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Abstract: Surface quality measures such as roughness, and especially its uncertain character, affect
most magnetic non-destructive testing methods and limits their performance in terms of an achievable
signal-to-noise ratio and reliability. This paper is primarily focused on an experimental study
targeting nuclear reactor materials manufactured from the milling process with various machining
parameters to produce varying surface quality conditions to mimic the varying material surface
qualities of in-field conditions. From energising a local area electromagnetically, a receiver coil is
used to obtain the emitted Barkhausen noise, from which the condition of the material surface can
be inspected. Investigations were carried out with the support of machine-learning algorithms,
such as Neural Networks (NN) and Classification and Regression Trees (CART), to identify the
differences in surface quality. Another challenge often faced is undertaking an analysis with limited
experimental data. Other non-destructive methods such as Magnetic Adaptive Testing (MAT) were
used to provide data imputation for missing data using other intelligent algorithms. For data
reinforcement, data augmentation was used. With more data the problem of ‘the curse of data
dimensionality’ is addressed. It demonstrated how both data imputation and augmentation can
improve measurement datasets.

Keywords: electro-magnetic; Barkhausen Noise; MAT; surface quality; imputation; augmentation;
CART; Neural Networks

1. Introduction

Magnetisation processes are closely related to microstructures, such as domain walls
in crystalline solids where domain walls pinning can provide the detection of defects [1,2].
Therefore, magnetic measurements can be successfully applied for the characterization of
structural changes in ferromagnetic materials. Due to its non-invasive approach, magnetic
testing is used to carry out non-destructive testing, where measurements can be inferred
in terms of the detection and characterization of defects or structural degradation within
ferromagnetic materials. Such applications are very palatable to safety critical applications
where destructive testing, especially in-service, is not a viable option—for example, the
structural integrity of nuclear power systems such as reactor pressure vessels. An offshoot
of micromagnetic methods is that of Magnetic Barkhausen noise (MBN), and this technique
is central to the work presented here.

A Non-Destructive Evaluation provided by MBN has been found to be a useful tech-
nique for the examination of surface defects caused from manufacturing or microstructure
change, and the residual stresses often caused by manufacturing parameters [3–5]. The
principle behind MBN is when a continuously changing electromagnetic exciting field (H) is
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applied to a material and a response in the form of discontinuous changes in magnetisation
(M) occurs when the domain walls encounter pinning sites. Such pinning sites are in the
form of dislocations, precipitates in the matrix, grain boundaries, or small volumes of
second-phase materials. During the electromagnetic hysteresis cycle, such pinning sites
prevent the movement of the domain walls within the material, which is the premise behind
the Barkhausen noise phenomena [6].

Energising the local material area electromagnetically is carried out from both mag-
netising and sensing via a soft ferrous yoke and an exciting/pickup coil, respectively.
The yoke is in contact with the workpiece material under testing, therefore the magnetic
coupling is established. The surface quality, especially in service conditions of safety critical
structures, can vary from smooth to very rough. These differences impact the quality of the
magnetic coupling between the yoke and specimen surface, and, in severe cases, can influ-
ence the mechanism of excitation as well as the sensing to give totally misleading responses.
This is a well-known problem with magnetic sensing technologies [7]. To mitigate these
effects, the application of a spacer between the yoke and sample is used. This may reduce
the effects of surface quality, however the spacer substantially decreases and distorts the
measured signal and thus the measurement of basic magnetic parameters of the sample
material can be very difficult or even impossible.

Bearing the previous statements in mind, spacers are still applicable for magnetic
measurement of the relative structural differences found within ferromagnetic materials.
This is especially true if the measurement is carried out by analysing the measured signal
correlated to the material permeability as displayed in [8]. The Barkhausen noise is based
around a similar process of [8], albeit a local point space area is used for inspection as
opposed to the bulk material and a significantly larger area.

For safety critical components, it is important to characterise the presence of any
surface defects including cracks, manufacturing flaws, service-induced cracking, or sus-
pected degradation as these defects can initiate and grow during service and may cause
catastrophic failure by fracture. Hence, most of the structural integrity assessment method-
ologies tend to be highly conservative. By accurately predicting the surface quality, it is
possible to obtain more reliable NDT measurements, since this creates an opportunity to
feed back this information to the signal evaluation and to mitigate this side effect as well.
By manufacturing different surface roughness profiles on the samples, it is possible to study
the effects on the magnetic response where error sources are simulated, thereby bridging
the gap to in-field conditions.

Another relevant issue that the application of machine-learning (ML) faces with NDT
measurements is the lack of sufficient data that can be used for the training of the algorithm.
This is why the next two subsections address methods for increasing the dataset through
machine learning methods to ultimately increase data reinforcement. With the data space
being highly non-linear in nature, ML methods are also used to provide outputs based on
the obtained input NDT data. A comparison is made between these ML methods in what
is termed as good artificial data reinforcement and what is not.

The work proposed in this paper will therefore tackle a number of different engineering
problems, namely the encountered inspection field conditions of RPV steels, the lack of data
experienced in most measurement campaigns, and the associated curse of dimensionality.
For this scoping study, the verification was made from visual representations to show
changes/improvements, as well as metrics to display accuracy and precision differences.

1.1. Addressing Small Data Sets for Analysis Using Machine Learning

A relevant facet of obtaining sensor information is the amount of data recorded.
In most cases, the data is not sufficient for statistical approaches like machine learning
techniques to find general trend patterns as opposed to simple data fitting. Jakobsen et al.
discussed that this must be done in an intelligent fashion, otherwise unwanted data bias
may be found [9]. One way to tackle the small datasets is from applying imputation to
increase the data [10].
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Another area that is investigated in this work is data imputation, i.e., dealing with an in-
complete dataset. Additionally, data augmentation is increasing limited datasets in a coher-
ent and meaningful manner by addressing the problem of ‘the curse of dimensionality’ [11].
To date, there is very little work in terms of data augmentation applied to ‘the curse of
dimensionality’, however one of the nearest works [11] looks at data augmentation that
was used to artificially inflate images when applied to low datasets. By using the method
of data augmentation, the results showed an increase of 13.82% in classification accuracy.

When the data size is increased in terms of dimensionality and such data is applied
to machine learning algorithms, the accuracy of classification can be reduced due to the
increased capacity to correlate data boundaries. For these reasons, there is a need to provide
imputation through intelligent means to replace missing data by considering all the data
correlations and not just by providing a value that is in between a set of data values. As
mentioned in the last paragraph, data augmentation can be applied to small datasets
where a complex problem arises due to there not being enough information in terms of
providing generic classification. Data augmentation through the use of standard deviation
of mean data can be used to provide new data, allowing a study around how much data
improves classifications as well as what types of augmented values. With improvements
in augmentation and imputation, it is possible to produce more robust machine learning
models that can be used for the analysis of NDT systems.

Data augmentation is different from imputation. The former provides robustness
around clusters of data and can take advantage of basic algorithms using standard deviation
from mean data sets; however, in the latter case, imputation requires a more complex
mapping where multiple correlations are required to ensure the best fit of missing data. The
work provided here will look at both the imputation of data where other sensors are used to
provide Barkhausen noise missing data, and data augmentation to improve classification for
increased data dimensionality (RMS Barkhausen noise and extended measured parameters).
The next subsections look to introduce data imputation and augmentation.

1.2. Data Imputation and Augmentation for Low Data Sets
1.2.1. Exploratory Data Analysis

The first step is to look at the provided data and perform an Exploratory Data Analysis
(EDA). This means examining the data to detect any missing values, to determine a relation-
ship between the variables, and to take account of the data statistics such as mean, median,
mode, and standard deviation [12]. There are two ways to perform EDA, graphically
and non-graphically.

Since the dataset is new, the user may not have any idea about the underlying relations
or even the patterns in the data. As the exploration is performed, some ideas may lead to
interesting insights and some ideas may just be a ‘dead end’. There are generally two types
of questions about the data, the type of variation that exists and the type of correlation
that exists [13].

Graphical data analysis is best done in the form of bar charts for categorical data and
histograms for numerical data [14], which is often easier to visualise than having a large
array of numbers. Non-graphical data analysis is done by looking at the data statistics
that include the central tendency—such as the mean, median, and mode, the spread of
the data by looking at the standard deviation, and the shape of the distribution [15]. EDA
also allows for the examination of the presence of outliers, which also shows the quality of
the data.

Univariate analysis involves the analysis of a single feature. This analysis includes
histograms, count-plots, boxplots, and violin-plots, and are known as summary plots since
they show the frequency distribution of the data. 2D scatterplots and line-plots can also be
used for univariate analysis by plotting the feature on the y-axis and their corresponding
index numbers on the x-axis [16]. One very useful feature is the option of colour coding the
data by groups in order to see the spread of each category.
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Bivariate analysis involves the analysis of two variables (X, Y) and is the best way to
determine the relationship between two variables. 2D scatterplots and line-plots can be
used by assigning both the X and Y axis as variables and the data points can be grouped
by labels. Pair-plots can be very useful to observe the correlation between more than two
features. The study in [17] displays a pair-plot for visualising the Iris-Dataset, where a
number of 2D plots are provided in a matrix format displaying comparisons of different
data variable comparisons, albeit sequentially, and each plot’s comparing two variables to
show the fitness of correlation between the two. Along the diagonal plots are histograms
of the feature in their corresponding rows. This is a very powerful technique for visually
displaying data correlations.

Variables can have a positive or a negative correlation. In a positive correlation, both
the variables move in the same direction. An increase in X will also show an increase in Y.
For a negative correlation, an increase in X results in a decrease in Y and vice versa. The
closer the points are to the line of fit, the stronger to the correlation. However, if the line
of fit is completely vertical or horizontal or there is no line of best fit, then there is no
correlation between the features [18].

A similar way of showing correlations is with an Attribute Correlation Heat-Map.
Among other methods, such as Kendall Tau and Spearman Rank, this method uses a
Pearson correlation coefficient by default to calculate the linear correlation between two
variables [19]. The resultant values range from −1 to +1, with +1 showing the strongest
positive correlation. These results are presented as a matrix that can be plotted as a heat-map
to clearly visualise the strength of the correlations [20].

1.2.2. Regression Models

Several different methods of imputation were tried; however, the method of choice for
predicting the missing values and creating more data are by using a regression analysis. This
is a predictive modelling technique that determines the relationship between the dependent
and independent variables for analysis or even making predictions [21]. The benefit of
using regression techniques is that, not only does it determine the correlation between the
variables, but it also determines the contribution of each variable on the relationship.

1.2.3. Decision Trees, Random Forest, and Extra Trees Regression

One of the regression and classification models being used is called Random Forest,
which is based on a bootstrap aggregation of decision trees. Decision trees work much like
humans in the sense that the algorithm asks questions about the existing data to see where
to classify the data or until it reaches a prediction, which is based on data regression [22].
A decision tree is a flow chart like structure where the interior nodes represent the features,
the branches are decision rules with questions that are answered in either True or False,
and the stopping criteria is realised based on the impurity of a split—for example, Gini or
Entropy. An example of such decision trees can be found in [23], which displays how the
rules are found from the root node to the interior and leaf nodes.

Random Forest fits multiple decision trees—hence the name Random Forest—on
subsamples of the data and averages the decision trees to avoid over-fitting and improve
the accuracy. The process of taking the mean of all the outputs is known as aggregation [24].
The benefit in using multiple decision trees comes from the ‘random’ attribute of the
Random Forest algorithm. Each node in the decision tree works on a random subset of
features and, as a result, each decision tree is individual.

The Extra Trees Algorithm is related to decision trees and the Random Forest Algorithm.
The Extra Trees Algorithm, unlike the Random Forest algorithm, which takes bootstrap
samples of the data, fits the algorithm’s overall data. Another difference is that it chooses
where to split the nodes at random, whereas Random Forest chooses the optimal split for
each node [25]. Splitting the nodes at random adds a random attribute to the Extra Trees,
but it does increase variance. To work around this, the number of trees is increased [26].
Classification and Regression Trees (CART) work in a similar manner and are used to
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provide a second classification technique when testing improvements in performance when
data augmentation is applied.

Another technique used to test classification of augmentation is the Neural Network
(NN). The NN used in this work is a multi-layered perceptron with a backpropagation
learning rule that is very similar to the work carried out [27]. Due to the nature of the
problem being non-linear, an input layer of 8 nodes is used to cover the 8 input values.
Three hidden layers at 16, 32, and 32 nodes, respectively, were used to segregate the
non-linear relationships, followed by a pure linear output layer of 6 nodes. This was to
cater to all the different output states.

Both techniques of CART and NNs are supervised in nature and used to investigate
the differences in learning with both increased dimensions and applied augmented data to
address such problems when presented with increased data dimensions.

This paper is divided into the following sections, the experimental setup for inves-
tigating the surface quality effects to Barkhausen noise, the Barkhausen noise applied to
different surface quality Charpy samples with the effects suppressed using non-magnetic
variable thickness spacers, data imputation and augmentation for low datasets, the results
section—followed by a discussion of results—and, finally, the conclusions.

2. Surface Quality and Barkhausen Noise Sensor Experiment Setup

The fabrication of seven Charpy samples (displayed in Figure 1) without notches and
with various manufacturing parameters (RPM, Feed rate, Lateral offset) was performed to
deliberately modify the surface roughness and also “simulate” machining in a controlled
area on irradiated samples that results in different surface conditions. The corresponding
measured standard surface roughness parameters (Ra, Rz, Rsm) are shown below and are
used as the calibration samples for the Non-Destructive Evaluation (see Table 1).
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Figure 1. Samples with varying surface roughness conditions used in this study. Specimen 28
(right sample) was obtained by electro-discharge machining (EDM).

Table 1. Material rotational speed and feed rates.

Sample No. 23 24 25 26 27 28

RPM [t/min] 1000 500 600 500 600

EDMFeed [mm/min] 75 1200 1700 2000 2500

Lateral offset [mm] 0.1 0.1 0.1 0.2 0.25

Average surface roughness (Ra) [µm] 0.13 0.49 0.33 0.73 0.61 3.65

Maximum peak to valley height of the profile (Rz) [µm] 0.83 2.33 1.59 3.9 3.3 19.56

Root mean square average of profile height
deviations (Rms) [µm] 77.6 129.1 244.3 382.2 195.3 127.3
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Charpy samples of gradually increasing roughness were prepared from ferromagnetic
steel in the shape of rectangular prisms (10× 10× 55 mm). Table 1 provides the information
of how such samples were produced using a combination of different rotational and thrust
forces (feed rates).

This not only gives different surface conditions, but it can also present different stresses
within the surface due to different machined parameters (instead of effective cutting,
a dragging effect can result) [8]. The machining of choice was face milling and the material
for the samples was embrittled by thermal processing [28]. The quality of the surfaces
for the samples corresponds to the machining process (milling) and grooves or even the
scratches provided by that process with the objective of using different rotational and feed
rates to obtain different surface roughness conditions. If one of those parameters, namely
the rotational speed, are not fixed at a constant speed then a by-product of machining
will exist, such as machine-induced residual stress. The final sample (sample 28) was
produced from direct Electro-Discharge Machining, which resulted in the highest surface
roughness value.

The ferrous yokes were attached to the surface of the samples either directly or over a
thin spacer. It was found that the unwanted influence of the rough surface can be reduced
by using a nonmagnetic spacer. The spacer can reduce or modify the feedback response,
which inherently can influence the measurement. In fact, they substantially reduce the
scatter of experimental points accompanied by a slight decrease of the overall degradation
functions sensitivity. Spacers, in particular if they are thick, are able to modify the shape of
the measured signals qualitatively and to bring about a considerable increase of sensitivity,
especially in the degradation functions computed from the signal derivatives [8]. At the
same time of mitigating against the surface quality, the received signal is reduced. This
reduction is proportional to the change in the thickness of the applied spacer.

Experimental Setup

Dimensions samples 10 × 10 × 55 mm3

Material 22NiMoCr37
Orientation L-T
Engraving one side
Measuring device Accretech Handysurf Tokyo Seimistsu E-35B
Cut-off value 0.8 mm
Evaluation length 4 mm
Measuring range automatic

Barkhausen Noise

From the generated MBN measurements, other parameters are calculated and provide
further discriminating quantities, which are used to further discriminate the material
conditions. The MBN is an RMS magneto-elastic parameter (mp) that is expressed as a
function of the magnetizing voltage, current, and frequency applied to the material under
testing. A time window of several bursts would indicate a general response. The RMS of
the MBN response signal is given by Equation (1):

RMS =

√
∑n

i=1 yi

n

2

(1)

where n is the total number of MBN signal bursts captured within a specified frequency
range and yi is the amplitude of the individual bursts.

Within the Rollscan 350 Analyser system [29] there are a number of parameters that
need to be set for the stimulated electromagnetic waveform. Such parameters are voltage
and frequency, as well as a high frequency pickup response filter. Taking advantage of
the skin effect equation (see Equation (2) for more information), the lower the frequency,
the greater the depth of penetration into the material. Both the magnetising voltage and
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frequency sweeps were undertaken to identify the optimum parameters based on the
displayed material response. A penetration depth between 0.01 mm and 1 mm is achieved
by using the frequency pickup filter of 70 kHz to 200 kHz. Using the Microscan software,
repeated measurements were then recorded for 5 s of duration [30]. As displayed in other
works, [31] describes the used Barkhausen parameters in greater detail. For replication,
2 V and 120 Hz were used as the exciting signal parameters for this surface quality study.
This selection was based on previous tests investigating the detection of radiation-induced
embrittlement, as well as being in good agreement with the frequency and voltage sweeps
of the tested materials.

δ =
1√

π f µσ
(2)

where δ is the skin depth, f is the frequency in Hz, µ = permeability of sample, µ = µ0 × µr,
µ0 is the permeability of free space at 4π × 10−7 H/m, µr = relative permeability, and σ is
the conductivity in S/m.

The system being investigated is a commercial off-the-shelf-based system provided
by [29] as being certified for repeatable use. The tests undertaken are similar to the
tests carried out in [28], where the same sample set is being used to perform robust
comparative studies. The output goal of this work was to be able to differentiate different
surface qualities based on the detected electromagnetic response waveform. To address
the uncertainty of measurements and, specifically, the conditions encountered in service,
it was observed that the surface quality of the material has a considerable influence on
the extracted sensor response. Therefore, to mitigate against these effects, a design of
experiments should demonstrate the differences in sensor responses based on the material
surface quality (the same base material will remain constant throughout the tests).

3. RMS Barkhausen Noise and Extended Measured Parameters Applied to Different
Spacer Thickness

A series of BN measurements were carried out (1) without a spacer, i.e with direct
contact of the magnetizing yoke and sample surface, (2) by applying a 30 µm thick
nonmagnetic spacer, (3) by applying a 40 µm thick nonmagnetic spacer, (4) by applying a
70 µm thick nonmagnetic spacer, (5) by applying a 120 µm thick nonmagnetic spacer, and
(6) by applying a 220 µm thick nonmagnetic spacer between the magnetizing yoke and
sample surface.

The aim of the work is to investigate whether a correlation can be found between
surface roughness and magnetic behaviour, and further evaluate the role of a spacer to
reduce the effect of surface roughness by providing a uniform airgap. The evaluation was
made through direct experimental results and machine learning paradigms.

The following Figures 2–5 look at the varying RMS BN responses for the different mate-
rials with increasing surface roughness starting from material 23 to material 28 (see Table 1
and Figure 1 for more information). The four figures display top longitudinal and transver-
sal measurements and the bottom longitudinal and transversal measurements, respectively,
with both with or without spacers applied to the measurements.

Looking between the different machined parameters (different material IDs) without
the use of a spacer (space size: 0), there is no clear distinction in terms of the surface
roughness and BN response—except there is a lot of variation present from the returned
RMS BN responses. The assumption here is the variation obtained is based on the surface
roughness as the material has the same properties for each sample.



Appl. Sci. 2022, 12, 3721 8 of 23
Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 23 
 

 

Figure 2. BN signal response for top surface in transversal orientation: space test. 

 

Figure 3. BN signal response for top surface in longitudinal orientation. 

Figure 2. BN signal response for top surface in transversal orientation: space test.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 23 
 

 

Figure 2. BN signal response for top surface in transversal orientation: space test. 

 

Figure 3. BN signal response for top surface in longitudinal orientation. Figure 3. BN signal response for top surface in longitudinal orientation.



Appl. Sci. 2022, 12, 3721 9 of 23Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 23 
 

 

Figure 4. BN signal response for bottom surface in transversal orientation. 

 

Figure 5. BN signal response for bottom surface in longitudinal orientation. 

Looking between the different machined parameters (different material IDs) without 

the use of a spacer (space size: 0), there is no clear distinction in terms of the surface rough-

ness and BN response—except there is a lot of variation present from the returned RMS 

BN responses. The assumption here is the variation obtained is based on the surface 

roughness as the material has the same properties for each sample. 

Figure 4. BN signal response for bottom surface in transversal orientation.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 23 
 

 

Figure 4. BN signal response for bottom surface in transversal orientation. 

 

Figure 5. BN signal response for bottom surface in longitudinal orientation. 

Looking between the different machined parameters (different material IDs) without 

the use of a spacer (space size: 0), there is no clear distinction in terms of the surface rough-

ness and BN response—except there is a lot of variation present from the returned RMS 

BN responses. The assumption here is the variation obtained is based on the surface 

roughness as the material has the same properties for each sample. 

Figure 5. BN signal response for bottom surface in longitudinal orientation.



Appl. Sci. 2022, 12, 3721 10 of 23

Figures 2–5 show the test comparing no spacer (spacer size = 0 on the plots) and then
a 30 µm thick spacer with varying increments of up to 220 µm. These figures display the
effects of using different thicknesses of spacers to suppress the influence of the surface
roughness and reduce the variation to improve the overall results. At the point of 220 µm,
this could be considered as the limit for the BN electromagnetic process where the retrieved
response is tending towards the levels of background electromagnetic noise (where any BN
reading that is within 5 times of the background noise is ignored).

The useful role of nonmagnetic spacers for suppressing the effects of varying sur-
face qualities was demonstrated by viewing Figures 2–5. With different levels of surface
roughness allowed, a study can be conducted in terms of what are the influencing effects
when carrying out Barkhausen noise measurements and the associated decrease in surface
quality. This is particularly important when considering the actual in-service conditions,
given such differences in the surface quality or oxidation effects from a harsh environment.
A number of constants were adopted to understand these phenomena of interest, and,
in this case, the surface quality was considered to be most important. The material, the
machining process, and the Barkhausen parameters (frequency and voltage magnitude) all
remained the same throughout.

The experimental work displayed a good correlation between different surface rough-
ness conditions. Figures 6–8 display the extended parameters of BN and were used to in-
crease the data dimensionality to display such effects. These figures display their correlation
with the RMS Barkhausen noise signal, as well as provide data to test the effects of the in-
creased data dimensionality applied to the machine learning techniques. Figure 8 appeared
to give the best correlation of surface roughness where the measured signal response cor-
related with the measured surface roughness and sample 23 was considered an outlier
throughout with other effects influencing the BN response (this was the only sample to
receive a much higher RPM in manufacturing the surface quality). With sample 23 elimi-
nated, there are clear distinctions from sample 24 (second lowest BN and Ra) to sample 28
(highest BN and Ra). As an initial study, the experimental results can be concluded as
a success.
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The next section applies machine learning techniques, such as Neural Networks (NNs)
and Classification and Regression Trees (CART), to further reinforce these results.

In order to test both ML techniques, there is a need to increase the data dimensionality
where the extended parameters are as follows:

• Full width half maximum (FWHM) provides a full width at half the max of the filtered
burst signal.

• The peak average is the peak of the filtered burst signal over the defined number of
bursts, thereby giving a windowed average value.
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• The spectrum is calculated from the raw Barkhausen data. The block size is selected
so that it is to the power of two and less than the length of the data. The maximum
size is currently set as 215. The spectrum calculation is applied for each block so that
the blocks overlap by half. First, the Hamming window is seen in Equation (3).

yi =

[
0.5− 0.5 cos

(
2πi

n− 1

)][
0.5− 0.5 cos

(
2πi

n− 1

)]
yi (3)

is applied and then the spectrum is calculated as seen in Equation (4):

ps =
|FFT(X)|2

n2 (4)

where ps is the power spectrum and FFT is Fast Fourier Transform.
The sum of spectrums over the blocks is averaged and then scaled, as seen in Equation (5):

psi = 4
√

psi (5)

Then, the spectrum area is the integral of the spectrum data.
Figure 4 was identified as the best BN response in terms of the placed sensor direction

to distinguish the different surface material conditions, and, for these reasons, the extra
parameter study was carried out for this measurement (bottom surface, transversal sensor
orientation). Figure 4 is based around the transversal measurements from the bottom
side, and hence why Figures 6–8 are extra parameters obtained for the bottom surface
and transversal measurements and should give more distinguishing features that are all
correlated with the RMS BN response of Figure 4. These results provide an information
structure for discerning which signal responses relate to which material and associated
surface quality. The information correlated is in terms of the extra dimensions of the data.
This data is therefore considered useful for studying the effects of n-dimensionality on
data, and from increasing the data with augmentation to overcome such effects. Section 5
will explore these effects in terms of the two chosen machine learning techniques of NNs
and CART. First, Section 4 looks at data augmentation in the form of the imputation of
missing data provided from similar electromagnetic quantities, such as those given by the
MAT technique.

4. Machine Learning Applied to Imputation and Data Augmentation to Increase
Classification Accuracy
4.1. Methodology

The values for the surface roughness metrics were provided for samples 23 to 28. These
values are added to a constraint database after grouping the materials by MATERIAL_ID.
By adding these values to the database, it enables the observation of the effects of surface
roughness on all the magnetic measurements within the dataset. This approach also makes
use of other input variables for the samples that were not tested in order to increase the
sample size.

The data is then predicted in two segments. The first segment containing values
for Ra, Rz, and RSm, and the second segment containing the machining parameters. The
surface roughness parameters are predicted first since they have fewer Not a Number
representations (NaNs) compared to the machining parameters. NaNs are provided when
numerical data cannot be provided.

An EDA is performed before and after predicting the NaNs in order to observe the
correlations and how and if they have been changed after populating the data.
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4.2. Preliminary EDA

The heat-map of Figure 9 displays the correlations between the variable before the
NaNs are predicted. The reason there are blanks in the plot is because there isn’t enough
variation in the DBTT and USE columns to determine a correlation. The heat-map shows a
strong positive correlation between Ra and Rz with Ductile to Brittle Transition Temperature
(DBTT), Upper Shelf Energy (USE), and its standard deviations and negative correlations
with MAT_1, MAT_2, and the output values of the MAT method. Lateral Offset and Feed
shows strong negative correlations with MAT_1 and the correlation weakens with MAT_2.
(MAT_2 is the raw output value of MAT method, i.e., the value of the selected magnetic
descriptor. MAT_1 represents a degree of variation so it is normalized to a value that was
obtained from the reference sample).
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The initial pair-plot displaying the distribution plots are all skewed positively or nega-
tively. There is a clear positive linear correlation between MAT_1 and MAT_2. MAT_2 and
MBN_RMS have a correlation with Ra and Rz. Not only does the EDA display a strong data
correlation between both MAT and MBN, but both are also very much different methods
in principle, where the former provides current/permeability loops of the bulk sample
measurement and MBN and the Barkhausen response of the point space of the sample
measurement. This correlation of the two methods provides a strong value, especially
when imputing data. There does also seem to be a correlation between MBN_RMS and
Feed, but there is not enough data to visualise a correlation on a scatterplot.

Prediction Results

The heat-map of Figure 10 shows a correlation between the variables after prediction.
Ra and Rz show strong negative correlations with DBTT, MAT_1, and MAT_2 after predic-
tions. Ra and Rz also show positive correlations with USE. The correlations between RPM,
Feed, and Lateral Offset and MAT_1 and MAT_2 have been reduced by the variance of
the predicted data. In cases like RPM and MBN_RMS, the correlation has changed from
negative to positive.
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Pair-plots display very similar information to that displayed by Figures 9 and 10 where
correlations are apparent from pattern linearity. If, however, the visualised paired data
displays just data points with no linear patterns, then there is no correlation between those
specific data pair parameters. Pair-plots have not been shown as the data are very similar
to Figures 9 and 10 (same parameter variables for the x and y axis and, instead of a number
relating to a correlation metric, all the data points are displayed) and, with many subplots
nested in an overall plot, it is difficult to see the subplot information. As an observation of
the pair-plot results, the spread of the data have decreased as the data are concentrated to
add skew to the plots. In the scatterplots there are new groups of data, such as the USE and
RPM plot where there are additional vertical lines.

The full pair-plot displays the distribution plots, which are all skewed positively or
negatively. There is a clear positive linear correlation between MAT_1 and MAT_2, which
is more prominent than the initial preliminary pair plot. MAT_2 and MBN_RMS have a
correlation with Ra and Rz. Finally, there does seem to be a correlation between MBN_RMS
and the Feed rate.

From using such techniques, it is possible to ‘fill in’ missing values and increase
datasets in an intelligent fashion. With the correlations provided by either metrics or data
pair correlation patterns, it is possible to gain more confidence in terms of imputation of
missing data.

4.3. Machine Learning Applied to Surface Roughness Prediction

The machine learning techniques of Neural Networks [32] and CART [27] were used to
classify different levels of surface roughness based on multiple Barkhausen noise parame-
ters for different spacer sizes. Trice measurements conforming to the minimum repeatability
were carried out. Surface roughness has been used as a parameter output, however, the
material sample number associated to a known measured defect could have been used
also. Not only the classification of the surface roughness has been chosen as a test, but
also increasing the dimensionality to see the effects of diminished accuracy and to combat
against this, there is use of data augmentation for reinforcing learning paradigms that build
on the already empirically obtained sensor data.

4.3.1. Neural Networks, n-Dimensionality and Augmentation

The following results tabulated in Table 2 display a standard feedforward, back-
propagation NN that was tested with a base level amount of data and, from that base
level, through increasing the n-dimensions and then increasing the data with applied
data augmentation. From increasing these different levels of data, both the accuracy and
sum-squared errors (SSE) were used to display progress. The sum-squared error can be a
little misleading, therefore the distance measure where the sum of the difference between
the predicted value and the real value gave the distance error value (all summations relate
to the negative distance); this is more of an indication of accuracy and learning capability.
In addition, a scaling max-min algorithm was used to provide normalised scale data to
ensure that no one dimension was more biased than another and a fair comparison of tests
was carried out.

The Neural Networks used were four layer networks with two hidden layers. The
input layer was 6 neurons (number of neurons to mimic the input data), with the hidden
layers increasing to 36, 72, and 36 neurons respectively. The output number was based on
the number of output values/classes. These values were chosen to address all the different
pattern variations between the presented input data. All of the neuron transfer functions
for the first three layers used tan-sigmoid and for the final output layer pure-linear was
used. In terms of the neural network parameters, maximum epochs were set to 20,000,
learning rate set to 0.1 × 10−10, momentum set to 0.8, and finally, in terms of learning
rules, the resilient backpropagation along with the Kohonen weight learning function
was used for training the network. The input layers had been chosen to be more than
the amount of input variables due to the nature of the data, where there are different



Appl. Sci. 2022, 12, 3721 16 of 23

measurements made from using different layer technologies, which are included and
this needs to be considered when segregating the total pattern space. Also, by using a
trial-and-error approach, six neuron inputs for the associated hidden layers did not provide
useful results, whereas thirty-six neuron inputs gave a good account and trade-off against
further increases. Using this trial-and-error approach to display the performances, metrics
were obtained from testing the network with unseen data. Such results are used to display
data generalisation as opposed to data fitting.

Table 2. Neural Network results for normal data and different levels of dimensionality and augmentation.

Data Data Size
(Columns) SSE Distance

Error
Time to

Train

Unseen
Test Case
Accuracy

Iterations % Aug *
Increase

mp (Tx) 98 (2) 7.31 × 1016 −0.02633 0:04:48 20/20 20,000 0

mp (TXLx) 98 (3) 6.65 × 1015 −0.02454 0:04:46 19/20 20,000 0

mp (TxLx) & Param 98 (6) 4.24 × 1014 −0.77117 0:05:11 17/20 20,000 0

mp (TxLx) & Param & Augmented 108 (6) 6.09 × 1011 −0.33589 0:10:26 18/20 20,000 10

mp (TxLx) & Param & Augmented 118 (6) 1.00 × 1010 −0.28471 0:10:30 17/20 20,000 20

mp (TxLx) & Param & Augmented 158 (6) 1.10 × 109 −2.54116 0:12:10 13/20 20,000 60

mp (TxLx) & Param & Augmented 205 (6) 6.03 × 109 −5.31443 0:12:46 11/20 20,000 100

mp (TxLx) & Param & Augmented 158 (6) 2.80 × 1012 −2.32811 0:11:39 17/20 20,000 60 **

Key: * Aug = Augmentation; ** Other half of data; Tx: Transversal measurement; Lx: Longitudinal measurement.

As can be seen with Table 2, as the n-dimensionality increases, the level of accuracy
and SSE starts to decrease, so one can even conclude with correlated data inputs the increase
in dimensionality has an effect on accuracy and trend-based learning. To overcome this,
the use of data augmentation was used where data amounts were increased to give more
general capabilities to the machine learning techniques. Despite n-dimensionality affecting
the error distance measure, data augmentation starts to decrease the error distance measure,
albeit the SSE remains similar. This suggests data augmentation is a very useful tool for
providing more trend learning capabilities. That said, if too much of an increase is used,
this can also be detrimental to the learning process. With a 100% increase in augmentation,
the error distance measure is at its worst along with SSE, however, if the data amounts
are modest—such as a 10% or 20% increase—then improvements in the error distance
measure can be obtained. The SSE is less for larger amounts of data, and this is due to
the same network having more cases to consider and overfitting instead of learning. One
important aspect to note was the simplistic augmentation algorithm used to produce such
values, which was based on the mean and the standard deviation of the measurements.
Such a basic algorithm was chosen for this initial study to provide full transparency and
understand the effects of data variation. A test of 60% augmentation was made for the
first half of the data, and then the second half of the data. Interestingly, the second half of
the 60% augmentation performed much better than the first half of the 60% augmentation.
The difference being the second half of data augmentation at 60% had more data that varies
more dramatically than the first half of data augmentation at 60%, and therefore provided
a better learning coverage.

4.3.2. CART, n-Dimensionality and Augmentation

CART was used as a second machine learning technique to get a different perspective
of learning capabilities when compared with neural networks. Table 3 gives similar output
measures to Table 2 to be able to give a good comparison. That said, classification trees
were more suited for this type of data than NNs, as the ‘curse of data dimensionality’
has less of an affect when compared with NNs. The distance error measure, however,
increased as augmentation percent levels increased—also, the unseen test case accuracy
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started to decrease. As the results are somewhat similar to NNs, this second machine
learning technique further reinforces the findings of the increases in dimensionality and
augmentation in terms of accuracy and learning capability.

Table 3. CART results for normal data and different levels of dimensionality and augmentation.

Data Data Size
(Columns)

Distance
Error

Unseen Test
Cases

% Increase of
Augmentation

mp (Tx) 98 (2) 0 20/20 0

mp (TxLx) 98 (3) 0 20/20 0

mp (TxLx) & Param 98 (6) 0 20/20 0

mp (TxLx) & Param & Augmented 108 (6) 0 20/20 10

mp (TxLx) & Param & Augmented 118 (6) 0 20/20 20

mp (TxLx) & Param & Augmented 158 (6) −2 17/20 60

mp (TxLx) & Param & Augmented 205 (6) −2 17/20 100

mp (TxLx) & Param & Augmented ** 158 (6) −1.2 18/20 60 (other half)
Key: ** Other half of data; Tx: Transversal measurement; Lx: Longitudinal measurement.

The classification tree for the Transversal or Longitudinal sensor orientation BN (mp)
values promote much smaller trees due to the amount of information present. With extra
parameters provided by the focused Transversal BN values, the classification tree increases
and caters for more complex demarcation when differentiating more data with a higher
confidence of the phenomena under measurement. With augmentation of the data, the rules
and complexity increase, however the demarcation of boundaries within the measurement
are also increased. The augmentation forces X1 and X2 variables to segregate the different
surface quality outputs, where only X1 is used for sole transversal measurement data
information. Having extra parameters provides more data dimensions for segregating the
information of interest.

A divide-and-conquer approach was not necessary to classify any overlapping data
groups as the unforeseen combined data were also predicted with a 100% accuracy. From
these results, it can be concluded that surface roughness can be correlated to different
material samples, which could be used to add or subtract such effects from an overall
NDT model or assist in furthering the understanding of magnetic effects with magnetic
sensing technologies.

All of the ML metrics were considered to be connected where they all gave a similar
pattern to the learning capability. For instance, from Table 2 it can be seen that for a
single dimension of data the sum-squared error (SSE), see Equation (6), distance error, see
Equations (7) and (8), and the accuracy of the unseen test data all give the most favourable
results where SSE is the lowest, distance error is the lowest, and the unseen test data are at
the highest. Finally, the R2 statistical metric is used to provide a best fit for the unseen test
set of each test.

SSE =

n

∑
i=1

(Xi − X)
2 (6)

where Xi is the actual measured response state, X is the mean measured response, and n
the sample size.

The distance error was calculated from Equation (7), and the total distance error was
calculated from the following Equation (8):

Di = (TDi − TAi) (7)
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DT =
1
14

14

∑
i=1

(Di − D̂(−i)
i )

2
(8)

where TA = Actual Target, TD = Desired Target, DT = Total Distance Error, and Di = Distance
Error for Target i.

R2 = 1−

∑
i
(ai − pi)

2

∑
i

p2
i

 (9)

where ai is the actual measured wear state, pi the predicted wear state, and n the sample size.

5. Discussion of Results

This section discusses three sections, where the first looks at obtaining data from a
surface roughness suppression experimentation where different thickness spacer technolo-
gies are used to trade off between surface roughness issues and sufficient levels of the
signal-to-noise ratio. Secondly, there is work presented on data imputation where graphical
techniques display data dimensional correlations between different NDT measurement
techniques and provide confidence when imputing NaNs. Finally, the last section looks at
data augmentation applied to machine learning techniques to improve accuracy against
‘the curse of dimensionality’.

5.1. Barkhausen Noise and Extended Parameters Applied with Surface Roughness
Suppression Techniques

The work presented here looks at the effects of using different thicknesses of spacers
and how surface roughness can be mitigated to distinguish different material phenomena.
In addition, such technologies could play a role in better understanding the effects of elec-
tromagnetic measurements, as well as providing predictions to remove or add unwanted
material characteristic effects.

By using ML, it was possible to identify the surface roughness based on the magnetic
feedback signature when noting the different spacer thickness. Such a method could be
used to apply intelligent filters or be used to assist measurements where the trade off in
the signal-to-noise ratio is negligible when the thickness of a spacer is very thin. With
thicker spacers, it was more difficult to apply the machine learning techniques as the data
was less discernible. Such types of work are very important to address the uncertainty
of measurements, especially when faced with different levels of surface quality. Most
NDT methods suffer from various levels of uncertainty—by identifying some of these and
minimising the effects, the measurements become more consistent and repeatable. This is
very important when applying such technologies to the safety of critical structures such as
those seen in NPPs.

5.2. Graphical Techniques for Data Imputation Verification

It is often the case with NDT multiple sensor data applied areas that are difficult
to access, such as RPVs in NPPs, where the obtained data is very small in nature and
the dimensions (from the various applied techniques) can be very large. Here, impu-
tation of missing data have been used to address such gaps in an intelligent manner.
Section 4.2 displays some visual techniques, such as correlation heat-maps to show the in-
dividual data correlations of different sensor data before imputing values. The imputation
was only considered for the Barkhausen noise (mp) mean value and no extra parameter
or other NDTs. The extra sensor data obtained from NDTs along with other Barkhausen
noise data provided intelligent imputation. Decision trees were considered to be the best
technique for providing imputation values and were used to provide the results displayed
in Section 4.2.
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Finally, it was noticed that there is very little information on the imputation of sensor
data in the literature, whereas this is becoming more and more of an important area
when applied to NDT and continuous monitoring systems. There is, however, plenty
of work on imputation when applied to image analysis, especially for automated vision
for automobiles.

Both heat correlation and full pair-plots displayed strong data correlations, especially
when such techniques were applied to the imputed data compared with non-imputed data.
Such visual correlations give confidence to the applied techniques and, in short, validate
the replaced NaNs.

5.3. Data Augmentation Applied to Machine Learning Techniques to Increase Accuracy When
Faced with the ‘Curse of Dimensionality’

By using two different machine learning techniques, it was possible to see the effects
of data n-dimensionality increase as well as the effects with different levels of data aug-
mentation to impede the increase of data dimensionality. It was also found that the type of
produced data augmentation plays a role in learning, where larger varying cases are better
than smaller varying cases.

CART, however, did not suffer from the ‘curse of n-dimensionality’ given that the
segregation rules were able to provide a more accurate representation and, therefore, a con-
clusion can be made that classification trees appear to handle n-dimensionality better than
NNs. As already mentioned, this is further reinforced as the data given to both classifiers
was pre-processed using a scaling max-min algorithm to provide normalised scaled data,
as opposed to just standard raw data. In addition, the nature of this specific data are all
correlated from the first dimension in that they all rely on the same specific measurement
and are not from other sensors or different measurements (Barkhausen RMS noise and
extended parameters). The NN, however, displayed diminishing learning capabilities from
an increase in n-dimensionality. However, using small levels of augmentation with greater
extreme variations gave the best results (see Section 4.3 for more details).

As the dimensions of data increase by considering not only the BN mean average
response but also the selected extended BN parameters, the SSE starts to increase as does
the distance error and the unseen test data cases, which decrease. These entries within the
tabulated data display the changes in accuracy and ‘the curse of dimensionality’. From
using a basic method of data augmentation to increase data and reinforce key data patterns,
metrics can be used to see the accuracy given by these methods. With a 10% increase in data
augmentation, the most optimised SSE, distance errors, and unseen test case accuracies
were found. By increasing the data augmentation further, the data metrics were less in
favour. This was thought to be due to data fitting through too much data augmentation,
and more work is required here to see why this is the case. This investigation will be
considered in future work.

By investigating these differences further, two studies were carried out with
60% augmentation, where one of the augmented datasets had very small differences in
the change from the original dataset, and the other 60% with larger differences (more
extreme with in the standard deviation (SD) limits). The one with more extreme data
augmentation gained better SSE and a 20% increase in accuracy for unseen data cases.
The distance error, however, was less favourable where it was slightly higher. The
distance error metric suggests that the extreme augmented values may score better
with an increased network size and iterations to learn the more complex, extreme data
patterns. For this study, the network and iterations were all kept constant to make
fair comparisons.

Another ML technique was used to test the same augmented data as used with the
NN—the metrics can be seen in Table 3. The metrics in the case of CART were a lot more
favourable with this technique. Similar to NNs, CART is also a supervised technique,
however, it provides rules for segregation, which, in a lot of cases, are more robust than
producing a boundary curve to segregate data. SSE, however, is not measured here as no
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iterative input to output mappings occurred with this method in comparison. In short,
cumulative SSE is predominately used for large iterative learning techniques such as NNs.

It can be seen that a slight increase in data augmentation gives similar results to the
NN, where 10% and 20% give 100% accuracy with both the distance error and unseen
test cases. Beyond 20% data augmentation, the distance error and accuracy on unseen
data all increase and decrease, respectively. Here, there are no real differences for both
60% augmented datasets. However, there is a slight increase in the distance error and a
decrease in the accuracy for extreme augmented data, which could be due to the increase
in complexity of the data patterns as seen with NNs.

Table 4 displays R2 metrics, which provide the results with another view in terms of
accuracy from the prediction side of the test data and the best found fit. MAE was also
found; however this gives a similar linked metric to R2 and, therefore, a duplicity of results.
Looking at Table 4 backs up the results discussed in this section, where 10% and 20% data
augmentation give a better fit than without augmentation. However, increasing that data to
much greater levels, such as 60% and 100%, creates more noise and diminishes the accuracy.
Also, the results reinforce the extreme boundary data augmentation set compared to a
normal boundary data augmentation set (for the two different 60% data augmentation sets).
In the case of 100% augmentation, there is a higher score for NN and much less for CART,
where a −1.23 is reported for R2. The latter is significant to no real best fit and unable to
give a sound prediction, whereas the NN is not that good, tending towards 0; however,
there is some fit of the predicted data. This can be explained by the nature of the two
techniques where the NN produces a boundary condition for the outputs and CART will
have hard found rules that may not be able to fit the more complex data where overlaps or
near overlaps exist.

Table 4. Comparison metric results for NN and CART techniques using different levels of
data augmentation.

Data Data Size
(Columns)

% Aug *
Increase

(NN) Sum Squared
Error (SSE) (NN) R2 (CART) R2

mp (Tx) 98 (2) 0 7.31 × 1016 1 1

mp (TXLx) 98 (3) 0 6.65 × 1015 0.9998 1

mp (TxLx) & Param 98 (6) 0 4.24 × 1014 0.8338 1

mp (TxLx) & Param & Augmented 108 (6) 10 6.09 × 1011 0.9939 1

mp (TxLx) & Param & Augmented 118 (6) 20 1.00 × 1010 0.9929 1

mp (TxLx) & Param & Augmented 158 (6) 60 1.10 × 109 −0.0168 0.0882

mp (TxLx) & Param & Augmented 205 (6) 100 6.03 × 109 0.3156 −1.23

mp (TxLx) & Param & Augmented 158 (6) 60 ** 2.80 × 1012 0.3220 0.509

Key: * Aug: Augmentation; ** Other half of data; Tx: Transversal measurement; Lx: Longitudinal measurement.

There are two methods discussed in Section 4.3, where imputation and augmentation
can be used. The results displayed in Sections 4.2 and 4.3 display the transparency in pro-
ducing such results as well as the trade-offs between extra data and extra n-dimensionality.
This is very important as such data techniques cannot be applied in such a blind and ad
hoc manner as there needs to be an evaluation, especially as this data are expected to be
applied within a safety critical environment. If a good understanding and transparency is
found within the produced data, then this should serve in reinforcing the machine learning
techniques. The key idea behind data augmentation is to promote more accurate machine
learning models through giving more extreme cases to allow rules to be more salient and
with little to no ambiguity.

For safety critical components, it is important to characterise the presence of any
surface defects including cracks, manufacturing flaws, service-induced cracking, or sus-
pected degradation, as these defects can initiate and grow during service and may cause
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catastrophic failure by fracture. Hence, most of the structural integrity assessment method-
ologies tend to be highly conservative. By accurately predicting the surface quality levels,
it is possible to obtain more reliable NDT measurements that can avoid being overly con-
servative with fracture assessments, and thus improve the possibility of life extension of
existing power plants. Looking at both techniques and results given in Tables 2–4, the
results are not 100%, however the predictions are within the required thresholds. The
measurements of concern would be based on a range of historic measurements where
damage would display a decrease and greater level of confidence. Nevertheless, whilst
such NDE techniques mature, Destructive Testing would still be carried out until a level of
confidence can be passed with that of NDE techniques.

6. Conclusions

In this work we demonstrate the effects of using spacers to reduce the effects of surface
quality when carrying out electromagnetic measurements.

• The best trade-off between electromagnetic response and surface quality was found to
be a 30 µm nonmagnetic spacer (Figure 6).

• It is often the case with such measurements that small sets of data exist in terms of
describing the different anomaly conditions. For these reasons there was a need to find
missing data usually in the form of ‘Not a Number’ or NaNs. By using advanced impu-
tation algorithms, it was possible to impute missing values by intelligent interpolation
and the use of other NDT data, such as that provided by Magnetic Adaptive Testing.

• In addition, by using statistical measures it was possible to apply the graphical corre-
lations before making the predictions and imputing the missing data. Such techniques
increased the data amounts and were considered to give good coverage and further
useable data.

• Further to these findings, it was possible to see the effects on small datasets when
n-dimensionality increases due to different parameters given within an NDT measure-
ment, thereby providing more output values. Generally, the increase in dimensionality
reduces the capacity for machine learning algorithms to provide generalistic pattern
trend fitting capabilities. With the consideration of adding subtle data augmentation
amounts (20% augmentation), it was possible to increase trend fitting capabilities.
Beyond 20% augmentation, diminishing returns were obtained.

• Furthermore, studies of the data augmentation found that more extreme varying data
amounts were better than slight varying data amounts.

• On a final note, classification and regression trees gave the best account when compared
with neural networks in coping with the ‘curse of dimensionality’ when n-dimensional
data increases.

• Future work will look further into more advanced algorithms to see how increased
data can facilitate trend pattern learning as opposed to suppressing it. Also, further
investigations into higher levels of data augmentation give reduced accuracy.
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