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Abstract: Extracting roads from remote sensing images can support a range of geo-information
applications. However, it is challenging due to factors such as the complex distribution of ground
objects and occlusion of buildings, trees, shadows, etc. Pixel-wise classification often fails to predict
road connectivity and thus produces fragmented road segments. In this paper, we propose a multi-
scale strip pooling network (MSPNet) to learn the linear features of roads. Motivated by the strip
pooling being more aligned with the shape of roads, which are long-span and narrow, we develop
a multi-scale strip pooling (MSP) module that utilizes strip pooling layers with long but narrow
kernel shapes to capture multi-scale long-range context from horizontal and vertical directions. The
proposed MSP module focuses on establishing relationships along the road region to guarantee the
connectivity of roads. Considering the complex distribution of ground objects, the spatial pyramid
pooling is applied to enhance the learning ability of complex features in different sub-regions. In
addition, to alleviate the problem caused by an imbalanced distribution of road and non-road pixels,
we use binary cross-entropy and dice-coefficient loss functions to jointly train our proposed deep
learning model. Then, we perform ablation experiments to adjust the loss contributions to suit
the task of road extraction. Comparative experiments on a popular benchmark DeepGlobe dataset
demonstrate that our proposed MSPNet establishes new competitive results in both IoU and F1-score.

Keywords: road extraction; deep learning; strip pooling; remote sensing images; spatial pyramid pooling

1. Introduction

The automatic extraction of roads maps from very high-resolution remote sensing
images is an essential and hot research domain, which can be applied to numerous appli-
cations that rely on the efficient and real-time updating of road maps, such as navigation,
cartography, urban planning, location-based mobile services and autonomous driving. In
disaster zones, especially in developing countries, maps and accessibility information are
crucial for crisis response. Extracting roads from RSIs is a promising approach and has been
studied for decades. Recently, the wide use of convolutional neural networks (CNNs) [1],
especially networks with fully-convolutional network (FCN) [2] architecture, has greatly
improved the accuracy of road extraction and made the task end-to-end trainable [3].
However, the existing extraction results of road maps are still not satisfactory, which is
mainly due to the complex urban traffic environments and special characteristics of roads.
Compared with most other ground natural objects with bulk shape, such as buildings
and trees, the roads in remote sensing images are narrow, long-span, and can be broadly
formulated as elongated regions with similar spectral and texture patterns. Therefore,
the road extraction algorithms often produce fragmented road segments leading to road
network disconnection due to the occlusion of trees, buildings, cloud, etc. Additionally,
the similarities often exist between the roads and other ground objects that are difficult
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to identify, as they look visually similar to targets. To match those features’ geometric
and physical features, the road extraction methods are expected to have a certain level of
optimization of the results to reduce the missing connections and false alarms [4].

Conventional expert-knowledge-based methods, such as knowledge-driven-based,
template-matching-based, and object-oriented-based, are mainly adopt to extract roads
from remote sensing images [5,6]. Those hand-crafted methods are often cumbersome
in steps and lead to error accumulation problems, since they usually combine multiple
algorithms to match the complex features of roads. The fixed hand-crafted criteria based
on geometric and physical features are usually unsuitable and inefficient to large volumes
of remote sensing data, and they also cannot guarantee the connectivity of roads. With the
rapid development of deep learning technologies, the CNN-based methods make it possible
to obtain the results of large-scale remote sensing data [4]. Accordingly, the CNN-based
methods improve the accuracy of road extraction significantly compared with conventional
methods and have been the mainstream in road extraction due to the great feature learning
power of CNNs [7].

Road extraction can be viewed as a binary semantic segmentation problem in CNN-
based methods. Several works have been proposed and applied successfully for road
segmentation tasks, especially some with an encoder–decoder architecture. In [8], a Dense-
UNet model with similar architecture of encoder–decoder and dense connection units
is proposed to extract the road network from remote sensing images. Combining the
deep residual network, pyramid pooling module, and deep decoder, Han et al. [9] pro-
pose a novel deep residual and pyramid pooling network (DRPPNet) for extracting road
regions from high-resolution remote sensing images. A dual-attention capsule U-Net
(DA-CapsUNet) in [10] is designed for road maps extraction by combining the properties
of capsule representations and the features of attention mechanisms. Some other typical
works based on modified encoder–decoder structure include [4,11]. However, there are
still challenges in accurately extracting road maps, which are mainly due to the special
characteries of thin and elongated roads that are easily interpreted by tress, buildings and
shadows, etc. These difficulties lead to fragmentation of the road segmentation, and the
above methods cannot guarantee the connectivity of roads. A possible solution to these
problems is to enhance the embedding of linear features within the CNN architectures.

In this paper, we propose a multi-scale strip pooling network (MSPNet) to address the
above-mentioned problems. We first introduce an encoder–decoder architecture network
to learn the feature of roads, where the Pyramid Pooling module (PPM) is adopted to
increase the receptive field of feature points and learning ability of complex features in
different sub-regions. Inspired by the strip pooling being more aligned with the shapes of
roads that are long-span, narrow, and distributed continuously, we propose a multi-scale
strip pooling (MSP) module to learn the linear features of roads, which is placed in the
skip-connection paths. The MSP focuses on establishing relationships in the elongated
road region between road and occluded road pixels to guarantee the connectivity of roads.
Extensive experiments on popular benchmarks in terms of several metrics demonstrate the
superiority of our MSPNet compared with several state-of-the-art methods.

The main contributions of this work are summarized as follows.

• We propose an end-to-end multi-scale strip pooling network (MSPNet) with symmetric
encoder–decoder network design for the task of road extraction. This network design
can preserve spatial detailed information and therefore optimize the smoothness of
roads. In addition, it is also suitable for processing large-scale images.

• We develop a multi-scale strip pooling (MSP) module that utilizes strip pooling layers
to aggregate multiple long-range contextual information. The linear features of roads
are enhanced within CNN architecture, which thus improves the road connectivity.

• Ablation studies and comparative experiments on a benchmark DeepGlobe data set
are performed to verify the effectiveness of our proposed MSPNet.

The remaining of this article is organized as follows. Section 2 introduces the related
works of road extraction. In Section 3, we describe datasets, evaluation metrics, and
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implementation details, and we illustrate our proposed MSPNet in detail. Extensive
experiments are performed to evaluate the performance of the proposed method for road
extraction in Section 5. The conclusion and discussion are presented in Section 6.

2. Related Work

The literature research on automatic road extraction can be divided into two cate-
gories: expert knowledge-based methods and CNN-based ones. Although the CNN-based
methods improve the accuracy significantly due to the powerful feature-embedding abili-
ties, traditional methods on how to utilize the geometric and physical properties of roads
provide inspiration for future research. In this section, we briefly introduce these two
categories of methods.

2.1. Expert Knowledge-Based Methods

Conventional expert knowledge-based algorithms for road extraction usually utilize
geometric and physical features to match. Fu et al. [12] propose a road detection method
based on a Circular Projection (CP) matching and tracking strategy, which is beneficial
for twisty roads detection. Xu et al. [5] present a morphological method by combining
the automatic thresholding and morphological operation techniques to extract roads from
remote sensing images. Wang et al. [13] propose an automatic road extraction method
for vague aerial images with an improved Canny edge detection operator and Hough
line transform algorithm. Herumurti et al. [14] propose a road extraction based on zebra
crossings detection. Song et al. [15] develop an approach for road extraction utilizing
pixel spectral information for classification and image segmentation-derived object features.
However, these methods based on hand-designed road features are generally inefficient
and unsuitable for large-scale remote sensing data.

2.2. CNN-Based Methods

(1) Segmentation of Roads: Semantic segmentation is a basic and essential research
domain in computer vision. With the great success of deep learning in the field of semantic
segmentation, some studies [3,16,17] consider the road extraction as a binary semantic
segmentation problem using CNN-based approaches. Mnih et al. [18] firstly present a
neural network-based approach with restricted Boltzmann machine (RBM) for detecting
roads in high-resolution aerial images. Some deep learning models with encoder–decoder
structures such as UNet [19] and LinkNet [20] have been proven to be efficient in the field
of semantic segmentation, and their variants have also been widely proposed to segment
roads [8,10,21]. A semantic segmentation neural network, which combines the strengths
of residual learning and U-Net, is proposed for road area extraction by Zhang et al. [22].
Zhou et al. [23] follow the LinkNet architecture and employ dilated convolution layers
with both cascade mode and parallel mode to enlarge the receptive field. Zhou et al. [24]
propose an HsgNet, which inserts a Middle Block based on bilinear pooling into the middle
of LinkNet between the encoder and decoder. These methods usually perform better
compared with traditional methods, but they cannot guarantee the connectivity of roads
and thus produce fragmented road segments.

(2) Connectivity of Roads: Recently, several works are proposed to obtain segmenta-
tion results with better road connectivity. Li et al. [25] put forward a road extraction
method based on a LinkNet deep learning model, and at the pre-processing step, an aux-
iliary constraint task is designed to solve the connectivity problem caused by occlusions.
Zhou et al. [21] propose a fusion network (FuNet) with the fusion of remote sensing im-
agery and location data, and a universal iteration reinforcement (IteR) module is added
to enhance the ability of road connectivity reasoning. Meanwhile, Zhang et al. [26] intro-
duce a deep learning-based multistage framework to extract the road surface and road
centerline simultaneously. They initially segment roads with an FCN-based model, after
which an iterative search strategy is applied to track consecutive and complete road net-
works. However, the iterative steps are time-consuming. The authors of [6] employ a novel
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linearity index for the discrimination of elongated road segments from other objects and
customized tensor voting, which is utilized to fill missing parts of the road network. In
these approaches, pre-processing or post-processing is added to maintain the connectivity
of roads. However, they are time consuming and not suitable for some areas with high
road density and occlusions.

In conclusion, although the CNN-based methods have greatly improved the accuracy
of road extraction, most of them are simple extensions of the widely used CNN architectures
and do not consider the structural features of roads. Therefore, there are still margins to
improve the accuracy of road extraction in terms of topological connectivity.

3. Materials and Methods
3.1. Dataset

A public road extraction dataset DeepGlobe [27] is applied for evaluating the per-
formance of the proposed method. The dataset provides images with a pixel size of
1024 × 1024 and a pixel resolution of 50 cm/pixel which includes multiple scenes such
as cities, villages, wild suburbs, seashores, tropical rainforests, etc. The dataset contains
6226 images and corresponding annotated ground truth labels. In this paper, we divide it
into 4696 images for training and 1530 for testing following [4]. Some samples are shown
in Figure 1.

Figure 1. Examples of the original images and coressponding ground truth. The white represents the
road pixels and the black represents the non-road pixels.

Data enhancement is a common and useful strategy, which can enhance the general-
izability of deep learning models. In this paper, data enhancement is applied by flipping
and shifting the images randomly with a probability of 0.5. The visualization of data
enhancement is shown in Figure 2.

(a) (b) (c)

Figure 2. Samples of data augmentation adopted in this paper. (a) is the original image; (b) is the
result after shifting; (c) is the result after flipping.

3.2. Evaluation Metrics

In this paper, to evaluate the performance of our proposed method and other methods,
we use several metrics of overall accuracy (OA), Intersection over Union (IoU), Mean Inter-
section over Union (MIoU), and F1-score. These are the most widely used measurements in
both road extraction and other segmentation tasks [28]. They are defined by:

OA =
TP + TN

TP + TN + FP + FN
(1)
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IoU =
TP

TP + FP + FN
(2)

F1-score =
2× precision× recall

precision + recall
(3)

in which,

precision =
TP

TP + FP
, recall =

TP
TP + FN

(4)

where TP, FP, TN and FN are the true positive, false positive, true negative and false
negative, respectively.

3.3. Network Structure

We propose a multi-scale strip pooling network (MSPNet) for road extraction from
remote sensing images as illustrated in Figure 3. Encoder–decoder networks are applied to
many computer vision tasks, and their superiority has also been validated [19,29]. Therefore,
we apply one as the overall architecture of our proposed MSPNet. The ResNet [30] is widely
used in image recognition because of its outstanding performance for feature learning. The
ResNet contains a series of residual neural network models, which have different numbers
of layers. The CNN-based model with more layers generally improves the performance,
while it requires a higher computational cost and training time. We will provide analysis
of the performance and parameter cost for a ResNet series network in the next subsection.
Here, we employ ResNet-34 pre-trained on ImageNet [31] as the encoder.

SPPMSPMSPMSP

Decoder

1×1 Conv

3×3 Transposed 

Conv

SPP

Multi-Scale Strip PoolingMSP

Spatial Pyramid Pooling

7×7 Conv, stride=2

Input 

Prediction

 residual blocks

1×1 Conv

H × W
Encoder

H/4,H/4,64 H/8,H/8,128
H/16,H/16, 

256

H/16,H/16, 

512

Concatenate

Figure 3. Overall architecture of the proposed multi-scale strip pooling network (MSPNet). The
encoder module contains four residual blocks, the MSP module is applied to extracting linear features
of the roads, and the PPM module is used to learn complex features from different scales. The decoder
module is applied for gradually upsampling the resolution of the output feature map to get the final
per-pixel prediction.

The roads in remote sensing images are narrow, long span, and straight distribution
that often produce fragmented road segments. To improve the connectivity of roads, our
proposed multi-scale strip pooling (MSP) module is sequentially added to the first three
skip-connection paths to extract linear features of roads at multiple scales. Different from
the roads, most background objects have bulk shapes. Considering the advantages of
traditional pooling, we adopt the Pyramid Pooling Module (PPM) [32] to effectively learn
complex features that are added to the last skip-connection path. Due to the complex
distribution of roads and other objects, the use of PPM will enhance the learning ability
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of complex features and thus improve the performance. In the decoder module, we apply
transpose convolution for upsampling the feature maps to an appropriate size and 1 × 1
convolution for adjusting the channels of feature maps; then, we concatenated with the
corresponding output feature map of the MSP module in the skip-connection path.

3.4. Multi-Scale Strip Pooling

Most natural objects often have bulk shapes. Accordingly, the traditional kernel shape
of the pooling layer in most CNN architectures is designed to be square for feature learning,
which is suitable for most computer vision tasks. However, the roads in remote sensing
images are narrow, long-span and can be described as elongated areas. Traditional pooling
layers with square kernel shapes neglect the modeling of linear features of roads. By
contrast, the strip pooling is more in line with the shape of the roads, which utilizes a long
but narrow kernel to capture long-range dependencies in road regions and thus enhance
the embedding of linear features within CNN models. The strengthened learning ability
of linear features is helpful for retaining the connectivity and making the segmentation
results more complete.

Motivated by the above fact and the advantages of strip pooling, we develop a multi-
scale strip pooling module (MSP) to help our MSPNet generate road networks with better
connectivity. As shown in Figure 4, MSP uses multiple strip pooling layers with long but
narrow kernel shapes to capture multi-scale long-range context from horizontal and vertical
directions. In addition, the two directions we choose are also aligned with the distribution
of most roads in remote sensing images.

concat

1
 x

 1
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o
n

v

S
ig

m
o
id

Input  Output 

Identity

H×W

H×W

 
H

r
r


1r =

3r =

w
r

r


7r =

H×W

H×W

upsample

upsample

Figure 4. Multi-Scale Strip Pooling (MSP) Module.

Let X ∈ RH×W denote the input tensor for the MSP module, where H, W represent
the height and width. In the MSP module, X is first fed into two pathways along either the
horizontal or vertical spatial dimension, each of which contains a strip pooling layer with
long but narrow kernel shapes of H

r × r or r× w
r to extract linear features of roads, where r

is the scaling factor for adjusting the kernel sizes. Let yh
r and yv

r be the output feature maps
extracted by the two strip pooling layers along the horizontal or vertical direction. Then,
we upsample the two feature maps to the same size of input tensor by using a bilinear
upsampling layer. Afterwards, we combine the two feature maps of yh

r and yv
r to obtain yr,

which can be formulated as:

yr = yv
r + yh

r (5)
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The feature maps of yr contain rich long-range contextual information of roads with
different scales, which is related to the scaling factor r. The appropriate selection of the
scaling factor r is usually based on experience. In this paper, r is set to 1, 3 and 7, respectively,
to obtain three feature maps, containing information with three different scales. Like [32],
different scales of features are concatenated as the final pooling global feature, which can
be formulated as:

y = Concat(yr=1, yr=3, yr=7) (6)

Finally, the output of the MSP module can be written as:

Z = Scale(x, α( f (y))) (7)

where Scale(·, ·) represents element-wise multiplication, α is the sigmoid function and f is
a 1 × 1 convolution.

3.5. Loss Function

Road extraction can be formulated as a pixel-wise binary classification task in semantic
segmentation. Cross-entropy is defined as a measure of the differences between two
probability distributions for a given random variable. In the deep learning domain, the
binary cross-entropy (BCE) loss function is used to optimize models in binary classification
tasks. Assuming that the size of the input image is H ×W, then the BCE loss function is
calculated as follows:

LBCE = − 1
N

N

∑
i=1

[yi · log pi + (1− yi) · log(1− pi)] (8)

where yi is the ground truth denoting road or background for a given pixel in position
i, pi is the corresponding probability predicted by the model and N = H ×W. The BCE
loss function separately evaluates the predicted classes of each pixel and then averages all
pixels, so it can be considered that all pixels are learned equally. Thus, it is difficult to learn
the features of road pixels when there is a great imbalance in which there are far fewer road
pixels than background pixels. The dice-coefficient loss function is introduced to alleviate
the above problem caused by sample imbalance. Compared with the BCE loss function, the
dice-coefficient loss function directly supervises the similarity of prediction and ground
truth [33], which can be calculated as follows:

LDice = 1− 1
N

i=N

∑
i=1

2 · yi · pi
yi + pi

(9)

Due to the imbalance of road and non-road pixels, a simple combination of binary
cross-entropy (BCE) and dice-coefficient (Dice) loss functions is used to train deep learning
models to alleviate this problem in previous work [11,23], which can be defined as:

Lloss = LBCE + LDice (10)

This simple combination can be considered to have the same weight, which may lead
to suboptimal training results in road extraction tasks. Therefore, the final loss function
used in this paper is modified as follows:

Lloss = K · LBCE + (1− K) · LDice (11)

where the adjustment factor K is set to balance the loss contribution of the BCE and dice
loss function.
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4. Results
4.1. Implementation Details

The proposed method is implemented on the PyTorch machine learning framework
and is trained on two NVIDIA GeForce RTX 2080 Ti GPUs with 11 GB memory. The source
code will be made available at: https://github.com/Shenming-Qu/MSPNet (accessed on
25 March 2022).

During the experiment, due to the limitation of GPU memory size, the batch size is set
to 8. Following most previous works [34,35], we adopt stochastic gradient descent (SGD)
with momentum as the optimizer, and the parameters for SGD are set as follows: weight
decay is set to 0.0005, and momentum is set to 0.9. We adopt the “poly” learning rate policy
(base learning rate × (1− iter

max_iter
power

) to gradually reduce the learning rate, where the
base learning rate is set to 0.005 and power is set to 0.9. The number of training epoch is set
to 200 by default. Finally, we save the trained model for testing the performance on the
test set.

4.2. Ablation Experiment
4.2.1. Comparison of Backbone Networks

This subsection compares the performance and parameters of ResNet series networks
as the encoder in the proposed model, with the purpose of selecting the appropriate ResNet
model for subsequent research.

Figure 5 plots the progression of F1-score values when ResNet series models are used
as the backbone of the encoder during the training process. Table 1 provides summary
statistics for performance evaluated with the metrics of F1-score and the number of param-
eters. Through experiments, it is found that the performance of the network improves with
the increase of parameters. The ResNet with 101 parameter layers performs best in terms
of F1-score, 85.14% obtained, while the Resnet-18 performs the worst for its lowest number
of parameter layers, which is 3.35% lower than the former. Sequential performance was
achieved by ResNet-50 and ResNet-34, reaching F1-scores of 84.51% and 84.92%, respec-
tively. The above four models have similar results except for ResNet-18. However, it cannot
be ignored that ResNet-50 and ResNet-101 have several times the number of parameters
compared with ResNet-34, while it gives trivial performance gain. Since road extraction is
a simple binary segmentation problem that does not need to model complex background
information, the parameters in ResNet-34 are powerful enough for road extraction tasks. Fi-
nally, we choose the ResNet34 model as the backbone of the encoder based on performance
and parameter considerations.

0 20 40 60 80 100 120 140 160 180 200
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0.2
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0.5
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0.8
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1.0

F1
-s
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epoch

 ResNet18
 ResNet34
 ResNet50
 ResNet101

Figure 5. Progression of F1-score values for four ResNet series models as the backbone of the encoder
during training. The ResNet models are with 18 layers (ResNet18), 34 layers (ResNet34), 50 layers
(ResNet50) and 101 layers (ResNet101).

https://github.com/Shenming-Qu/MSPNet
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Table 1. Performance and parameters comparison of ResNet series models.

Settings #Params F1-Score

Backbone (with ResNet18) 80 M 81.79%
Backbone (with ResNet34) 118 M 84.51%
Backbone (with ResNet50) 830 M 84.92%
Backbone (with ResNet101) 902 M 85.14%

4.2.2. Influence of Hyper-Parameter K

To alleviate the problem caused by imbalance between road and background pixels as
described in Section 3.5, the loss function used to optimize our model contains a manually
selected hyper-parameter K, which is used to balance the loss contribution of BCE and dice loss
function. Therefore, choosing an appropriate hyper-parameter K may be beneficial to reach the
local optimum quickly and improve performance. We train our proposed model with different
values of hyper-parameter K in ascending orders, while other conditions are maintained the
same to select an optimal K. Considering representativeness and experiment quantity, K is set
to 0, 0.2, 0.4, 0.6, 0.8 and 1, respectively, to observe the performances in this paper.

The experiment results with different configurations of hyper-parameter K are shown
in Figure 6. It can be seen that the F1-score and MIoU are fluctuating as K increases. When
K = 2, it achieves a best MIoU score of 86.74% and F1-score of 84.51%. It is noted that
the performance is reduced to 82.28% in terms of F1-score with K = 0 and 79.41% with
K = 1; the comparison results show that the separate use of BCE (K = 0) or dice (K = 0)
loss function cannot obtain the optimal results for road extraction. As listed in Table 2,
the performance with K = 0.2 is also better than the simple combination of “BCE + Dice”,
which obtains improvements of 1.48% on the MIoU score and 0.75% on the F1-score.

0.0 0.2 0.4 0.6 0.8 1.0
0.70

0.75

0.80

0.85

0.90

0.8436

0.8674

0.8458
0.8363

0.8434

0.81970.8228

0.8451

0.8318

0.8139

0.8295

0.7941M
et
ric

K

  mIoU
  F1-Score

Figure 6. Comparison experiments of different values of the hyper-parameter K of the proposed
MSPNet, evaluated by F1-score and MIoU metrics.

Table 2. Performance and parameters comparison of ResNet series models.

Settings MIoU F1-Score

BCE + Dice 85.26% 83.76%
(1− K a) BCE + K a Dice 86.74% 84.51%

a The hyper-parameter K is set to 0.2 in this experiment.
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To further illustrate the influences of different weight combinations between dice and
BCE loss function, we plot the changes in the loss value during training with respect to the
number of epochs, as shown in Figure 7. It can be seen that the loss function curve with
K = 0.2 is smoother than another, which indicates that there is a reasonable allocation of
loss weights. To better optimize our model, we adopt K = 0.2 in the method evaluations.

0 20 40 60 80 100 120 140 160 180 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6
lo

ss
 v

al
ue

epoch

 (1-K)BCE+KDice
 BCE+Dice

Figure 7. Progression of loss values in the training process. K is set to 0.2 in this comparison experiment.

4.3. Comparison with State-of-the-Art Methods

To evaluate the performance of the proposed model for road extraction from remote
sensing images, we compared with several baseline and state-of-the-art methods: FCN [2],
ResUNet [22], D-LinkNet [23], and SE-DeepLab [36]. ResUNet is built with residual learning
and UNet; D-LinkNet is a variant of LinkNet architecture and added dilated convolution
layers in the center part, which has achieved best performance in the CVPR DeepGlobe
2018 Road Extraction Challenge [27]; SE-Deeplab employs the structure of Deeplab v3 and
incorporates a squeeze-and-excitation (SE) module. All these models are trained with the
same learning rates and employ the same data processing to ensure fairness.

Table 3 reports the quantitative experiment results of the compared methods on the
DeepGlobe dataset. The accuracy of FCN is lower than those of other methods, which is
mainly due to the loss of spatial details. The D-LinkNet with additional dilated convolution
layers outperforms ResUNet, obtaining an improvement of 1.5% on the IoU score and
0.67% on the F1-score. The design of an SE module in SE-DeepLab improves the IoU score
by 7.62% and the F1-score by 4.01% compared with the D-LinkNet.

Compared with those methods, the proposed MSPNet achieves the best performance
in OA, IoU, and F1-score. For example, MSPNet obtains an F1-score of 84.51% and an IoU
score of 73.64%, which are better than SE-DeepLab by 1.78% and 2.27%, respectively. We
attribute these significant performance gains to three factors. (1) Due to the symmetric
network design with skip-connections, the proposed MSPNet is able to preserve low-level
spatial details and thus extract roads with smoother boundaries from remote sensing
images. (2) The strip pooling design in our proposed model enhances the embedding of
linear features, which greatly improves the connectivity of roads; therefore, the proposed
MSP module can further improve the segmentation accuracy. (3) The joint supervision of
BCE and dice loss alleviates the class imbalance problem.
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Table 3. Results of the comparative experiments.

Methods OA (%) IoU (%) F1 (%)

FCN 96.52 60.51 74.85
ResUNet 97.45 62.74 77.89

D-LinkNet 97.61 64.24 78.56
CADUNet [37] / 66.38 78.75

DSE-LinkNet [3] / 69.57 76.73
HsgNet [24] / / 82.90
SE-Deeplab 98.12 71.86 82.57

MSPNet (ours) 98.71 73.64 84.51

The partially visualized segmentation results of our MSPNet and other methods are il-
lustrated in Figure 8, which shows three examples from different scenes. The corresponding
distributions of FP and FN are plotted in Figure 9. The results extracted by FCN are worse
than those of other methods, which is mainly caused by the loss of spatial information after
multiple downsampling operations in its early layers. The results of UNet and D-LinkNet
are similar, and they also both contain many missing connections and FP pixels. The
SE-Deeplab shows better road connectivity compared with other methods, and it obtains
the second-best results. In comparison, our proposed method extracts roads with better
connectivity and smoother road edges. The roads segmented by other methods may be
interrupted especially in some regions where occlusions exist, while our MSPNet recovers
the connectivity very well by effectively capturing long-range dependencies along road
regions. For example, in the results of rural areas (the first row in Figure 8), there are several
residential houses in the upper-right and lower-left corner of the image, which are planted
many trees on both sides; the results extracted by other methods contain some broken
road segments and fail to maintain the connectivity, but the result extracted by MSPNet
is consistent with the ground truth. In addition, in the results of densely connected road
areas (the second and third row in Figure 8), other methods recognize some branch roads
as background, while the proposed methods are consistent with those of ground truth, and
very few FP pixels exist. These visualized segmentation results verify the superiority of
our MSPNet in the task of road extraction from remote sensing images.

Figure 8. Visualization of segmentation results of proposed MSPNet and other methods. (a) Test
image. (b) Ground Truth. (c–g) Road extraction results of FCN, ResUNet, D-LinkNet, SE-Deeplab
and our MSPNet.
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Figure 9. (a,b) respectively plot the comparison methods on misclassification percentages of false
positive (FP) and false negative (FN) in the results of three samples in Figure 8.

5. Discussion

The above experimental results demonstrates that our proposed MSPNet obtains new
competitive performance over other state-of-the-art methods. However, the road maps
extracted by all the considered methods still have some interruptions. This situation exists
in some special surface environments. We show two samples as illustrated in Figure 10.
The road regions are severely occluded by a large number of trees that are difficult to
distinguish in the upper-left corner of Figure 10 (the first row). Figure 10 (the second row)
shows some areas of farmland, and the color of the roads is very similar to the surrounding
environment. Our MSPNet fails to predicate complete road maps in these challenging
regions. In the future studies, some other prior information will be introduced to segment
the roads in these challenging regions, such as the direction information of the roads, which
may be helpfull to generate more complete results in those occluded regions.

Figure 10. Two examples that our MSPNet fails. (a) Test image. (b) Ground Truth. (c) Segmentation
results of our MSPNet.

To fairly evaluate different methods, as shown in Table 4, we list the floating point
operations per second (FLOPS) and inference time of our MSPNet and several compared
methods. The comparison experiments of all methods are run on a workstation with a
NVIDIA RTX 2080Ti GPU. For fair comparison, the FLOPs and inference time are calculated
based on an input size of 1024 × 1024. It is seen that the proposed MSPNet obtains
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competitive inference time, while it has a reasonable computational cost compared with
other methods. The comparison results illustrate that our proposed MSPNet is suitable for
road extraction tasks from remote sensing images.

During the training process, we apply data augmentation for improving the gen-
eralization of the proposed model. We also perform comparative experiments to show
the contribution of data augmentation, as shown in Table 5. We find that it gives an im-
provement of 0.38 in terms of IoU and 0.44 in F1-score. The results demonstrate that data
augmentation is a useful strategy to improve performance.

Table 4. FLOPS and inference time of our proposed MSPNet and other methods. The inference times
are calculated using 10 test images and then averaged.

Methods FLOPS (Gbps) Interfence (s)

FCN 97.47 0.097
ResUNet 191.36 0.145

D-LinkNet 84.51 0.123
SE-Deeplab 223.65 0.176

MSPNet(ours) 100.49 0.106

Table 5. Comparative study of data enhancement. # and! denote our use and non-use of data
augmentation strategies, respectively.

Data Augmentation IoU (%) F1 (%)

# 73.26 84.07
! 73.64 84.51

6. Conclusions

In this paper, we propose an end-to-end road segmentation network for road extrac-
tion tasks from remote sensing images. Although the CNN-based methods have greatly
improved the accuracy of road extraction over traditional approaches, the road connectivity
should be further improved to generate more complete results. As one of the important
geometric topological properties, road connectivity is necessary for autonomous driving,
vehicle navigation, and route planning. However, the existing CNN-based methods of-
ten fail to predict road connectivity and thus produce fragmented road segments. As a
comparison, our proposed MSPNet is able to generate the road segmentation results with
better connectivity and therefore meet the requirements of large-scale remote sensing data
analysis. Specifically, the proposed MSPNet strengthens the linear feature of roads by
introducing strip pooling layers, where its pooling kernel shapes are more in line with
the roads. Accordingly, a multi-scale strip (MSP) module is developed to learn multiple
long-range contextual information. In this paper, the widely used design of a symmetric
encoder–decoder network with skip-connections is adopted to the low-level features to
recover the spatial details, which is beneficial for parsing high-resolution remote sensing
images. What is more, to alleviate the problem caused by unbalanced road and background
pixels, we have performed ablation experiments to adjust the loss contributions between
cross entropy and dice-coefficient loss functions to suit the task of road extraction. We have
also compared the performance and computational cost of ResNet series models as the
backbone network to select an appropriate backbone. Experimental results on a popular
benchmark DeepGlobe dataset show the superiority of our proposed MSPNet compared
with several mainstream methods.

As discussed in the above section, some road types that have similar spectral and
texture to background are not well identified, and there are still some discontinuities.
Since road extraction can be viewed as a binary classification problem, it may be useful to
suppress background noise to improve the generalization ability of the road segmentation
model. This is left for our future studies.
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