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Abstract: Many public transport companies have recently launched projects testing the operation of
electric buses. Progressively, traditional combustion engine buses are being replaced by electric buses.
In such cases, some stops on bus lines are equipped with charging technology. Combustion engine
buses can operate for an entire day without having to refuel. By contrast, electric buses have consid-
erably shorter ranges and need to recharge their batteries throughout a day. For cost-efficient use of
electric buses, charging stations must be located within the road network so that required deadhead
trips are as short as possible, but attention must also be paid to construction costs. In contrast to
vehicle scheduling, which is a more short-term planning task of public transport companies, location
planning of charging stations is a long-term planning problem and requires a simultaneous solving
of both optimization problems. Specifically, location planning and vehicle scheduling have to be
considered simultaneously in order to open up optimization potentials by comparison to sequential
planning, since locations of charging stations directly influence the resulting vehicle rotations. To this
purpose, we present a novel solution method for the simultaneous optimization of location planning
of charging stations and vehicle scheduling for electric buses in public transport, using variable
neighborhood search. By a computational study using real-world public transport data, we show that
a simultaneous consideration of both problems is necessary because sequential planning generally
leads to either infeasible vehicle rotations or to significant increases in costs. This is especially relevant
for public transport companies that start operating electric bus fleets.

Keywords: location planning; vehicle scheduling; electric buses; charging stations; partial charging

1. Introduction

In the last years, awareness of climate change and sustainable operations has increased
significantly throughout the entire economy and public life. Electromobility is currently
considered a highly relevant technology in order to make public transport systems more
sustainable and environmentally friendly. Therefore, traditional buses with combustion
engines are being progressively replaced by electric buses. Electrically powered buses
facilitate a locally emission-free movement which leads to minimal emission levels of
greenhouse gases, dust particles, and nitrogen oxides. Seeking to improve the quality of life,
especially in congested urban areas, electric buses enable much more quietly operations [1].

At present, the electric energy required for powering electric buses is either provided
by batteries or is generated by fuel cells from hydrogen, methanol, or similar fuel [2]. Due to
the lower energy density of modern electric batteries compared to common tank capacities
for hydrogen or methanol, battery-powered buses involve the greatest challenges for bus
operations. For this reason, we focus on battery electric buses (BEBs) within this work.
However, the methodology and results of this work can be transferred to any other type of
electric engine. We will consider electric bus and battery electric bus as synonyms.
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Traditional combustion engine buses can often operate for an entire day without
having to refuel. By contrast, modern BEBs have only a fraction of the ranges of combustion
engine buses and need to recharge their batteries several times a day [3]. Nowadays, BEBs
are charged overnight at vehicle depots after the completion of their daily operations. In
addition, the vehicles are charged at charging stations during shorter waiting periods
while operating (opportunity charging). Energy transmission occurs either conductively
by a wire or inductively. In some cases, the vehicle batteries are also replaced with a fully
charged battery (battery swapping).

With a view, for example, to the current real-world bus project at the Schiphol Airport
in Amsterdam, the Netherlands, the bus company Connexxion operates with up to 100
BEBs at the present time [4]. Electric VDL Citea buses are operated within this project, with
batteries capable of storing 215 kWh which results in a range between 80 and 120 km. The
batteries are charged inductively with fast charging systems. Most modern electric buses
like the Irizar ie Bus are able to store about 350 kWh and may operate up to 17 h in urban
bus systems without charging [5].

In recent years, many other public transport companies have launched similar pilot
projects testing the operation of BEBs. An overview on current projects is provided by [6].
Most projects initiated aim towards substituting diesel buses with BEBs during the daily
services while retaining cost-minimal vehicle rotations. In such cases, charging systems
are established at some stops on the bus lines to facilitate the recharging of the vehicle
batteries during operation. For a cost-efficient deployment of BEBs, the charging stations
must be built within the road network so that deadhead trips are as short as possible or are
not necessary at all. Longer deadhead trips increase the operational costs and may lead to
higher demands for buses.

Therefore, construction costs for charging stations as well as the buses” purchase
and operational costs have to be considered at the planning stage. The planning process
of public transport companies consists principally of strategic, tactical, and operational
planning tasks, which differ with regard to the time periods considered. Figure 1 provides
an overview of the planning process. Strategic planning comprises the network design and
line planning. The network design determines stop points and necessary infrastructure,
particularly including the distribution of charging stations within the road network. In
this scope, specific technical aspects such as energy grids’ transmission capacities or restric-
tions imposed by local conditions may be considered [7,8]. Within the tactical planning,
timetables are constructed according to the previously planned lines. Operational planning
determines the deployment of vehicles and personnel.
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Figure 1. Overview of the planning process arising for companies in public transport when deploy-
ing BEBs.
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The first operational planning task is vehicle scheduling, which specifies the vehicle
deployment for operating service trips offered daily. Service trips denote trips to transport
passengers from a departure stop via intermediate stops to an arrival stop at fixed times
determined by a timetable. The objective is to assign the set of service trips to vehicles at
minimum costs. As part of this task, each service trip must be covered exactly once, each
vehicle must execute a feasible sequence of trips (vehicle rotation) without time overlaps,
and each vehicle must start and end its rotation at the same depot. This optimization
problem commonly refers to the term Vehicle Scheduling Problem (VSP). Between successive
service trips a vehicle can perform deadhead trips without transporting passengers if
necessary. If BEBs are considered within vehicle scheduling, restricted operating ranges
due to limited battery capacities and battery charging must be taken into account. This
extended optimization problem is commonly denoted as the Electric Vehicle Scheduling
Problem (E-VSP). While charging, a vehicle stops at a charging station for a specific time
period depending on the battery’s remaining energy (State of Charge, SoC). Batteries can
be either fully or partially charged. The task of determining when, where, and to what
extent a battery is charged is denoted as battery management which is closely related to
vehicle scheduling.

Unlike vehicle scheduling, which is a more short-term planning task in operational
planning, location planning of charging stations is a long-term planning task belonging to
strategic network planning and requires a simultaneous optimization of location planning
of charging stations and vehicle scheduling for BEBs. Both optimization problems have to
be considered simultaneously in order to open up optimization potentials by comparison
to sequential planning. At the present time, there are solution approaches to the E-VSP
considering fixed locations of charging stations determined in advance, on the one hand.
On the other hand, location planning problems for charging stations are being solved to
provide for the operation of cost-minimal vehicle rotations computed for buses without
range limitations by BEBs. Both approaches belong to a sequential planning.

Simultaneous problem solving is always applicable when a public transport company
fully or partially substitutes its fleet of diesel buses with BEBs for the first time. This is
particularly the case because charging stations are not usually available within public
transport systems yet and need to be built. Furthermore, it is expected that in the future
private energy companies will operate networks of charging stations, especially within
urban areas, that can be used by vehicles and buses. Some of these networks already exist,
such as E.on Drive in Germany, but it is expected that such offers will be expanded in
the future [9]. In this scenario, each transport company has to pay a usage fee in order
to charge a vehicle at specific stations. While location planning of charging stations is a
long-term planning problem, vehicle scheduling is carried out every time the timetable
changes. However, the simultaneous approach is still applicable because then it is based on
the modified timetable and the set of charging stations provided by the energy companies.
The construction costs for building a charging station then correspond to the usage fees.

In this paper, we present a novel solution method for the simultaneous optimization of
location planning of charging stations and vehicle scheduling for BEBs in public transport
to open up potentials for cost savings in comparison with a sequential planning. To do so,
we develop a solution approach based on Variable Neighborhood Search (VNS), which has
been successfully applied to real-world combinatorial optimization problems in a variety
of application areas [10]. We propose a heuristic solution approach because the E-VSP and
the location planning problem are both difficult to solve, especially with regard to larger
instances. Following Lenstra and Rinnooy [11] and Yang and Sun [12], both problems are
NP-hard. Simultaneous problem solving is expected to be no less difficult [13]. Within
our solution approach we incorporate complete as well as partial charging procedures
of the vehicle batteries. By a computational study, we prove the need for simultaneous
optimization as opposed to sequential planning. We show that simultaneous problem
solving is necessary because sequential planning generally leads to either infeasible vehicle
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rotations or to significant increases in costs. Further on, we discern that the incorporation
of partial charging procedures leads in principle to major cost savings.

This paper is outlined as follows: In Section 2 we provide an overview of existing work
about scheduling of electric vehicles and location planning of charging stations for BEBs.
In Section 3 we define the problem to be solved formally. Following this, we introduce
the metaheuristic solution method in Section 4. In Section 5 we perform comprehensive
computational experiments and analyze the results in order to make key statements. We
provide conclusions and present potentials for further research in Section 6.

2. Literature Overview

In this section, we give an overview of related work. As mentioned above, existing
work can generally be divided into scheduling of BEBs assuming fixed locations of charging
stations and location planning of charging stations for given vehicle rotations. Consequently,
we begin by discussing existing solution approaches for scheduling BEBs in public transport.
We then present literature on location planning of charging stations.

2.1. Scheduling Electric Buses

As one of the first contributions dealing with alternative engine types within vehicle
scheduling, Stasko and Gao [14] present a solution method for the VSP taking into account
different engine options. The solution approach is based on integer programming. Engines
powered by compressed natural gas (CNG) are considered besides combustion engines.
The approach aims at reducing emission levels within vehicle scheduling.

Reuer et al. [15] consider a mixed fleet of vehicles consisting of electrically powered
buses and buses without range limitations within the basic VSP. The authors apply a time-
space network based exact solution method for the VSP introduced by Kliewer et al. [16]
to solve the enhanced optimization problem. Solutions obtained to this problem contain
optimal flow values through the network. Therefore, strategies for flow decomposition
are necessary to obtain vehicle rotations. The authors analyze six strategies for flow
decomposition that aim at maximizing the proportion of feasible vehicle rotations for BEBs.
Battery charging is assumed to be performed within constant time periods. The authors
show that a simple substitution of traditional buses with BEBs leads to widely infeasible
vehicle schedules.

Haghani and Banihashemi [17] consider a fleet consisting entirely of range restricted
vehicles. They consider vehicle scheduling with route and time constraints in order to limit
the lengths and durations of vehicle rotations. However, battery charging is not considered.
The authors propose one exact and two heuristic solution models together with techniques
for reducing the problem sizes in order to solve even larger-scale problem instances. Chao
and Xiaohong [18] consider battery swapping in addition to limited operating ranges of
BEBs within the VSP. To solve the problem, a solution method based on a Non-dominated
Sorting Genetic Algorithm (NSGA-II) is introduced. A case study based on real-world
data taken from a project in Shanghai is performed to analyze the solution approach.
Li [19] addresses vehicle scheduling of BEBs with either battery swapping or charging and
presents a model for restricting the maximum route distance. Both fast charging and battery
swapping are presumed to be performed within constant time windows, but the time for
fast charging depends on the location. Adler and Mirchandani [20] deal with scheduling of
BEBs incorporating charging procedures at given charging stations located within the road
network. To solve the problem, they present a column-generation approach. A heuristic
method is presented to obtain necessary initial solution. The algorithm is based on a greedy
algorithm and computes vehicle rotations under consideration of range limitations and
charging. In this work, again full chargings of vehicle batteries are assumed.

As one of the first authors, Wen et al. [21] address the E-VSP with partial chargings.
They present an exact solution method based on mixed integer programming and an
adaptive large neighborhood search heuristic approach. The results demonstrate that
the exact solution methods is only applicable to small problem instances. However, the
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heurstic solution approach also solves larger instances in a reasonable amount of time. van
Kooten Niekerk et al. [22] also consider partial charging procedures of BEBs. The authors
introduce a solution approach based on column generation. Charging times depend
linearly on a battery’s SoC. Furthermore, battery aging and time-dependent energy prices
are considered. The authors show that in some cases, the consideration of partial charging
procedures leads to cost savings.

Recently, Wang et al. [23] proposed an exact solution method for the E-VSP based on
dynamic programming. Within this contribution, battery aging is particularly considered.
The objective of the solution method is minimize the total costs especially incorporating
costs for battery replacements during the life spans of the vehicles deployed. By a com-
putational study, the authors analyze the influence of different working loads, battery
management, and working temperatures of batteries on resulting vehicle schedules.

2.2. Location Planning of Charging Stations for Electric Buses

At the present time, only few publications deal with location planning of charging
stations for BEBs in public transport. Kunith et al. [2] present a mixed integer linear
optimization model for determining locations for charging stations for a bus route. The
model is based on a set covering problem. The objective is to minimize the number of
charging stations needed. The authors consider constraints imposed by the buses’ operation
and the battery charging process. In addition, different energy consumption scenarios are
considered to reflect external influencing factors on the buses’ energy consumption, such as
traffic volume and weather conditions. Standard optimization libraries are used for solving
the problem.

Berthold et al. [24] propose a mixed integer linear program in order to determine opti-
mal locations of charging stations for the electrification of a single bus line in Mannheim.
The problem is solved by using standard optimization libraries. Furthermore, partial
charging procedures and battery aging effects over several time periods are considered.
Since the problem is very complex, the solution approach is not suitable for larger instances.
Xyliaa et al. [25] develop a dynamic optimization model to establish a charging infrastruc-
ture for BEBs in Stockholm, Sweden, considering restricted waiting times at intermediate
stops on service trips given by the schedule and different currents of the charging systems
imposed by local conditions. They provide statements about the application possibilities of
BEBs in urban areas and effects on vehicle rotations. Within both works, no line changes of
the buses used are considered.

Liu et al. [26] consider energy consumption uncertainties within location planning
of charging stations for BEBs in public transport. Therefore, the authors propose a robust
optimization model represented by a mixed integer linear program. Using real-world data,
the authors show that the proposed solution model can provide optimal locations for charg-
ing stations that are robust against uncertain energy consumption of BEBs. Lin et al. [27]
introduce a spatial-temporal model for a large-scale planning of charging-stations for BEBs
in public transport. The authors consider characteristics of BEBs operation and plug-in
fast charging technologies. The model is represented by a mixed-integer second-order
cone programming formulation with high computational efficiency. A case study using
data from Shenzhen, China is used to analyse the robustness of the solution model to
timetable changes.

Based on the solution method presented in this paper, Stumpe et al. [13] present an
exact mathematical model for integrated optimization of vehicle scheduling with BEBs
and location planning for charging stations. The authors particularly perform a robustness
analysis and study the impact of technological aspects such as battery capacity, charging
power, and energy consumption as well as economic issues containing investment costs
for charging stations and electric buses. A computational study points out that the exact
solution model introduced is not capable of solving realistic problem instances to optimality.

Regarding related optimization problems in the scope of transportation, there are
some contributions dealing with the charging infrastructure for electric vehicles. Regarding
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Vehicle Routing Problems (VRP) with electric vehicles, Worley et al. [28] propose a solution
approach for the simultaneous determination of optimal locations for charging stations
and vehicle routes. They show that this approach leads to lower total costs of the vehi-
cle deployment by comparison to locations of charging stations known a priori. Schiffer
and Walther [29] also deal with the simultaneous determination of locations for charging
stations and routes for electric vehicles. The authors extend this optimization problem
by considering uncertain characteristics of the customers to be served. Uncertain spatial
customer distributions, demand, and service time windows are particularly addressed. The
authors introduce a robust optimization approach based on adaptive large neighborhood
search. Vehicle routing comprises different challenges and conditions than vehicle schedul-
ing and therefore needs other solution approaches. Consequently, it is not possible to draw
concrete statements with regard to the E-VSP.

2.3. Summary and Need for Further Research

Table 1 presents the main characteristics of the presented literature. As described
there, there is no existing work that deals with scheduling of BEBs and location planning of
charging stations simultaneously. However, as underlined by Worley et al. [28] with regard
to vehicle routing, a simultaneous optimization opens up potentials for cost savings. It is
to be expected that a simultaneous problem solving will also be beneficial for scheduling
of BEBs in public transport. In addition, partial charging procedures have not yet been
considered sufficiently within the scope of scheduling BEBs. As shown by van Kooten Niek-
erk et al. [22] for fixed locations of charging stations, the incorporation of partial charging
procedures facilitates further optimization potentials. Simultaneous problem solving under
consideration of partial charging procedures forms the basic idea of our contribution.

Table 1. Overview of the main characteristics of related literature.

Reference E- E- Mixed Electric w/o Line Fixed Fixed Partial
vSsp VRP veh.fleet veh fleet Changes chrg.stat. veh.rot. Charging
Stasko and Gao [14] . . . .
Haghani and Banihashemi [17] ° ° .
Worley et al. [28] ° .
Chao and Xiaohong [18] . . °
Li[19] . . .
Reuer et al. [15] ° . . .
Adler and Mirchandani [20] . . .
Wen et al. [21] . . . .
Berthold et al. [24] ° ° ° . °
van Kooten Niekerk et al. [22] . . . .
Xyliaa et al. [25] . . . . .
Liu et al. [26] . . . .
Schiffer and Walther [29] . ° °
Lin et al. [27] ° . . .
Wang et al. [23] . . . .
Stumpe et al. [13] . . .

3. Problem Description and Cost Model

In this section, we present the Electric Vehicle Scheduling Problem with Location Planning
of Charging Stations (E-VSP-LP) as the key problem being solved in this paper. In the
following, we first introduce the parameters of the problem. Afterwards, we introduce
decision variables and the objective function.
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We assume a public transportation network given by a set S = {51, e, sn} ofne N
stop points also containing the set of vehicle depots D C S. Service trips are defined by a
given timetable asaset T = {t1,...,t,, } with m € N. A service trip t € T is characterized
by its departure and arrival time as well as its departure and arrival stop. For any pair
(si,sj) € S x S of stop points there is a specific distance and travel time that can be different
depending on whether the trip is a service or deadhead trip. In our study, we do not
consider opportunity charging of BEBs during the execution of service trips. Consequently,
the set S contains the departure and arrival stop of each service trip t € T as well as the
set of depots. The aim is to assign the service trips contained in T to a set of BEBs that
are substantially determined by their battery capacities. There may be other specifications
such as vehicle dimensions or passenger capacities. Each combination of these features is
denoted as a vehicle type. To recharge the vehicle batteries, charging stations can be built
at each stop point of S. The installed charging system at a charging station considerably
influences the time needed for charging. A vehicle can be either fully or partially charged,
which also affects the charging time.

For the deployment of a BEB fixed costs C%j ,; > 0incure independently of the executed
trips. Each charging or trip operated during a vehicle rotation results in operational costs.
Therefore, we consider time costs per hour cfi“nje > 0 and for the distances covered of

bus

Crivance > 0. The equipment of stop points with charging technology causes fixed costs

c;lzzging > 0. These costs may be different, depending on the type of the charging system

to be installed or the location. For instance, it is more expensive to build a charging station
at a busy crossing than in a quiet side street.

We define decision variables y; € {0,1}, Vs € Sand x, € {0,1}, Vo € V denoting
the decision whether a charging station is built at stop point s or respectively, whether
a vehicle v is used or not. The objective of the simultaneous optimization problem is to
minimize the total costs for a given timetable and potential locations of charging stations.
Accordingly, fixed costs for BEBs as well as charging stations and operational costs for the
buses’ operation must be minimized. The objective function can be formulated as

; hargi b b b
min Z Cj‘:’igmg Ys+ Z Cf?;ed " Xo Z Z (Ctil;;e ’ dur(t> + Cd?sstunce ’ len(t)) ’ @
seS veV veV tev

location planning vehicle costs operative costs

vehiclescheduling

A trip’s duration is specified by dur(t) > 0 and a trip’s length by len(t) > 0. The
objective function’s value may be interpreted as the total costs caused by a first investment
into an electrification of a public transport company’s fleet and infrastructure for a specific
timetable period. Variable costs for the maintenance of the charging infrastructure or
battery replacements are not considered within this work.

In this paper, we solve the E-VSP-LP heuristically as large real-world instances cannot
be solved to optimality in an acceptable time [13]. For that reason, we do not present a
formal model at this point. However, we refer to Stumpe et al. [13] for a comprehensive
mathematical problem formulation and further insights.

4. A Variable Neighborhood Search Based Solution Method for the E-VSP-LP

In this section, we discuss our solution approach for the E-VSP-LP. The objective is
to find vehicle rotations for BEBs and locations for charging stations simultaneously and
at a minimum cost. We begin by presenting the basic procedure of our heuristic solution
method. The solution method consists primarily of generating initial solutions first and then
finding new solutions with lower total costs. To do so, we introduce a savings algorithm
for generating initial solutions in Section 4.2. Afterwards, we present an algorithm for
improvement based on VNS in Section 4.3.
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4.1. General Approach

Algorithm 1 provides the main procedure of our solution method. The set of scheduled
service trips to be assigned and an initial set of charging stations, together with their
locations, serve as the input data. Already existing charging infrastructure, for example
due to the implementation of previous pilot projects, may be included in the set of charging
stations. Usually, at the beginning of the algorithm the set of charging stations is empty. The
algorithm basically consists of two consecutive steps: First, we use a savings algorithm to
generate initial sets of vehicle rotations for BEBs and charging stations (1. 1). Subsequently,
we use this initial solution as the input for an improvement method based on VNS, which
we denote as BVNS (l. 2). The algorithm terminates by returning the best solution found.
The two key Algorithms 2 and 3 are explained in the following sections.

Algorithm 1 Main Variable Neighborhood Search.

Input: scheduled service trips T, charging stations S
Output: vehicle rotations V, charging stations S

1 (V',S") « SA(T,S);
2. (V",8") + BUNS(V', S);
3: return V", S";

4.2. Savings Algorithm for Generating Initial Solutions

The savings algorithm was first introduced by Clarke and Wright [30] to solve VRPs
heuristically. The objective of vehicle routing is to determine an optimal set of routes seeking
to service a number of customers with a fleet of vehicles. Following Cordeau et al. [31],
the savings algorithm is one of the most commonly used methods for vehicle routing
in practice. Starting from routes each containing one customer the basic procedure is to
compute cost savings iteratively for merging two routes into the same one. Within each
iteration the merging that results in the highest saving is performed. A saving consists of
fixed and operative costs saved. This procedure terminates when no further mergings can
be performed. While this algorithm has been applied generally to VRPs, we adapt this
algorithm hereinafter in order to apply the same procedure to the E-VSP-LP.

Algorithm 2 shows the procedure for generating initial solutions to the E-VSP-LP
formally using the idea of cost savings. The set of scheduled service trips to be assigned
and an initial set of charging stations, together with their locations, serve as the input data.
The algorithm begins by adding a vehicle rotation for each scheduled service trip, now
containing only the associated trip together with a deadhead trip from and to the depot
(L. 4). If these vehicle rotations are not feasible for BEBs the entire optimization problem
is infeasible. Within each iteration of the algorithm those two vehicle rotations (1. 7 and
8) are merged that lead to a feasible rotation and entail the highest saving. Therefore, the
set of service trips of both rotations to be merged are processed consecutively, in order of
departure times (1. 9). Since the SoC mostly influences the feasibility of a vehicle rotation
besides temporal restrictions the algorithm aims at adding charging procedures as often
as possible. For this purpose, starting with a new and empty vehicle rotation (l. 10), four
different cases are considered for each service trip of the rotations to be merged. First, we
check whether a charging procedure can be performed at an existing charging station of S
before executing the current service trip, taking into account necessary deadhead trips (1.
12). If this can be done, necessary deadhead trips, the charging procedure, and the service
trip are added (1. 13). If this is not possible, we examine whether the current service trip
can be executed without detours to charging stations (1. 14). If the SoC is insufficient, we
check whether the current service trip can be executed by building a new charging station
at the trip’s departure stop and performing a charging procedure (1. 16). Lastly, the same is
checked but for the latest position of the vehicle, which is less strict because the deadhead
trip is executed after the charging procedure (1. 18). If none of these options can be carried
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out, the current merging is aborted (I. 20). When a merging is feasible, the saving for
merging two vehicle rotations v, w € V into a new rotation v, w is given by

s(0,w) = ety = 8- ™™ — (0(5,®) — 0(v) — o(w)) @)
where 0(v) > 0, Vv € V denotes the operational costs for each vehicle rotation and § € N
the number of additionally respectively fewer needed charging stations. After each iteration
the merging is performed that involves the highest positive saving (. 25). Then, the set
S of charging stations is modified, the new vehicle rotation is added, and the rotations
merged are removed (l. 26 and 27). If no positive savings exist, the algorithm terminates
and returns the sets of vehicle rotations and charging stations (1. 29). Hence, solutions
generated by this procedure are always feasible.

The procedure of Algorithm 2 is based on the heuristic solution method proposed for
the E-VSP by Adler and Mirchandani [20]. Within this algorithm, the charging stations
are assumed to be known a priori and cannot be changed. However, within Algorithm 2,
we extend the procedure from Adler and Mirchandani [20] significantly by incorporating
location planning for charging stations.

Algorithm 2 Savings Algorithm (SA).

Input: scheduled service trips T, charging stations S
Output: vehicle rotations V, charging stations S

1 V<0

25«8

3: forallt € T do

4: Add a vehicle rotation to V containing only ¢;
5: end for

6: while TRUE do

7: forallv € V do

8: forallw € V'\ {v} do
9: Determine the set T of service trips of v U w;
10: Create a new vehicle rotation 7 without trips;
11: forallt € T do
12: if T can be recharged at an existing charging station and execute t then
13: Add necessary deadhead trips, charging, t to 7;
14: else if T can execute f then
15: Add necessary deadhead trips, t to 7;
16: else if T can be recharged at the departure stop of ¢ and execute ¢ then
17: Add charging station to S, necessary deadhead trips, charging, t to T;
18: else if U can be recharged at its current position and execute ¢ then
19: Add charging station to S, charging, necessary deadhead trips, t to T;
20: else break;
21: end if
22: end for
23: end for
24: end for
25: Make move with the highest saving s(v, w);
26: Remove rotations v and w from V; Add v to V;
27: Add new charging stations to S;
28: if No positive savings exist then
29: return V, S;
30: end if

31: end while
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4.3. Variable Neighborhood Search for Improvement

To finding new solutions with lower total costs, we use a VNS based solution method.
VNS was first introduced by Hansen et al. [10]. Solution approaches based on VNS have
already been extensively considered in the literature and have been proven to be suitable
for numerous practical problems with realistic data sizes [32]. The underlying concept of
VNS is a systematic change of neighborhoods, both in an improvement phase to find a
local optimum and in a perturbation phase to escape from local optima. In the perturbation
phase, a so-called shaking method is applied, which exerts a stochastic influence on an
incumbent solution by performing stochastic changes. Even this procedure can cause a
deterioration in the objective function value it has used to escape from local optima. In
the improvement phase, a local search method is used to find new solutions with lower
total costs.

Adapting the basic VNS concept to solve the E-VSP-LP thus requires the definition
of a problem specific neighborhood structure and methods for shaking, a local search,
and changing the neighborhood. Algorithm 3 provides the procedure for our solution
method. The algorithm follows the basic VNS adapted from Hansen et al. [33]. Note that
the following procedure is applicable not only for solutions generated by Algorithm 2 but
also for every possible feasible solution.

Algorithm 3 Basic Variable Neighborhood Search (BVNS).

Input: vehicle rotations V, charging stations S, tyax, kiax
Output: vehicle rotations V, charging stations S

t+0
: while t < t;;, do
k<« 1;
while k < k;;,¢ do
(V',S") - SHAKE(V, S, k);
(V”,8") < BESTIMPROVEMENT(V’, S, k);
(V,S,k) «+ NEIGHBORHOODCHANGE((V, S), (V",S"),k);
end while
t + CPUTIME();
: end while
: return (V,S);

O PN D ey

—_ =
=]

We first define a neighborhood Ny of size k € N by selecting k vehicle rotations.
The choice of the vehicle rotations will be made randomly from the entire set in order to
incorporate stochastic influences. It follows the maximum neighborhood size k;;qx € N as
the number of vehicles used within the incumbent solution. After each iteration of shaking
and local search, a neighborhood change is performed. In this step, the objective function
values of the incumbent and improved solution are compared. If the improved solution
is better than the incumbent, it is accepted and the size of the neighborhood is reset to
the smallest possible value. Otherwise, the size of the neighborhood is increased and the
procedure is repeated. The procedure terminates when the maximum computational time
is exceeded. Algorithm 4 shows the procedure formally.
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Algorithm 4 NEIGHBORHOODCHANGE.

Input: solutions (V, S), (V/,S’), neighborhood size k, objective function f
Output: solution (V, S), neighborhood size k

cif f(V',S) < f(V,S) then
(V,8) « (V',S");

k<« 1;

celsek «+— k+1;

. end if

: return (V,S), k;

Second, we use Algorithm 5 as the local search method within Algorithm 3 for improv-
ing a solution. As the total costs of a solution consist of operational costs for deadheading
as well as fixed costs for vehicles and charging stations, Algorithm 5 combines the three fol-
lowing Algorithms 6-8, each aiming towards reducing one cost component. In Algorithm 5,
the move is performed that involves the highest cost saving.

Algorithm 5 BESTIMPROVEMENT.

Input: neighborhood Nj, objective function f
Output: neighborhood Ny

1: return ming{EXST(Ny), SST(Ni), SCP(N)};

Algorithm 6 is used to reduce operational costs for deadheading by exchanging service
trips between different vehicle rotations of a corresponding neighborhood. Therefore, a
saving is computed for each pair of service trips for the neighborhood'’s set of vehicles that
can be exchanged, and the move with the highest saving is returned.

Algorithm 6 Exchange of Service Trips (EXST).

Input: neighborhood Nj
Output: neighborhood Ny

1: forallv € V do

2 forallw € V' \ {v} do

3 forallt, € vdo

4 forall t, € wdo

5: if t; and t; can be exchanged then
6 Compute saving;
7 end if

8 end for

9 end for
10: end for
11: end for

12: Perform exchange with the highest saving;
13: return Ni;

Algorithm 7 aims at inserting service trips of vehicle rotations with a lower number of
service trips into vehicle rotations with a higher number of service trips, again based on a
neighborhood. If an insertion is possible, a saving is computed containing proportionate
fixed costs for the remaining service trips, fixed costs for additional charging stations,
and operational costs for possible detours. Again, the best move found is returned. The
algorithm attempts to omit vehicle rotations whereby no service trips are being executed
any more.
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Algorithm 7 Shift Service Trips (SST).

Input: neighborhood Nj, fixed costs for an BEB C%‘;
Output: neighborhood Ny

1: forallv € V do

2: forallw € V : |ST,| < |STy| do

3: forallt, € wdo

4: if t;, can be inserted in v then

5: Compute saving (c}b{‘; /|STy|) less the costs for newly built charging

stations

6: and additional operational costs;
7: end if

8: end for

9: end for
10: end for

11: Perform move with the highest saving, omit a vehicle if no trips are being performed;
12: return Nj;

Algorithm 8 aims at decreasing the number of charging stations used by moving
charging procedures from less frequented charging stations to higher frequented charging
stations, considering the vehicle rotations of a neighborhood. The move is returned that is
feasible and entails the highest saving including proportionate fixed costs for remaining
charging procedures at a specific charging station and operational costs for additional
detours. Similar to Algorithm 7, this procedure aims at omitting charging stations where
chargings are no longer being performed at a specific stop point.

Algorithm 8 Shift Charging Procedures (SCP).

Input: neighborhood N, charging stations S
Output: neighborhood Ny, charging stations S

1: Sort S by the number of charging procedures performed within the entire set of vehicle
rotations in ascending order;
: fors=1to |S| —1do
forallt = |S|tos+1do
if A charging of a vehicle in Ny is performed at s and can be shifted to t then

Compute saving (C;?zrging/ |CPs|) less additional operational costs;

end if
end for
end for
: Perform move with the highest saving, omit a charging stations if no chargings are
being performed;
: return N, S;

R T B AR S

=
=]

While stochastic influences on incumbent solutions are already incorporated by the
random selection of a neighborhood’s set of vehicles, the Algorithm 9 is applied additionally
within Algorithm 3. This approach is intended to enable more stochastic changes to the
procedure aiming to escape from local optima. Shaking is based on the procedures given
by Algorithms 6-8. Within each method call of Algorithm 9, one of the three algorithms
is randomly applied if the corresponding move is feasible. This is done even though the
objective function value is being worsened.
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Algorithm 9 SHAKE.

Input: neighborhood Nj
Output: neighborhood Nj

Choose EXST, SST or SCP as f at random;
if f(Ny) is feasible then
return f(Nj);
else Goto1
end if

4.4. Inserting Partial Chargings

In our computational study, which follows this section, we incorporate complete and
partial charging procedures. So far, the algorithms presented operate with any kind of
charging procedures. However, we need more algorithmic effort in order to incorporate
partial chargings within Algorithms 2 and 3. To that purpose, we consider the following
Algorithm 10 by Olsen and Kliewer [34]. It is applied to each vehicle rotation that is
generated respectively modified within the solution procedure. As a result, Algorithm 10
either returns the set of partial charging procedures that have to be inserted into the
corresponding vehicle rotation or its infeasibility. Only if a resulting vehicle rotation is
feasible is it taken into further consideration.

Algorithm 10 checks iteratively, after each trip of a rotation, whether the SoC has been
violated (1. 2). If this is the case, the previous trips are considered (l. 3). Each trip that begins
or ends at a charging station represents a charging opportunity (I. 5). If no such possibilities
are found the vehicle rotations is infeasible (1. 9). Over all charging possibilities determined,
the one performed at the most highly frequented charging station is processed (1. 11). This
aims at reducing the number of charging stations by shifting charging procedures from
less to more highly frequented charging stations. In the next step, the vehicle rotation is
divided at the specific charging station into two sub-rotations containing the previous and
subsequent trips. Then, both sub-rotations are processed by the algorithm. In the case
that all sub-rotations are feasible, the algorithm terminates (l. 13). If a charging station is
no longer needed it is omitted. If at least one sub-rotation is infeasible, the next charging
opportunity is processed (l. 15 and 1.16).
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Algorithm 10 Inserting Partial Chargings (PCP).

Input: vehicle rotation v, set S of charging stations
Output: vehicle rotation v, feasibility or infeasibility of v

1: forallt; € vdo

2 if SoC after executing t; is not sufficient then

3 for all t, € v previous to t; do

4 if Departure stop is a charging station then

5: Save charging opportunity;

6 end if

7 end for

8 if Set of charging opportunity is empty then

9: return v, infeasible;
10: end if
11: Add charging opportunity at the highest frequented charging station;
12: if Vehicle rotation can be performed then
13: return v, feasible;
14: else
15: Exclude charging opportunity from the set of all opportunities;
16: Goto §;
17: end if
18: end if
19: end for

5. Computational Analysis

In the following, we perform our computational experiments. We first present the
instances to be solved and the problem parameters. Then, we look at the results of a
sequential planning approach. In this case, location planning of charging stations and
vehicle scheduling of BEBs are solved one by one. Therefore, our analysis is twofold:
First, we discuss the results of solving a location planning problem for charging stations
to enable the operation of given cost-optimal vehicle rotations computed for traditional
buses without the range limitations of BEBs. Second, we present the results of solving an
E-VSP given the locations of charging stations computed in the previous step. Last, we
analyze the results of simultaneous problem solving using our heuristic solution method
provided by Algorithm 3 for the E-VSP-LP and compare the results to the sequential
planning approaches. We specifically investigate the impact of considering complete and
partial charging procedures on solutions.

5.1. Experimental Design

Our computational experiments are performed on 10 real-world instances that are
inspired by real-world public transport data. The instances are characterized by different
numbers of stop points and service trips as well as different distributions of service trips
over a day. To simplify the analysis, the instances’ labels reflect the numbers of service trips
and stop points. The instances’ distributions of cumulative service trips over the day are
presented by Figure 2. The figure shows that the instances differ substantially with regard
to the distributions. It is worth mentioning that the last five instances consist of subsets of
the service trips taken from instance t3067_s209 for runtime reasons. In the case of instances
t1580_s209 and t1487_s209 the original set of service trips was halved randomly, and in the
case of instances t1060_s209, t1074_s209, and t933_s209 the set was divided into three parts
also in a random way:.
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Figure 2. Profiles of cumulative service trips.

Within our experiments, we presume a single vehicle depot, a single vehicle type,
and a single charging system. Accordingly, each timetabled service trip can be executed
by every available BEB. Additionally, each BEB can charge its battery at every charging
station. With regard to the practical implementations of BEBs, we assume that three buses
at most can be charged at a charging station at the same time. This is because building
sites for charging systems are usually restricted, especially in urban areas. In our study,
we distinguish between complete and partial charging procedures. In order to incorporate
battery aging, we presume that a battery’s SoC ranges between 20% and 80% of a battery’s
capacity as indicated by Fernandez et al. [35]. In our experiments, we first presume that
a vehicle is always charged up to a SoC of 80%. After that, we consider partial chargings.
In that regard, the threshold until a battery is charged may vary depending on the idle
times at charging stations. Irrespective of the threshold until a battery is charged during its
rotation, we assume that a vehicle always begins its rotation with a fully charged battery.

Following Stamati and Bauer [36], charging modern batteries is a nonlinear and
therefore complex procedure. The current during a charging process is of particular
importance. As demonstrated by Olsen and Kliewer [34], the current decreases quickly
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when a battery is charged to over 80% of its capacity. Below this threshold, the current is
almost constant. For that reason, we assume a constant current and thus linear charging
times for vehicle batteries within this paper. We assume that 5 kWh can be transferred into
a vehicle battery per minute. In our study we consider chargings before the start or after
the end of service trips. To reflect the lower consumption of BEBs on deadhead trips we
therefore assume a consumption of 1.5 kWh per kilometer and of 1.8 kWh per kilometer
driving on service trips. These parameters are inspired by the data of the previously
introduced project at the Schiphol Airport in Amsterdam. At present, there is a wide
range of battery capacities offered on the market that range between approximately 60
and 300 kWh. Based on this, we consider different battery capacities of 60, 120, 300 and
500 kWh within our experiments. A battery capacity of 500 kWh may be considered as
a future development of battery research. Since we consider only one vehicle type at the
same time, we conduct our study for each capacity. Based on Stamati and Bauer [36], a BEB
in use and equipped with a 60-kWh battery causes fixed costs of about 350,000 monetary
units. Measured by the battery sizes this results to fixed costs for the other vehicles of
365,000, 405,000, and 450,000 monetary units. With regard to the operational costs, we
presume 0.5 units per driven kilometer and 50 units per hour of operation. Again based
on the bus project in Amsterdam, the equipment of a stop point with charging technology
is incorporated with fixed costs of 200,000 monetary units. We use the term “monetary
units” here since we assume that these units are roughly comparable—at least in terms of
scale—and, based on this, that monetary units form a system of imputed cost components.

5.2. Location Planning of Charging Stations for the Electrification of Cost-Minimal Vehicle
Rotations, Computed without Range Limitations

We begin our computational analysis by discussing the results of solving a location
planning problem for charging stations for the electrification of given cost-minimal vehicle
rotations computed without range limitations. The vehicle rotations were generated using
the exact optimization method for the traditional VSP by Kliewer et al. [16], which is based
on a time-space network. In order to enable the operation of these rotations by BEBs,
charging stations are added to the network and charging procedures are inserted into
the vehicle rotations. Partial charging procedures are performed, since the idle times at
potential charging stations are given by the vehicle rotations. The objective is to maximize
the proportion of vehicle rotations that are feasible for BEBs. Ideally, this procedure should
ensure the holistic operation of the timetabled service trips by BEBs. For this purpose, we
adapt the location planning problem for charging stations introduced by Berthold et al. [24]
and solve it using standard optimization libraries.

Table 2 provides the results of solving a location planning problem for charging
stations, containing the proportions and absolute numbers of feasible vehicle rotations
for BEBs together with the numbers and proportions of charging stations needed for each
instance and each battery capacity. Additionally, the optimal number of vehicles used is
indicated when no range limitations are considered. If the totality of all vehicle rotations
is feasible for BEBs, the operational and total costs are specified for subsequent analyses.
First, we observe that in the vast majority of cases the holistic electrification of vehicle
rotations by means of inserting charging procedures is not possible. It is apparent that
this observation holds regardless of the instance to be solved. However, the proportion of
feasible vehicle rotations grows with increasing battery capacities. We can observe that
every instance can be entirely served by BEBs in the case of a battery capacity of 500 kWh.
In some cases, this situation already occurs with a battery capacity of 300 kWh and in a
single case with 120 kWh. However, none of the instances can be entirely served by BEBs
with a battery capacity of 60 kWh. Regarding a battery capacity of 60 kWh, the proportions
of feasible vehicle rotations fluctuates widely and ranges between 7.25% and 79.63%. With
regard to charging stations, it can be concluded that the numbers of stop points equipped
with charging technology decreases significantly when the battery capacities grow. Instance
t1296_s88 shows the biggest reduction in the number of charging stations needed from
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48.86% to 6.81%. The operational costs of feasible vehicle rotations decrease slightly when
the battery capacities grow, which can be attributed to fewer charging procedures required.
In summary, a sequential planning solving at first a standard VSP without incorporat-
ing the special features of BEBs and subsequently a location planning problem for charging
stations is generally insufficient, leading to widely infeasible solutions. This approach is
only suitable if the ranges of BEBs rise sharply in the future. The results obtained serve as
lower bounds for the numbers of BEBs used and as an upper bound for the numbers of
charging stations needed in the evaluation of the simultaneous solution approach.

Table 2. Results of solving a location planning problem for charging stations for the electrification of
cost-minimal vehicle rotations computed without range restrictions incorporating partial charging

procedure.
Instance Battery Capacity (kWh) # Vehicles # Stations Operat. Costs (Mio) Feasible Rotations Total Costs (Mio)
60 69 47 (22.71%) - 5 (7.25%) i
120 69 44 (21.25%) ; 31 (44.93%) :
1876_s207 300 69 33 (15.94%) ; 62 (89.86%) ;
500 69 7 (3.38%) 1127 69 (100%) 33.93
60 75 33 (32.67%) - 43 (57.33%) -
120 75 27 (26.73%) - 69 (92%) -
t1135_s101 300 75 15 (14.85%) 1.351 75 (100%) 3548
500 75 2 (1.98%) 1.349 75 (100%) 35.60
60 47 43 (48.86%) ; 28 (59.68%) ;
120 47 32 (36.36%) - 42 (80.37%) -
£1296_s88 300 47 25 (28.40%) - 42 (80.37%) ;
500 47 6 (6.81%) 0.114 47 (100%) 2276
60 125 29 (43.28%) - 74 (58.4%) -
120 125 21 (32.34%) ; 80 (64%) ;
£2633_s67 300 125 17 (25.37%) ; 117 (93.6%) :
500 125 8 (11.94%) 2,652 125 (100%) 6091
60 165 90 (43.06%) ] 88 (53.33%) ;
120 165 69 (33.01%) ; 154 (93.33%) ;
£3067_s209 300 165 39 (18.66%) : 162 (96.97%) ;
500 165 14 (6.69%) 3.045 165 (100%) 80.79
60 75 55 (26.31%) - 39 (52%) -
120 75 45 (21.53%) : 61 (81.33%) :
t1580_s209 300 75 20 (9.56%) 1.342 75 (100%) 36.71
500 75 7 (3.34%) 1.319 75 (100%) 36.82
60 89 53 (25.35%) - 46 (51.79%) -
120 89 37 (17.71%) ; 87 (97.76%) ;
£1487_s209 300 89 24 (11.48%) 1.696 89 (100%) 4374
500 89 7 (3.34%) 1.672 89 (100%) 4347
60 54 43 (20.57%) ] 43 (79.63%) i
120 54 30 (14.35%) 0.988 54 (100%) 28.20
£1060_s209 300 54 13 (6.22%) 0.987 54 (100%) 26,11
500 54 3 (1.43%) 0.985 54 (100%) 26.04
60 56 39 (18.66%) - 31 (55.36%) -
120 56 33 (15.78%) - 52 (92.86%) -
t1074_s209 300 56 16 (7.65%) 0.986 56 (100%) 27.67
500 56 6 (2.87%) 0.985 56 (100%) 27.69
60 54 35 (16.74%) ] 23 (42.60%) i
120 54 25 (11.96%) - 32 (77.78%) -
£933_s209 300 54 15 (7.17%) 0.971 54 (100%) 26.59
500 54 4 (1.91%) 0.963 54 (100%) 26.26

5.3. Scheduling of Electric Buses Given Fixed Locations of Charging Stations

We now discuss the results of solving an E-VSP with given locations of charging
stations. The set of charging stations determined by the previous experiment within
Section 5.2 serves as the input, since this set is already optimal if corresponding solutions
are feasible for BEBs. Following Section 1, the objective of the E-VSP is to minimize the
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number of buses in use and the operational costs for deadheading while covering each
service trip. In order to ensure comparability, partial chargings are performed. Because the
E-VSP is NP-hard and exact solution methods are not suitable for solving large real-world
instances in general, as in our experiments, we solve the E-VSP heuristically here.

To do so, we use our main solution method from Algorithm 1 in a reduced version.
Within both Algorithms 2 and 3, which represent the main components of Algorithm 1,
we disable modifications of the charging stations. Within Algorithm 2, we only allow
the assignment of service trips to vehicles without charging or with detours to existing
charging stations. The other two cases are omitted. Within Algorithm 3, we modify the
Algorithms 5 and 9 by disabling Algorithm 8 within each procedure. This approach means
that the set of charging stations cannot change in this experiment. While the following
results are not necessarily optimal due to the heuristic solving, we show that they provide
reasonable bounds for our analysis within the next section.

An overview of the results of this experiment is given by Table 3, providing the
numbers of vehicles used as well as operational and total costs. The number of charging
stations is taken from the previous experiment. In contrast to that, now each solution
is feasible, which was to be expected because of the constraints imposed by the E-VSP.
Consequently, the total costs are specified for each instance and each battery capacity,
containing fixed costs for buses used and charging stations as well as operational costs.
First of all, the results show that in most cases where feasible vehicle rotations were
computed in the first experiment described in Section 5.2, the solving of an E-VSP provides
similar results regarding the numbers of vehicles used and total costs. In some cases,
the number of vehicles required is slightly higher than in the first experiment, which
can be traced back to the heuristic solution approach. Furthermore, the operational costs
are marginally increased. However, the solutions of this experiment converge towards
the optimal solutions and thus provide a reasonable benchmark for subsequent analyses.
Regarding the numbers of vehicles used, one can observe that the fewer the proportions
of feasible vehicle rotations determined within the first experiment, the more vehicles
are required when solving the E-VSP. This is understandable because the closely-timed
service trips of the vehicle rotations when no range limitations are considered do not
provide enough time for rechargings. This leads to an increasing demand for vehicles.
For example, considering instance t1580_s209, the optimal numbers of vehicles used is
obtained for battery capacities of 500 kWh and 300 kWh. As the proportion of feasible
vehicle rotations reduces rapidly for 120 kWh and 60 kWh within the first experiment
(81.33% respectively 52%), the need for additional vehicles rises significantly (6 respectively
12 additional vehicles). Regarding the operational costs, we note that higher demands for
vehicles generally leads to decreasing operational costs. This is because less deadhead trips
and chargings have to be performed due to the shorter rotations.

In conclusion, solving an E-VSP with given locations of charging stations always
leads to feasible vehicle rotations, which is in contrast to the first experiment. However,
this solution approach generally entails increases in costs due to additional deadhead
trips, likely leading to increasing demands for vehicles. The results obtained serve as
upper bounds for the analysis of the simultaneous problem solving to be conducted in the
following section.
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Table 3. Results of solving an E-VSP given locations of charging stations by reduced Algorithm 1
incorporating partial charging procedures.

Instance Battery Capacity (kWh) # Vehicles # Stations Operat. Costs (Mio) Total Costs (Mio)
60 80 (+10) 47 1.019 4077
120 75 (+6) 44 1.060 39.72
1876_s207 300 72 (+3) 33 1.098 3851
500 69 (+0) 7 1.157 33.96
60 87 (+12) 33 1.187 39.89
120 82 (+7) 27 1219 37.90
t1135_s101 300 76 (+1) 15 1265 35.79
500 75 (+0) 2 1.379 35.62
60 61 (+14) 3 0.082 3218
120 49 (+3) 3 0.112 28.16
t1296_s88 300 49 (+3) 25 0.108 2579
500 47 (+0) 6 0.116 277
60 144 (+19) 29 2193 59.84
120 137 (+12) 21 2438 57.69
£2633_s67 300 131 (+6) 17 2514 59.82
500 126 (+1) 8 2621 6132
60 179 (+14) 90 2681 87.83
120 171 (+6) 69 2.820 82.49
£3067_s209 300 169 (+4) 39 2871 81.07
500 166 (+1) 14 2.994 81.19
60 87 (+12) 55 1.133 4533
120 81 (+6) 45 1289 4210
£1580_s209 300 75 (+0) 20 1.367 36.74
500 75 (+0) 7 1323 36.83
60 101 (+12) 53 1421 50.02
120 92 (+3) 37 1573 44.40
t1487_5209 300 90 (+1) 24 1.682 4413
500 89 (+0) 7 1.753 4353
60 59 (+5) 83 0.952 3235
120 55 (+1) 30 0.991 28.56
£1060_s209 300 54 (+0) 13 0.989 26.11
500 54 (+0) 3 0.986 26.04
60 64 (+8) 39 0.897 33.05
120 59 (+3) 33 0.971 30.76
£1074_s20 300 57 (+1) 16 0.988 28.07
500 56 (+0) 6 0.994 27.69
60 64 (+10) 35 0.956 32.06
120 58 (+4) 25 0.961 28.38
19335209 300 55 (+1) 15 0.970 26.99
500 54 (+0) 4 0.969 2627

5.4. Simultaneous Optimization of Vehicle Scheduling and Charging Infrastructure

We now discuss the results of simultaneous optimization of scheduling of BEBs and
location planning for charging stations, i.e., solving the E-VSP-LP, using our solution
method given by Algorithm 1. We begin by presenting the results obtained by Algorithm 2
for generating initial solutions. Then, we discuss the results of Algorithm 3 for finding new
solutions with lower total costs. In this experiment we consider complete as well as partial
charging procedures in order to enable a comparison with the previous experiments. We
conclude this chapter by a runtime analysis.

5.4.1. Summary of Results for Generating Initial Solutions

Table 4 provides the results of using Algorithm 2 for generating initial solutions
containing feasible sets of vehicle rotations and charging stations. The results contain the
total and operational costs as well as the numbers of buses and charging stations used
for each instance and each battery capacity. Additionally, the differences in the total costs
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are specified when enabling partial charging procedures, and the best solutions found are
in bold.

Table 4. Results of Algorithm 2 for generating initial vehicle rotations for electric buses and locations
for charging stations considering complete and partial charging procedures.

- Battery Complete Chargings Partial Chargings
nstance
Cap.(kWh) # Vehicles # Stations Operat. Costs Tot. Costs # Vehicles # Stations Operat. Tot. Costs
(Mio) Costs (Mio)

60 9 2 1.620 33.62 86 2 1621 32.22 (—1.40)
76 <207 120 76 1 1.392 2938 75 1 1.397 29.02 (~0.36)
- 300 76 1 1.322 3235 75 1 1322 31.94 (—0.40)
500 76 1 1.307 35.75 75 1 1.307 3531 (—0.45)
60 107 1 1.990 39.69 104 2 1.991 38.89 (—0.80)
1135 <101 120 94 2 1.644 3645 9 3 1.644 35.97 (—0.48)
- 300 91 1 1528 38.63 89 2 1,529 38.07 (~0.56)
500 80 1 1.493 37.74 79 1 1.501 3730 (—0.44)
60 86 6 0.729 3233 82 7 0.730 31.18 (—1.15)
1129 <88 120 74 3 0.487 2825 71 4 0.489 27.40 (—0.84)
- 300 64 1 0.408 26,58 62 1 0.412 25.77 (~0.81)
500 58 1 0.384 2673 56 1 0.391 25.84 (—0.89)
60 148 18 3818 60.11 151 16 3.709 60.56 (+0.44)
633 <67 120 144 16 3307 59.87 146 14 3202 60.08 (+0.21)
- 300 139 12 2.978 6227 141 11 2787 62.64 (+0.37)
500 134 6 2.892 64.69 135 5 2815 64.82 (+0.12)
60 182 50 3.618 79.81 180 46 3.621 7812 (—1.70)
a7 <00 120 178 48 3.346 8031 175 3 3378 78.00 (—2.31)
- 300 174 36 3114 8258 171 3 3164 80.67 (~1.91)
500 171 12 3.087 83.03 169 12 3.09% 82.14 (—0.89)
60 108 5 1.966 4101 109 2 1721 4037 (—0.65)
120 98 1 1.601 37.62 98 1 1.583 37.60 (~0.02)
115805209 554 91 1 1.474 3858 91 1 1.462 3857 (—0.01)
500 87 1 1.287 40.68 87 1 1.276 4067 (~0.01)
60 124 4 2464 46.86 118 4 2464 4476 (=2.10)
120 102 1 1.940 39.42 99 2 1.940 38.58 (—0.85)
t1487.s209 359 102 1 1.797 4336 98 2 1792 4198 (—1.38)
500 98 1 1.752 46.10 95 2 1.751 4501 (—1.10)
60 8 2 1.490 30.69 78 3 1493 29,54 (—1.15)
120 66 2 1218 25.81 64 3 1.219 2533 (—0.48)
110605209 35, 63 1 1132 26.89 61 2 1.134 2634 (—0.56)
500 60 1 1112 28.36 57 2 1121 2727 (~1.09)
60 86 2 1.49 32.09 85 5 1.499 32.49 (+0.40)
120 72 1 1216 2774 71 4 1218 2813 (+0.39)
10745209 34 72 1 1132 30,54 71 3 1.194 30.69 (+0.16)
500 67 1 1.105 3150 66 3 1.184 31.63 (+0.13)
60 81 6 1527 3137 8 7 1.498 31.95 (+0.57)
033 5209 120 66 1 1171 2551 67 2 1.169 26.12 (+0.61)
- 300 65 1 1.081 27.66 66 2 1.089 2832 (+0.66)
500 60 1 1.044 2829 61 2 1075 29.03 (+0.73)

We first compare the results to the first experiment conducted and described in
Section 5.2. We observe that in two of the 17 cases, when the first experiment lead to
feasible vehicle rotations, the total costs obtained by the application of the savings al-
gorithm were already lower by comparison to solving a location planning problem for
charging stations. In the other cases, higher total costs are obtained. In general, the higher
total costs arise from higher demands for vehicles needed within the savings algorithm.
Regarding each instance, the numbers of vehicles used has increased, which is reasonable
due to the heuristic solution procedure of the savings algorithm. The solving of instance
£1296_s88 leads to the highest increase of 23.4%. By contrast, the number of charging
stations used decreases in every case. In some cases, such as instance $1060_s209, the
number of charging stations needed is enormously reduced (30 to two). However, since the
costs for additional vehicles prevail over the cost savings arising from the lower number
of charging stations used, the total costs increase. This holds true both for complete and
partial charging procedures. Regarding these two charging procedures, the total costs
obtained are lower in seven of the ten instances for all battery capacities when partial
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charging procedures are enabled. On average, total cost savings of about 1.2% are achieved.
Only in three cases are the total costs higher when considering partial chargings.

We now compare the initial solutions with the results obtained and described in
Section 5.3. With regard to the total costs, our observations are twofold: In those cases in
which the solving of a location planning problem led to infeasible vehicle rotations, the
application of Algorithm 2 leads to lower total costs by comparison to the results obtained
by solving an E-VSP. In the other cases where feasible solutions were obtained, the total
costs are higher, arising from a higher demand for vehicles needed as indicated previously.
Basically, the results computed by Algorithm 2 merely serve as the input for improvement
methods and thus do not serve as the final results. For this reason, the clarified statements
are not particularly significant. In the next section, we present the results of improvement
using our solution approach based on VNS.

5.4.2. Summary of Results for Variable Neighborhood Search for Improvement

In order to carry out a final comparison between sequential planning and simultaneous
problem solving, we now present the results of our solution method given by Algorithm 3
for finding new solutions with lower total costs. We use the initial solutions presented in
the previous section as the input data. Table 5 shows the results, containing numbers of
vehicles and charging stations used, as well as operational and total costs for each instance
and each battery capacity. Additionally, the differences in the total costs are specified when
enabling partial charging procedures, and the best solutions found are in bold.

Again, we first compare the results to solving a location planning problem for charging
stations at given vehicle rotations. In those cases, where feasible solutions were computed
and shown in Section 5.2, the total costs obtained by applying Algorithm 3 are almost of
the same quality. In some cases, the total costs are slightly higher, which is most likely
due to the heuristic solving. However, in certain scenarios, even better solutions are
achieved which can be explained by the utilization of the degrees of freedom. Simultaneous
problem solving enables shorter and fewer deadhead trips to charging stations, leading
to lower operational and fixed costs for vehicles. This effect would be intensified if exact
solution methods were used. As the sequential planning approach leads mostly to infeasible
solutions, the simultaneous problem solving is generally preferable.

We now discuss the results with regard to solving an E-VSP with given locations
of charging stations as carried out and described in Section 5.3. The most significant
observation is that the total costs obtained by the simultaneous problem solving are always
below the results of solving an E-VSP with fixed charging stations. This holds true for
each combination of instance and battery capacity. The primary reasons for this are that
the VNS based approach leads either to the same or slightly higher numbers of vehicles.
Similarly, considerably lower numbers of charging stations needed are achieved due to
the simultaneous solution procedure, leading to significant cost savings. Additionally, the
operational costs are reduced for the most part, which can be explained by the shorter
deadhead trips to charging stations. As the cost savings exceed the increased costs for
additional vehicles, the solutions generated entail significantly lower total costs. It is
interesting to oberserve that the greatest costs savings are achieved for instances that
contain peak times of cumulative service trips over the day. This can be explained by
the fact that peak times of service trips over the day allow the vehicles to recharge their
batteries during times with reduced offers. In conclusion, simultaneous problem solving
enables significant cost savings and is always preferable to solving an E-VSP with given
locations of charging stations.
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Table 5. Results of Algorithm 3 containing vehicle schedules for electric buses and charging infras-
tructure after 100.000 iterations considering complete and partial charging procedures.

et Battery Complete Chargings Partial Chargings
nstance
Cap.(kWh) # Vehicles # Stations Co(s)tlz e(l;[ti.o) C—l;:)stt.s(ilt\’/iitf)) # Vehicles # Stations Operat. Tot. Costs
60 79 6 1.317 30.46 77 4 1.348 29.29 (—1.17)
1876 $207 120 76 3 1.334 30.57 75 2 1.392 29.26 (—1.31)
- 300 74 3 1.317 32.03 73 2 1.322 31.38 (—0.65)
500 73 2 1.254 34.60 72 1 1.277 33.92 (—0.68)
60 86 31 1.592 39.44 85 30 1.617 38.86 (—0.58)
1135 s101 120 81 22 1.512 36.57 79 20 1.555 35.38 (—1.19)
- 300 77 13 1.617 36.05 76 13 1.656 35.68 (—0.37)
500 76 2 1.267 35.96 75 2 1.293 35.54 (—0.42)
60 58 37 0.089 26.63 56 32 0.089 27.68 (—1.95)
1296 <88 120 49 24 0.112 23.99 49 21 0.112 23.24 (—0.75)
- 300 49 21 0.108 25.20 48 20 0.110 24.55 (—0.65)
500 48 9 0.112 23.96 48 7 0.113 23.46 (—0.50)
60 139 21 2217 56.11 138 19 2.219 55.26 (—0.85)
2633 s67 120 136 18 2.445 56.58 135 16 2.450 55.72 (—0.86)
- 300 130 16 2.528 59.17 129 14 2.534 58.27 (—0.90)
500 128 7 1.609 61.95 127 6 1.617 61.26 (—0.69)
60 182 48 2.627 78.32 177 36 2.694 73.64 (—4.68)
3067 $209 120 172 37 2.796 74.82 170 27 2.809 71.60 (—3.22)
- 300 171 26 2.854 78.60 169 18 2.819 75.76 (—2.84)
500 169 12 2.894 81.94 167 11 2.937 80.83 (—1.11)
60 80 41 1.698 39.94 79 39 1.706 39.10 (—0.84)
£1580 5209 120 79 41 1.751 40.83 78 36 1.754 39.22 (—1.61)
. 300 77 14 1.318 36.00 76 12 1.324 35.10 (—0.90)
500 75 8 1.317 37.06 75 7 1.318 36.81 (—0.25)
60 99 38 1.448 45.59 96 31 1.451 42.81 (—2.80)
1487 $209 120 92 31 1.567 42.89 91 24 1.569 40.78 (—2.11)
- 300 92 23 1.534 44.54 90 19 1.561 42.76 (—1.78)
500 90 6 1.494 43.49 89 6 1.533 43.08 (—0.41)
60 59 37 0.951 30.85 57 31 0.958 28.65 (—2.19)
1060 s209 120 56 30 0.982 28.92 56 27 0.983 28.17 (—0.75)
- 300 55 15 0.983 27.00 54 13 0.988 26.10 (—0.90)
500 55 2 0.984 26.23 54 3 0.985 26.03 (—0.20)
60 64 26 0.913 29.81 62 23 0.912 28.36 (—1.45)
1074 $209 120 59 19 0.963 27.24 57 19 0.968 26.52 (—0.73)
- 300 57 14 0.981 27.56 56 16 0.981 27.66 (+0.00)
500 56 7 0.982 27.93 56 4 0.983 27.18 (—0.75)
60 61 27 0.939 29.03 60 24 0.941 27.94 (—1.10)
1933 5209 120 58 23 0.948 27.86 56 19 0.951 26.14 (—1.73)
- 300 55 15 0.964 26.98 54 15 0.970 26.59 (—0.40)
500 55 4 0.959 26.70 54 4 0.962 26.26 (—0.45)

Lastly, we investigate the impact of enabling partial charging procedures within
vehicle rotations. The results clearly specify that the incorporation of partial chargings is
more realistic and opens up optimization potentials. The number of vehicles as well as
charging stations used is lower in almost all cases. This leads to significant cost savings up
to 4.68% compared to the best solution found for one of the two sequential approaches. On
average, savings of 1.17% over all instances and battery capacities can be observed. The
same total costs are achieved in only one case. Furthermore, the more vehicles are used,
the higher the cost savings are. For this reason, the cost savings generally decrease when
the battery capacities increase.

It is worth noting that the clarified statements would also hold true for exact solution
methods for the E-VSP-LP. Exact solving would even strengthen the results because of
the expected lower total costs. Figure 3 illustrates the key statements made within this
chapter. The figure provides an overview of the total costs obtained by the different solution
approaches presented for the instances t1060_s209, t1135_s101, and t3067_s209 and for
all battery capacities. The instances are chosen among all instances presented since they
cover characteristic problem sizes and distributions of cumulative service trips over the day.
Comparable behavior is to be expected for instances with similar characteristics not shown
here. It is important to note that the total costs are only specified for feasible solutions.
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Figure 3. Overview of total costs obtained by the different solution approaches presented for all

battery capacities.

5.4.3. Convergence Analysis

The experiments were performed on a common desktop computer (Intel(R) Core(TM)
i7-6700 HQ @CPU 2.60GHz 2.59GHz, 16GB RAM). The solution method is implemented in
Java. The computational analysis was carried out using Python 3.10.

Figure 4 provides an overview of the convergence behaviour for all problem instances
solved by Algorithm 3. In order to facilitate comparison between the different instances,
the total costs obtained are normalized. Each figure contains data for the first 20.000
runs. For none of the instances solved a total run time of 10 h was exceeded. The results
basically prove reasonable convergence behaviours towards the minimum total costs for
all instances. However, particular differences between the instances can be observed.
The lower the number of service trips, the faster the total costs obtained by Algorithm 3
decrease. It is noteworthy that the number of stop points has no visible influence on the
speed of convergence.
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Figure 4. Overview of convergence behaviour for all problem instances solved by Algorithm 3.

6. Conclusions

We have introduced a novel solution method for simultaneous optimization of location
planning of charging stations and vehicle scheduling for BEBs in public transport. To do so,
we introduced the E-VSP-LP, which extends the standard E-VSP to incorporate location
planning of charging stations. To solve the problem we developed a metaheuristic solution
method based on VNS, as both problems are difficult to solve. To generate the necessary
initial solutions we adapted the traditional savings algorithm. To evaluate the solution
approach we performed a computational study based on real-world public transport data,
with up to 3000 service trips and different battery capacities of the buses deployed. We
also focused on a consideration of complete and partial battery charging procedures of the
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batteries within vehicle rotations. In our study we compared the simultaneous solution
approach to sequential planning to tackle the underlying problems.

Our experiments showed that simultaneous solving of location planning of charging
stations and vehicle scheduling of BEBs is necessary as opposed to sequential planning.
First, we demonstrated that sequential planning, first solving a standard VSP and after-
wards a location planning problem for charging stations, generally leads to infeasible
vehicle rotations for BEBs with regard to current battery technologies. Second, solving
an E-VSP with given locations of charging stations entails significant increases in costs.
Solving the E-VSP-LP, on the one hand, ensures the feasibility of the vehicle rotations.
On the other hand, significantly lower total costs are achieved by comparison to solving
an E-VSP, due to the higher degrees of freedom. This is particularly relevant for public
transport companies that start operating electric bus fleets. With regard to complete and
partial battery chargings, we found large cost savings in most cases when enabling partial
chargings within the vehicle rotations.

Our paper can be extended by the following aspects. First, the proposed models do
not deal with multiple depots. Incorporating this extension would most likely open up
further potentials for cost savings, as already shown for the traditional VSP. Second, our
solution method solves the E-VSP-LP heuristically. Exact solution approaches would be
interesting for a better verification of the quality of heuristic solution methods. In addition,
an interesting path for future research would be to develop additional algorithms for the
generation of initial solutions as well as for improvement. Finally, more accurate models
regarding the technical aspects of BEBs may be considered. It is conceivable to presume
uncertain energy consumptions that may depend on weather conditions or the volume
of traffic.
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