stage the number of features was stable at 13.

Different mapping matrices Gγ were constructed according to the principal compo-
nents shown in Figure 7. These matrices contained the dynamic structure of the original
data that could effectively reduce the influence of the cross-correlation between the data on
the analysis results, which was beneficial to the construction of the SHI.
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(2) SHI construction
Suitable fuel usually includes pressure, viscosity, and flow to meet the functional

requirements of a main engine. During the working process, the viscosity was affected by
the state of the HE, so this parameter was used as the characteristic parameter to describe
the health condition of the system. The flow rate was mainly affected by the power of the
main engine, which could be reflected by the pressure characteristics. Therefore, the main
engine fuel oil inlet pressure could be used as the functional indicator of the system to
judge whether the system SHI met the function requirements.

The SHIs of different feature fusion methods are shown in Figure 8. H1 was directly
obtained with the PCA method [12], H2 was constructed by the proposed SAE fusion
method. The number of network layers was 3, and the number of neurons in each network
was 4, 4, and 1. In the training process, the reducing learning rate was set to 0.1, and the
ratio of the training set to the test set was determined as 4:1.
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H1 was basically consistent with the functional indicator at the initial stage, and the
fusion result deviated greatly at the later stage. If H1 was used to produce the failure
prediction, the deviation result was large. H2 could accurately fit the attenuation trend
in the global attenuation, local self-healing, and interference stages, which was consistent
with the target function and which could fully and accurately express the degradation
characteristics of the system. The analysis results of Table 2 can be obtained by Equation (10);
as shown in Table 2, the SHI constructed by the two methods are linearly correlated with
the system function indicators. The SHI extracted by SAE has a stronger linear correlation
with the functional indicator (rs = 0.998).

Table 2. Correlation analysis of SHI and function indicator.

Spearman Correlation SAE Fusion SHI PCA Fusion SHI

Function indicator 0.998 0.994

Considering all the factors that influenced the SHI, the SHI fused by the SAE method
could better express the health condition of the system. Therefore, using SHI to predict will
obtain a more accurate system life.

(3) SHI decomposition
Using experience to choose the parameters of the VMD decomposition method, the

initial value of the center frequency was set to 1, the update parameter was set to 0, and the
termination condition was set to 10−6. The penalty factor was determined by experiment.
In the study of the ship system, only the separation of the global degradation, local self-
healing, and other sources of noise were considered, so S was set to 3.
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After signal decomposition, the SHI contained a mixture of three degradation phe-
nomena. VMD was used to separate the local self-healing phenomenon u2 from the global
attenuation trend u1 and other sources of noise u3 in the SHI, and this could solve the
problem of prediction bias caused by the local instability of the HI.

The three decomposed curves, u1, u2, and u3, shown in Figure 9 represent the dominant
degradation, local self-healing, and local interference. Dominant degradation u1 was
affected by the internal uncertainty, and it showed a downward curve. The local self-healing
u2 and interference u3 were influenced by the periodic function recovery characteristics
of the equipment in the system and showed periodic curves. The characteristics of the
decomposed signal could be predicted by different prediction algorithms. According to
the characteristics of u1, the RVM model was selected for prediction. There were obvious
nonlinear characteristics in u2 and u3, so the LSTM algorithm was selected.
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(4) Hybrid prediction
After TTS calculation, when the system ran for 3334 h, the change of the health value

met the requirement of the prediction conditions, so the prediction algorithm was started in
order to predict the subsequent health condition. The health values before 3334 were used
to train the RVM regression model and the LSTM model. The input data for the models
were selected as the 1st–3334th samples of the health values. The step size of the multi-step
prediction was set to 10, and the target data in the training process were the 11–3344th
samples. The main engine fuel oil inlet pressure was taken as the evaluation standard of
the system target function. When the pressure was lower than 0.7 MPa, it did not meet the
demand of the main engine. At that time, the set health value was HI = 0.2, which was the
failure threshold.

As shown in Figure 10, after TTS, the fusion features had undergone three obvious
changes, so the training data of the hybrid model had been updated three times. The
system failure time predicted by this method was about 5262 h, and the deviation from the
real value was small.

4.2.2. RUL Prediction with Disturbance

There were many influencing factors in the actual system, and the health condition
changed dynamically, so it was difficult to accurately evaluate the RUL of the system in one
prediction. For example, there was redundant equipment in the system, and equipment
switching would lead to a substantial recovery of function. Obviously, if the previous
prediction method is used, the error could be very large. Therefore, it was necessary
to achieve continuous tracking of the health condition of the system and the dynamic
prediction. Dataset B was used to test the prediction of the health condition when some
equipment of the system switched.

It can be seen from Figure 11 that if the equipment was not switched, according to
the previous degradation law, the health condition of the system would reach the failure
threshold at T2 h. In the vicinity of region B, when the pump was switched, system function
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was restored and the degradation curve changed. At that time, using RUL prediction
would not be able to accurately predict the remaining life. Therefore, to realize the adaptive
prediction of health conditions, updating the training sample is necessary. With the new
feature data added to the training set, the final life T1 was close to the real situation. The
dynamic prediction method could track the change of system health condition and realize
the dynamic prediction of failure time.
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Figure 11. Change of system health condition for interference state.

4.3. Results and Discussion

In order to further demonstrate and validate the proposed method, RVM [23] and
LSTM [29] were selected as comparison methods in this section. As shown in Figure 12, H1 is
the prediction result obtained by the proposed method. H2 is realized by the LSTM prediction
method. H3 uses the RVM method to build a reconstruction model to realize prediction.
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Figure 12. Prediction effect of different methods.

It can be seen from the prediction curve that the prediction time is within 500 h, and
the three methods can achieve good prediction results. With the increase of prediction time,
H2 and H3 deviate greatly from real life (after 1000 h). The method proposed in this paper
can better extract the changes of characteristic data, and the prediction result T1 (5262 h)
is closer to the real value (5300 h). According to Equation (16), the RMSE values used to
measure the prediction effects of the different prediction methods can be obtained—the
results were shown in Figure 13. From TTS to 500 h after the health condition prediction,
the three methods could be used, and the error was relatively small. After 500 h, the
prediction deviation was obviously large, and after 1000 h, the prediction result showed a
large deviation. Through the evaluation index RMSE, it could be seen that the proposed
method had high prediction accuracy throughout the whole process.
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When predicting the health condition of a complex ship mechanical system, if the
prediction time is too long, it will be affected by the internal and external uncertainties of the
system, and the prediction result will be far from real life (as shown in T2 in Figure 11). The
use of dynamically updating training data to track the health condition could achieve better
prediction results. For the autonomous ship, the port mode was adopted for maintenance.
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In other words, in most cases, the whole lifecycle of a ship’s system or equipment does
not need to be predicted. According to the voyage and port characteristics, the phased
prediction was made. As long as there was enough margin in the current voyage, it could
meet the needs of unmanned navigation. If the voyage operation time is T (at present, the
requirement for unmanned ships is T > 500) hours, it is only necessary to predict the health
of the system and make sure that its work could be guaranteed within these hours. In this
way, advance maintenance or a specific port maintenance plan could be made according to
the health allowance.

For a high-reliability ship mechanical system, equipment self-healing and switching
would greatly affect the life of the system. The integration method proposed in this paper
can dynamically extract SHI according to the changes of data features and describe the
health condition of the system more accurately. At the same time, the prediction process
realizes adaptive prediction by decomposing SHI and using a hybrid prediction method,
and the prediction result is closer to the real system health condition.

5. Conclusions

This paper proposed a system-level health condition prediction model for ship me-
chanical systems. The model was mainly composed of two parts, one was the construction
of a dynamic SHI, and the other was the realization of hybrid prediction. To accurately
describe the health condition of the system, a more-general, indirect SHI adaptive extrac-
tion strategy was employed. Combined with the analysis of system degradation trends
and functional correlation, the fused SHI could better retain local features and express the
degradation trend more accurately. For a system degradation process including global
degradation, local regeneration, and local interference, a single prediction method could
not adapt to all conditions. Therefore, hybrid prediction was applied by decomposing
the SHI according to the degradation characteristics. The effectiveness of the model was
justified through case studies involving a FOSS. Through the analysis of the prediction
results, the hybrid failure-prediction accuracy was higher, and the prediction results were
closer to the actual failure time of the system. Therefore, the proposed method could be
effectively used for system-level health condition prognosis. Meanwhile, when the system
had an obvious self-healing function, the importance of dynamic continuous prediction
was verified. The process was realized by updating new features to the training set. The
continuous prediction could better track the change of health values, and this methodology
was found effective in the real-world application.

Although the results presented in this work showed a promising prospect of the
proposed methodology in real applications, it will require further studies optimizing the
prognostics process to improve the RUL prediction accuracy. In addition, working modes
and transition stages between modes affected system failure. To more accurately predict
the health condition of the system, more research is needed.
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