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Featured Application: Efficient plasma nitriding of stainless steels at low temperature under op-
timized processing conditions by plasma-diagnosis.

Abstract: This paper is concerned with plasma diagnosis on a N2-H2 gas mixture to determine the
optimum parameters for the nitriding process. Plasma parameters such as pressure, RF-voltage,
and DC-bias were varied for optimization. The active species such as N+

2 and NH were identified
in plasma diagnosis. In the N2-H2 gas mixture, hydrogen imposed a great influence on plasma
generation. The small addition of a hydrogen molecule into the gas mixture resulted in the highest
yield of N+

2 ions and NH radicals; the optimum hydrogen content was 20% in the mixture. The
austenitic stainless-steel type AISI304 was nitrided at 673 K and 623 K to experimentally demonstrate
that hydrogen gas content optimization is necessary to improve the surface hardness and to describe
low temperature nitriding under high nitrogen flux at the surface.

Keywords: plasma diagnosis; nitrogen-hydrogen gas mixture; hydrogen gas content; AISI304 stain-
less steels; surface hardness; nitrogen supersaturation; inner nitriding behavior

1. Introduction

Low temperature plasma nitriding has been widely studied and applied to stainless
steels since it was first reported in [1]. As summarized in [2–4], various results have been
reported in the literature on the plasma nitriding of AISI420 type stainless steels (SS) [5,6],
AISI304 type SS [7,8] and AISI316 type SS [9,10]. This nitriding process forms the nitrogen
supersaturated thick layer without nitride precipitates related to these stainless steels.
After [4], the nitrogen supersaturated layer, with an average nitrogen content of 4.5 mass %,
was formed to have a thickness of 50 µm by nitriding at 673 K for 14.4 ks. The yield of
this thick nitrided layer with high nitrogen solute content was strongly dependent on
the plasma processing conditions. However, a few papers have been concerned with the
nitrogen–hydrogen plasma diagnosis to describe the nitrogen supersaturation process in
low temperature plasma nitriding [4,11,12].

There are many plasma diagnosis tools to characterize the plasma nitriding state;
e.g., electrostatic probe, optical emission spectroscopy (OES), laser-induced fluorescence
(LIF), and absorption spectroscopy after [13]. Among them, OES is suitable for the diagnosis
to measure the population of a species and describe various reaction processes in the plasma
nitriding or surface activation process [14]. The active species such as N2, N2

+, NH radical
and H were detected to investigate the plasma state in nitriding [15]. In particular, those
species are more activated when using a hollow cathode device, as reported in [16,17]. On
the other hand, the ion and radical nitriding processes utilized the N2 + H2 gas flow rate
ratio by one to three in a similar manner to use the ammonia gas (NH3) as a nitrogen and
hydrogen resource [18].
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In the present study, the RF (Radiofrequency)-DC (Direct Current) plasma nitriding
system is utilized to investigate the effect of the hydrogen-to-nitrogen molar ratio to the
activated species in plasmas. First, OES is employed to perform a plasma diagnosis on the
effect of plasma processing parameters onto plasma activation, with and without the use of
the hollow cathode device. Secondly, the hydrogen-to-nitrogen molar ratio is controlled to
describe the variation in NH-radical intensity in OES. The AISI304 stainless steel specimen
is nitrided at 673 K for 14.4 ks to demonstrate that the highest surface hardness is obtained
under the optimum hydrogen-to-nitrogen molar ratio. Finally, the AISI304 specimen is
nitrided at 623 K for 14.4 ks with the use of a hollow cathode to prove that this optimization
is necessary to perform effective nitriding of stainless steels at lower holding temperatures.

2. Experimental Procedure

A RF-DC plasma nitriding system (YS-Electrics, Co., Ltd.; Yamanashi, Japan) is used
and its processing functions are described. The plasma nitriding procedure is explained in
detail. OES (Hamamatsu Photonics, Co., Ltd.; Shizuoka, Japan) is instrumented to measure
the emissive light spectra from the plasmas. Materials characterization is also used to
analyze the nitrided AISI304 specimen.

2.1. RF-DC Plasma Nitriding System

Figure 1 illustrates the plasma nitriding system with instrumentation of OES. This
system consists of a stainless-steel chamber with a diameter of 500 mm and a height of
500 mm, mass flow control (MFC), dipole electrodes for ignition of RF-plasmas, a vacuum
pump and a DC bias plate. Unlike conventional DC- or RF- plasma generators, there is
no mechanical matching box. The input and output powers are automatically matched by
frequency self-adjustment around 2 MHz. The plasma discharging is ignited by the dipole
electrodes for RF-generation and by the DC bias for DC-application.
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Figure 1. RF-DC plasma nitriding system with instrumentation of OES for monitoring the emissive
light spectra from N2 + H2 plasmas.

In the nitriding experiments, the chamber was evacuated down to the base pressure of
0.1 Pa and the gas mixture was introduced inside the chamber. The flow ratio was adjusted
by MFC. The hydrogen gas flow rate ratio in the mixture varied from 5% to 50%. The
pressure (P) varied from 30 to 80 Pa. The RF-voltage (VRF) varied from 100 to 250 V. The
DC bias (VDC) varied from −300 to −500 V. The nitrogen and hydrogen gases were mixed
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for generating the plasma for nitriding. In the screening studies before this experiment, the
plasma parameter was selected to be 35 Pa for pressure, −600 V for DC-bias, and 250 V
for RF-voltage, respectively. In the nitriding experiments of AISI304 stainless steels, the
holding temperature varied between 673 K and 623 K and the duration time was constant
by 14.4 ks. The optimized hydrogen flow rate was employed in both nitriding experiments.

2.2. Plasma Diagnosis by OES

The active species in plasma was analyzed by OES. The optical detector was mounted
onto a silica glass window in the plasma nitriding system. The signal was captured by
an optical sensor and transferred to the personal computer. Two types of measurements
were performed for wide scanning from 190 nm to 850 nm by the resolution of 1 nm, and
for narrow scanning from 320 to 340 nm with the resolution of 0.1 nm. The spectrum
was analyzed with the use of an NIST data base and reference data to identify each peak
in the measured spectrum. Among those references, the experimental data by [14] was
utilized. Table 1 lists the typical analyzed spectrum data for N2 + H2 plasmas. After rational
deconvolution of the measured spectra, each species is identified at the specified position
with significant intensity.

Table 1. Reference data for generated species by N2 + H2 plasmas.

Species Transition Array Peak Position (nm)

N2
* B3∏g → A3∑U 580.4 (v′ = 11, v′′ = 7)

775.3 (v′ = 2, v′′ = 0)

N2
* C3∏u–B3∏g 337.1 (v′ = 0, v′′ = 0)

380.5 (v′ = 0, v′′ = 2)

N+
2 B2Σ+

u − X2Σ+
g 391.4 (v′ = 0, v′′ = 0)

427.8 (v′ = 0, v′′ = 1)

H Balmer series 656.3 (Hα)

486.1 (Hβ)

NH Λ-sys a3∏-X3∑− 336.01 (v′ = 0, v′′ = 0)
Where N2* denotes for the activated nitrogen molecule.

2.3. Materials Characterization

In the nitriding experiments, SEM (Scanning Electron Microscopy; JSM-6060KU; JEOL
Co., Ltd., Tokyo, Japan) with EDX (Electron Dispersive X-ray spectroscopy) was utilized
to describe the cross-sectional microscopy and nitrogen mapping of nitrided AISI304
stainless steel specimens. EBSD (Electron Back-Scattering Diagram; JOEL, Tokyo, Japan)
was also employed to analyze the inverse pole figure (IPF), the kernel angle misorientation
(KAM) and the phase mapping of the nitrided layer. The hardness was measured by the
micro-Vickers hardness tester (Mitsutoyo, Kawasaki, Japan).

3. Experimental Results and Discussion

N2 + H2 plasma diagnosis was performed by controlling the plasma processing
parameters (RF-voltage, DC-bias and N2 + H2 gas pressure) to describe their effects on
the mother nitrogen molecule ion or N+

2 . OES measurement was adjusted to accurately
measure the NH-radicals by diagnosis. The hydrogen content was controlled to describe
the effect of hydrogen-to-nitrogen molar ratio on the intensity of NH-radicals. AISI304
stainless steel substrates were plasma nitrided, respectively, at 673 K and 623 K for 14.4 ks
to demonstrate that optimization of the hydrogen-to-nitrogen molar ratio was needed to
ensure nitrogen supersaturation with sufficient nitrogen content and to harden the stainless
steels, even at a low holding temperature.
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3.1. Plasma Diagnosis on N2 + H2 Plasmas by OES

The plasma diagnosis under the various RF-voltages, DC-biases, and pressures was
made with and without the hollow cathode setup. The measured spectrum of N2-H2
plasmas is shown in Figure 2. This spectrum was analyzed with the use of the reference in
Table 1.
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The highest intensity peak was detected at Λ = 391.4 nm for N+
2 ions. The other

species ware also detected at Λ = 580.4 nm for neutral N2 molecule, and at Λ = 336.0 nm
for NH radicals, respectively. This identification of NH-radicals is discussed later. In the
above spectrum, N+

2 is a mother species used to generate other nitrogen ions. This mother
ion is yielded by the ionization reaction sequence by collisions between electrons and N2
molecules. Following the study in [14], when a single electron collides with N2 molecules,
the kinetic energy of the electron ionizes the molecule at the specified energy level by
releasing two electrons. The reaction can be written as follows:

e + N2(A3 ∑+

u )→ N+
2 + e + e (1)

e + N2(a′∑−
u )→ N+

2 + e + e (2)

e + N2

(
B3Πg

)
→ N+

2 + e + e (3)

In this cascading reaction between electrons and neutral nitrogen molecules, the N+
2

yield becomes the highest among various species in the N2 + H2 plasmas.

3.2. Effect of Plasma-Processing Parameters on the Active Species

RF-voltage, DC-bias and pressure work as the main plasma processing parameters
to determine the population of generated species. In addition, when using the hollow
cathode setup, the N2 + H2 plasma is intensively generated and confined into the hollow.
This hollow cathode setup influences the activation process in the plasmas. The measured
intensity of N+

2 is employed as a parameter to describe this effect of processing parameters
on the activation.

Figure 3 depicts the variation in N+
2 peak intensity with the increasing pressure

in the plasma diagnosis, with and without the use of the hollow cathode device. As
predicted from [14,15], the ionization reaction presented in Equations (1)–(3) reduces
with the increasing pressure of the N2 + H2 gas mixture. The yield of N+

2 decreases
monotonously with the increasing pressure. In the high-pressure range, the reaction cross-
section for collision between the neutral nitrogen molecules and electrons reduces and
results in less ionization. In addition, the mean free path becomes small enough to restrict
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electron movement. When using the hollow cathode setup, this monotonous decrease
in the yield of N+

2 retards by itself. As had been discussed in [16,17], this is because the
generated electrons by Equations (1)–(3) are confined in the hollow.
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DC bias voltage was varied from −300 V to −600 V to investigate the enhancement
of ionization with increasing the DC-bias. As depicted in Figure 4, the ionization process
is enhanced by increasing VDC. The RF-voltage was also varied from +100 V to +250 V
to describe the enhancement of ionization with increasing the RF-voltage. As shown
in Figure 5, the N+

2 peak intensity linearly increases with the applied RF-voltage with
and without the hollow cathode. This is because the ionization reaction cross-section in
Equations (1)–(3) is proportional to the RF-voltage. Hence, higher DC-bias and RF-voltage
is a necessary condition in this RF-DC plasma, nitriding at a low holding temperature.
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3.3. Effect of Hydrgen Gas on the Detected Species

In addition to the nitrogen ionization from a mother species of N+
2 , the NH-radical

plays an important role in plasma nitriding, as suggested in [15]. OES with wide and
narrow scanning measurements was utilized to analyze the measured spectrum at the
vicinity of Λ = 335 nm.

The measured spectrum at Λ = 335 nm was deconvoluted to two peak profiles at
Λ = 334 nm and Λ = 336 nm, respectively, as shown in Figure 6. After Table 1, the former
corresponds to the activated nitrogen molecule, and the latter is identified as a NH-radical.
A very tiny disagreement is noticed between the measured spectrum and the superposed
profile of the two peaks; this detection of NH-radicals has sufficient reliability for usage in
parametric study in the following.
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3.4. Effect of Hydrogen Gas Content on the NH Radicals

In the plasma nitriding with the use of N2 + H2 mixture gas, both N+
2 ions and NH-

radical work to supply the nitrogen atom flux onto the substrate surface for nitriding.
Considering that only N+

2 works as a mother ion to drive the nitrogen flux when using
the N2 gas, the effect of hydrogen gas content on nitriding is parametrically described
by the ratio (RNH) of the NH-radical peak intensity at Λ = 336.1 nm to the N+

2 -ion peak
intensity at Λ = 394 nm in the plasma diagnosis experiment. As shown in Figure 7, this
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ratio increases with the increase in hydrogen gas content and maximizes at [H2] = 20
to 25%. For [H2] > 25%, this ratio monotonously decreases with [H2]. In the regime for
0 < [H2] < 25%, the N2 + H2 plasma is enriched with N+

2 -ion and NH-radicals enough to
drive a sufficient nitrogen atom flux onto the substrate. On the other hand, it is poor in the
population of NH-radical for [H2] > 25%. At the same time, the depletion of N2 yields less
N+

2 ions since more H2 molecules participate in the N2-H2 gas plasma mixture.
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Since two hydrogen atoms recombine to H2, these reactions advance by themselves to
quench the activation of nitrogen molecules and to reduce a yield of nitrogen atoms.

In the regime with less hydrogen molecule content, the above reactions become inferior
to the following reaction between the enriched N+

2 and H2 and between H+
2 and N2;

N+
2 + H2 → N2H+ + H (6)

H+
2 + N2 → N2H+ + H (7)

This transient ion of N2H+ further reacts by its collision with electrons in the following,

N2H+ + e→ NH + H N2H+ + e→ N2 + H (8)

As suggested by [20,21], the reaction cross-section for N + N→ N2 is thought to be
less than that for N + H→ NH. These hydrogen atoms have the potential to react with
nitrogen atoms from activated nitrogen molecules to yield NH-radicals.

3.5. Low Temperature Plasma Nitriding of AISI304 Stainless Steels

Two plasma nitriding experiments were performed to investigate the hydrogen gas
content effect on the nitriding process with the use of the hollow cathode. AISI304 stainless
steel disc specimen with a diameter of 20 mm and a thickness of 5 mm was employed as a
work. In the first experiment, the hydrogen gas content was only varied to be 10%, 25% and
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50%. The other plasma parameter was fixed in the pressure of 35 Pa, the DC of −600 V, and
the RF-voltage of +250 V. AISI304 specimen was nitrided at 673 K for 14.4 ks. The surface
hardness was measured by micro-Vickers testing with an applied load of 1 N (or 100 gf).
Table 2 lists the measured surface hardness at each condition. The highest surface hardness
is attained when [H2] = 25%. This proves that plasma diagnosis on the N2 + H2 plasmas
is effective in determining the optimum nitriding conditions, and to make full use of NH
radicals, as well as nitrogen ions.

Table 2. The hydrogen gas content effect on the surface hardness of nitrided AISI304 disc specimen
at 673 K for 14.4 ks.

H2 Percentage (%) Hardness (HV)

No treatment 370
10 760
25 1100
50 680

In the second experiment, AISI304 specimen was nitrided at 623 K under the RF-
voltage of +250 V, the DC-bias of −500 V, the pressure of 70 Pa and the gas flow rate ratio
of 30 mL/min for hydrogen gas to 160 mL/min for nitrogen gas. Very few studies have
reported DC-nitriding (or ion-nitriding) and the pulsed-DC-nitriding (or radical-nitriding)
at 623 K; the nitrided layer thickness was limited to be negligibly thin [22,23]. Since the
nitrogen diffusion governed those inner nitriding processes, a higher holding temperature
was necessary to drive the nitriding process into the depth of the substrate. This plasma
nitriding at 623 K provides a chance to reconsider the inner nitriding mechanism under the
high nitrogen atom flux through the optimization of plasma conditions.

Figure 8 depicts the SEM image on the cross-section of the nitrided AISI304 substrate
and its nitrogen mapping. The nitrided layer advanced to a depth of 50 µm, even at 623 K
for 14.4 ks. Large grains were seen below the nitriding front end, while no grain boundaries
were detected above this front. This suggests that the nitrided layer at 623 K has too fine
grains distinguished by SEM with low magnification. This grain refinement process is
discussed in later.
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After [4,8,24], this nitrided layer thickness is slightly proportional to the holding
temperature (TH) for 623 K < TH < 693 K, while very few thicknesses were noticed in the
normal nitriding at this low temperature [22,23]. In addition, this low temperature nitriding
process is characterized by high nitrogen content, as depicted in Figure 8b. No iron and
chromium nitrides precipitate in the nitrided layer so that nitrogen atoms are present as
an interstitial solute in the iron lattice with high concentration. After pointwise detection
by EDX in depth (d), the nitrogen content [N] at the surface reaches to [N] = 7.4 mass %
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or 23.3 at %, while [N] = 4.5 mass % on average for 5 µm < d < 45 µm. Since the nitrogen
solutes supersaturate the iron cells in the nitrided AISI304 stainless steels, the hardness is
much higher than the original hardness of raw AISI304 (400 HV), due to the solid solution
hardening mechanism. In fact, the surface hardness reaches 1640 HV; the average hardness
is 1500 HV in the nitrided layer. These nitrogen and hardness depth profiles suggest that
the high nitrogen atom flux at the surface drives nitrogen supersaturation, together with
the nitrogen diffusion process, even at 623 K.

Let us describe this nitrogen supersaturation and diffusion co-process by EBSD analy-
sis on the cross-section of a nitrided AISI304 substrate at 623 K for 14.4 ks. Figure 9a depicts
the IPF mapping of depth. As seen in this map of the fur depth with d > 70 µm, the original
AISI304 grains with a size of 40 to 50 µm, are divided into several colored and color-grated
zones. In particular, each original AISI304 grain is changed to stripe-colored zones in
30 < d < 70 µm. On the other hand, the original granular microstructure in d < 30 µm is
completely changed to have a very fine grain structure, with a size less than 0.1 µm or the
resolution limit of EBSD after nitriding at 623 K.
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Figure 9. EBSD analysis on the microstructure at the cross-section of the nitrided AISI304 stainless
steel substrate at 623 K for 14.4 ks after polishing and cleansing. (a) IPF profile, (b) KAM distribution,
and (c) phase mapping.

Figure 9b,c show KAM distribution and phase mapping, respectively. The refined
zone in d < 30 µm in Figure 9a has the highest misorientation angle and a fine two-phase
structure. This KAM in Figure 9b denotes the plastic strain distribution. The transformation
from γ-phase to α-phase in Figure 9c is induced by plastic straining under the nitrogen
supersaturated state. Hence, the grain size of the original AISI304 is refined by high plastic
straining everywhere in d < 30 µm, so that a huge amount of grain boundaries is generated
together with the γ/α- and α/γ-zone boundaries. This refined layer is just equal to the
high hardness layer with a high nitrogen content.
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As stated in [4,25–27], the plastic strain in the above is induced by the strain incompat-
ibility between the expanded lattices by nitrogen supersaturation and the original lattices
without nitrogen interstitials. Those strain-incompatible zone boundaries form new fine
grain and zone boundaries in the layer with d < 30 µm. Those new boundaries work as
a network of nitrogen solute diffusion paths. The high intensity nitrogen atom flux at
the surface penetrates through this network into the depth of substrate, together with
nitrogen supersaturation.

In the conventional inner nitriding, the high hardness layer was simply coincidental
to the high nitrogen content layer. In this nitriding at 623 K, driven by a high intensity
nitrogen atom flux at the surface, the nitrogen supersaturation takes place homogeneously
with nitrogen diffusion through the network and forms a grain-refined layer with high
hardness. Once this nitrogen supersaturation localizes at d > 30 µm in Figure 9, the nitrogen
diffuses to the depth only through the limited network. Due to this localized nitrogen
diffusion, the homogeneous nitriding process terminates intermediately and induces the
abrupt change in IPF, KAM and phase maps at d = 30 µm. Hardness gradually decreases
in d > 30 µm, since the nitrogen supersaturation advances even by this localized nitrogen
diffusion. This reflects the partial microstructure changes in the IPF profile, the locally high
plastic strains in Figure 9b, and the localized phase transformation in Figure 9c.

As discussed in [26,27], this intermediate change from a homogeneous to heteroge-
neous nitriding process is eliminated by using fine-grained stainless-steel substrates. This
suggests that the low temperature plasma nitriding by high nitrogen atom flux at the
surface is essentially characterized by homogeneous inner nitriding, where the nitrogen su-
persaturation co-works with the nitrogen diffusion to drive the microstructure refinement,
the plastic straining and phase transformation.

4. Conclusions

Plasma diagnosis with the use of OES is utilized to describe the effect of RF-DC plasma
processing parameters and hydrogen gas content on the yield of N+

2 ions and NH radicals.
In particular, the yield ratio of NH-radicals to N+

2 ions is employed as a parameter to
investigate the effect of hydrogen gas content on the nitriding process. This ratio maximizes
at a hydrogen content of 20 to 25%. When the hydrogen content is less than 20%, the
reaction cross-section to yield the NH-radical increases with the hydrogen content, while
this reaction cross-section significantly decreases with the increase in hydrogen content
by the quenching effect. In particular, the yield of NH-radicals and N-ions significantly
reduces with the increase in hydrogen content of up to 50% and results in low hardness.
This optimization of hydrogen content in the nitriding process is demonstrated by the
actual nitriding of AISI304 stainless steels at 673 K for 14.4 ks. The highest surface hardness
is attained at this optimum hydrogen content. This proves that a sufficient amount of
nitrogen atom flux at the substrate surface drives the inner nitriding process. This enriched
nitrogen atom flux from the substrate surface drives the nitrogen supersaturation and
diffusion co-process. Even at 623 K, when conventional nitriding only forms a very thin
nitrided layer due to slow nitrogen diffusion, the AISI304 substrate can be nitrided to
produce a thick nitrogen supersaturated layer with high hardness by the present plasma
processing. The nitrogen supersaturation and diffusion co-process terminates by itself
when the nitrogen diffusion network in the granular microstructure of AISI304 becomes
too sparse to sustain the co-process.

In conventional plasma nitriding industries, the holding temperature is a main pro-
cessing parameter since the inner nitriding process strongly depends on the nitrogen
body-diffusion. In the presence of a rich nitrogen atom flux from the substrate surface to
the depth, the inner nitriding takes place even at a much lower holding temperature. Since
the nitrogen supersaturation and diffusion co-process is sustained by self-formation of
the nitrogen diffusion network, the holding temperature can be lowered to broaden the
application of plasma nitriding. In particular, the stainless-steel wires and tools for medical
applications requires their hardening and strengthening without any additional alloying
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metallic elements. The present low temperature plasma nitriding provides a solution
by high hardening and strengthening them only with the enrichment of nitrogen solute
contents in their depth.
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