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Abstract: A homemade defective model of an induction motor was created by the laboratory team
to acquire the vibration acceleration signals of five operating states of an induction motor under
different loads. Two major learning models, namely a deep convolutional generative adversarial
network (DCGAN) and a convolutional neural network, were applied for fault diagnosis of the
induction motor to the problem of an imbalanced training dataset. Two datasets were studied and
analyzed: a sufficient and balanced training dataset and insufficient and imbalanced training data.
When the training datasets were adequate and balanced, time–frequency analysis was advantageous
for fault diagnosis at different loads, with the diagnostic accuracy achieving 95.06% and 96.38%. For
the insufficient and imbalanced training dataset, regardless of the signal preprocessing method, the
more imbalanced the training dataset, the lower the diagnostic accuracy was for the testing dataset.
Samples generated by DCGAN were found to exhibit 80% similarity with the actual data through
comparison. By oversampling the imbalanced dataset, DCGAN achieved a 90% diagnostic accuracy,
close to the accuracy achieved using a balanced dataset. Among all oversampling techniques, the
pro-balanced method yielded the optimal result. The diagnostic accuracy reached 85% in the cross-
load test, indicating that the generated data had successfully learned the different fault features that
validate the DCGAN’s ability to learn parts of input signals.

Keywords: fault diagnosis; neural networks; unsupervised learn fault diagnosis; frequency-domain
analysis

1. Introduction

The intelligent fault diagnosis used on induction motors has increased in recent
years. Since induction motors play a significant role in the industry to ensure operational
security and avoid faults occurrence, fault detection has become one of the research goals.
The related technique can divide into statistical models and machine learning methods.
Among them, statistical-based models involve procedures such as the-Wiener process [1],
particle filter [2], and Kalman filter [3]. The statistical model requires the knowledge of the
professional field to manually extract the characteristics of the signal and perform statistical
fault classification, resulting in a higher threshold for establishing a fault diagnosis model.
Therefore, there are more machine learning methods widely used in the fault diagnosis of
induction motors, including convolutional neural networks (CNN) [4], recurrent neural
networks (RNN) [5], Artificial Neural Network (ANN) [6], deep autoencoders [7], etc. The
above methods have achieved good accuracy in the fault diagnosis of induction motors.
Meanwhile, they significantly reduced manually extracting features’ labor and time costs.
However, the statistical models and machine learning methods above can only obtain high
classification accuracy with sufficient and balanced data. Under general conditions, the
induction motors are mainly operating in a normal and healthy state, which caused mostly
unbalanced data to be captured.
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Therefore, the performance and practicability of the fault diagnosis model are reduced,
so the unbalanced training data become one of the unsolved tasks in diagnostic research.
At present, the methods used to solve the problem of data imbalance are mostly under-
sampling and over-sampling. Among them, under-sampling reduces the number of most
datasets to balance the data, while over-sampling [8] is the opposite. To increase the number
of minority datasets to expand tradition, among the methods for generating similar data,
the Synthetic Minority Over-Sampling Technique (SMOTE) [9] and Adaptive synthesis
were standard in the past. The synthetic Over-Sampling Approach (ADASYN) [10] is
to synthesize new data through interpolation between actual data and the data of the
nearest adjacent edge. Although this method can obtain newly generated data, if there
are too little data, there is a problem of overfitting, which makes the generation effect
unsuitable, so the method of deep learning is extended. The most representative solution
is Generative Adversarial Network (GAN) [11]. In [12–14], the author uses GAN to train
noise distribution by learning the actual vibration signal, and then generating realistic data
to balance and expand the available dataset. Using the experiment proves that this method
provides an effective tool for fault diagnosis in the environment of data imbalance and noise.
The authors in [15] proposed an unsupervised learning method for bearing fault diagnosis
by combining the Short-Time Fourier Transform (STFT) and the Classification Generative
Confrontation Network (CatGAN). In the experimental analysis, the effectiveness of the
proposed method is verified, including high diagnostic ability and resistance to load
changes. The authors in [16] proposed a fault diagnosis method for rotating electric
machines using a GAN with multiple sensing signal fusion technologies (Data-Fusion).
Through experiments on two rotating machinery datasets and comparison with other data
generation techniques, the superiority of this method in fault diagnosis application is
verified. Finally, given the current data imbalance research, most of them are aimed at
different improved versions of GAN to improve fault diagnosis accuracy. However, there
has not been a comprehensive comparison of different signal processing, load conditions,
and data enhancement methods in the study of training data imbalance. This is why
our study used the advantages of the convolution operation of the Deep Convolution
Generation Network (DCGAN) to generate similar vibration acceleration signals to balance
the insufficient training data. Then, we performed the CNN fault diagnosis classification
to complete the fault diagnosis of induction motors. By analyzing the experiment case to
explore the impact of different signal processing, load conditions, unbalanced training data,
and data enhancement techniques on the fault diagnosis of induction motors, we verified
the feasibility of generating data with the Deep Convolutional Generation Confrontation
Network (DCGAN).

2. Establishment of Induction Motor Defect Model and Fault Diagnosis Technology

This section first introduces the statistics of common fault types and occurrence rates
of induction motors used as a reference for the defect models of induction motors by using
experimental measurement platform equipment to extract the operating data of induction
motors. Meanwhile, we collect the literature and technology of induction motor fault
diagnosis worldwide to summarize the pros and cons of fault diagnosis methods and
propose the future development direction of this field.

Interventional studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided support and the corresponding
moral approval code.

2.1. Establishment of Common Fault Types and Defect Model of Induction Motors

Induction motors play vital roles in the industry; they also are essential equipment in
various fields. Ref. [17], the sources of induction motor faults can be divided into internal
and external factors, and the types of faults can result from mechanical and electrical causes.
Figure 1 shows the statistics of the types of common induction motors faults including
bearing faults, stator faults, and rotor faults [18].
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fer learning methods, as shown in Table 1. First, for formal machine learning, most of them 
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tify the characteristics of various operating conditions, which significantly reduces the er-
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the actual operating conditions of induction motors because most induction motors oper-

Figure 1. Induction Motor Fault Type Statistics.

In addition, this research has made four induction motor defect models based on the
statistics of fault types in Figure 1, including bearing outer ring damage, stator turn short
circuit, rotor broken bars, and centering faults, as shown in Figure 2. We captured different
operating status data by the laboratory measurement platform under both full loads as
well as half load operation.
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2.2. Induction Motor Fault Diagnosis Technology

The main tasks of induction motor fault diagnosis are to confirm whether the equip-
ment is normal or not, discover potential equipment failures, and predict equipment failure
trends. The authors in [19], statistics on the evolution and classification of fault diagnosis
methods can be divided into traditional machine learning, deep learning, and transfer
learning methods, as shown in Table 1. First, for formal machine learning, most of them
require professional knowledge to extract specific fault characteristics so that the diagnostic
model can identify different operating states. The noted methods include SVM, ANN,
etc. However, besides the generalization of the diagnostic model being low, the methods
require a lot of investment from the workforce, and the professional knowledge used in
feature extraction is not conducive to coping with the vast data in the future. Second,
the most significant advantage of the deep learning method is that it can automatically
identify the characteristics of various operating conditions, which significantly reduces the
error of manually extracting features. The noted methods include CNN, RNN, GAN, etc.
Although deep learning has made many breakthroughs in fault diagnosis, it needs a large,
abundant, and balanced dataset to build a deep learning model. This is not in line with the
actual operating conditions of induction motors because most induction motors operate
under the normal stage. The fault data are usually hard to obtain resulting in the inability
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to obtain practical training for deep learning, and dramatically reduces the accuracy of
diagnosis. Therefore, transfer learning has become a new research direction in recent years.
It is mainly used to learn diagnostic knowledge from one or more diagnostic tasks and
apply it to other different but related tasks. The methods include GAN-based methods. In
Ref. [20], the author mentioned the feature of scarce motor fault data, which caused the
collected data to be mostly unbalanced, and poor efficiency of the diagnosis. Therefore,
this research solves the problem of unbalanced category data and completes the research
of induction motor fault diagnosis through the method of Deep Convolution Generative
Countermeasure Network (DCGAN).

Table 1. Intelligent Fault Diagnosis Technology Integration.

Past Nowadays Future

Algorithm Machine Learning Deep Learning Transfer Learning

Year 1980~2010 2010~2019 2019~

Methods
Professional system-based

method [21], ANN, SVM [22],
Other Intelligent method [23]

AE [24], DBN [25], CNN,
ResNet [26] method

Feature-based approach [27], GAN
[28], Case-based approach [29],

Parametric method [30]

Feature

Manually extract fault features
Select specific features for training,
so that the diagnostic model can

automatically recognize the
machine’s operating status.

Automatically learn the fault
features from the original data, and
no longer extract features manually

Learn diagnostic knowledge from one
or more diagnostic tasks to realize
other related but different tasks.

Disadvantage

Feature extraction requires a lot of
manpower and expertise.

Low generalization reduces
diagnostic accuracy.

Collect a large amount of normal
operation data but insufficient

failure data collection.

Under continuous research, and still
not mature enough.

3. Application of Induction Motor Fault Diagnosis to The Problem of Unbalanced
Training Data

This section introduces induction motors’ signal processing, data imbalance, solution
strategy, and fault diagnosis methods. Finally, we summarize the process of the induction
motor fault diagnosis system including the Deep Convolutional Adversarial Generative
Model (DCGAN) and Convolutional Neural Network (CNN).

3.1. Signal Processing Method

When the induction motor is operating, the signals are in a non-stationary state,
making it difficult for the diagnostic model to extract features effectively. Therefore, signal
processing is first used to increase the readability of the data. In this study, four signal
processing methods will be used to compare the advantages and disadvantages of the case
analysis. The following will introduce them one by one.

3.1.1. 2D-Transform (2T)

In this stage, we divided the captured unstable signal into segments and converted
each piece into an M × M image matrix. as shown in Figure 3. Then, by storing it in a
two-dimensional matrix, we can use the amplitude as information for fault diagnosis.
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3.1.2. Fast Fourier Transform Two-Dimensional (FFT)

The Fast Fourier Transform is a linear integral transform that is often used when trans-
forming the signal between the time domain and the frequency domain. The conversion
formula is shown in Equation (1), and f represents the frequency. This research used the
same processing method as the time domain with two-dimensional matrix to convert the
frequency domain signal into an M × M image matrix, which is used as the input for
subsequent induction motor fault diagnosis and analysis.

X( f )
∞∫
−∞

x(t)e−j2π f tdt (1)

3.1.3. Short-Time Fourier Transform (STFT)

Time–frequency analysis can know the instantaneous frequency with amplitude chang-
ing at each moment, and Short-Time Fourier Transform being one of the methods. It mainly
decomposes the entire time-domain signal into countless pieces of equal length, and then
performs the Fourier transform through a fixed-length window. Then, we can obtain the
frequency distribution that occurs at a particular time with the Fourier transform. The
conversion formula is shown in Equation (2), where t is time and f is the frequency.

X(t, f )
∞∫
−∞

x(t− τ)x(τ)e−i2π f τdτ (2)

3.1.4. Wavelet Transform (WT)

Another common time frequency that replaces the infinitely long trigonometric func-
tion into the attenuating mother wavelet function based on a finite length. By means of
scaling and translation of the mother wavelet to match the input signal, we can obtain
the relationship between time and frequency. The conversion relationship is shown in
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Equation (3) where a is the scale and is inversely proportional with frequency. τ is the
translation corresponding to time.

WT(a, τ) =
1√
a

∞∫
−∞

f (t) ∗ ϕ(
t− τ

a
)dt (3)

3.2. Strategies to Solve the Problem of Data Imbalance

In the application of induction motor fault diagnosis, the training set data can be
divided into category data balance and data imbalance. At the same time, there are apparent
differences in the impact on the diagnosis model. When the training data are balanced, the
diagnostic model can effectively distinguish the features of different categories and identify
the test samples with high accuracy. However, when the training data are unbalanced, the
model tends to be overly inclined to the majority of clusters and causes the diagnostic model
to inefficiently generalize the test samples and reduce the classification accuracy. Therefore,
data-driven models are usually not easy to distinguish machine failures in this situation,
as shown in Figure 4. In Ref. [31], the author mentioned the resolution strategies used in
imbalance data including, under-sampling and over-sampling. This research combines
data enhancement technology to highlight the method’s effectiveness on the problem.
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3.3. Fault Diagnosis Method

This section will describe the fault diagnosis methods for data imbalance, including the
Deep Convolutional Generative Adversarial Network (DCGAN) used to generate similar
data and the Convolutional Neural Network (CNN), which is the critical point of fault
diagnosis and classification.

3.3.1. Deep Convolutional Generative Adversarial Network

Generative Adversarial Network (GAN) is a more advanced deep learning method
in recent years that is composed of a discriminator (D) and a generator (G). Among them,
the discriminator is used to distinguish whether the input is to generate samples or actual
data. The generator learns the characteristic distribution of existing data from random
noise. After many iterations, the information of the actual data will slowly be fitted until
the discriminator cannot determine whether the data are actual data or a fake sample
generated by the generator. GAN is widely used in numeral fields, and this research uses
an improved version of the Ref. [32] Deep Convolutional Adversarial Generative Network
(DCGAN) for subsequent case analysis. Figure 5 is the generative model composed of
convolution suitable for image processing and generation.
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3.3.2. Convolutional Neural Network (CNN)

The classifier architecture proposed in this paper consists of three convolutional layers
and two dense layers. Figure 6 is the Convolutional Neural Network model architecture.
The input layer of the CNN model consists of three channels of RGB images of size 80 × 80.
The first convolutional layer has 80 output filters with a kernel size of 5 × 5. Two other
convolutional layers follow the first convolutional layer with output filter sizes of 8, 16,
and 32, and a 3 × 3 kernel. These all use the kernel. All these convolutional layers use the
“same” padding after each convolutional layer, a max-pooling layer of 3 × 3. The outputs
of these three convolutional layers are flattened and connected to two dense layers and
their respective dropout layers. The first thick layer has 128 neurons with a dropout factor
of 0.25, and the second dense layer has 32 neurons with a dropout value of 0.2. The ReLU
activation function was applied to all layers. A softmax activation function was used in the
output layer, where the layer size is the same as the number of data classes. In the case of
binary types, the sigmoid activation function was applied by convention, with only one
hidden unit. The model architecture with the number of parameters is shown in Table 2. All
models were generated in Python using the Keras library. The total number of parameters
and trainable parameters for this model is 21,149.
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Table 2. Parameters of the proposed CNN model.

Layer (Type) Output Shape Param

block1_conv2_1 (Conv2D) (None, 80, 80, 8) 808
block1_MaxPooling (None, 26, 26, 8) 0

block2_conv2_2 (None, 26, 26, 16) 3216
block2_MaxPooling (None, 8, 8, 16) 0

block2_conv2_3 (None, 8, 8, 32) 12,832
block3_MaxPooling (None, 2, 2, 32) 0

dropout (None, 2, 2, 32) 0
flatten (None, 128) 0

final_output_2 (Dense) (None, 32) 4128
dropout_1 (None, 32) 0

class_output (Dense) (None, 5) 165

3.4. Induction Motor Fault Diagnosis Process

This research aims to simulate the problem of unbalanced training data when dealing
with the fault diagnosis of induction motors. The research process includes four stages: data
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acquisition, data generation, signal processing, and fault classification, as shown in Figure 7.
Among them, the fault characteristics of the vibration signal of the induction motor under
different operating conditions are more significant than the electrical signal. This is more
helpful for the classification effect of the fault diagnosis. Therefore, this research set the
vibration acceleration signal as the analysis object and the imbalance ratio of the training
datasets to 0.1 as a criterion for whether the training data are balanced. If the imbalance
ratio of the training data is much less than 0.1, it represents the uneven distribution of
the training data. The fault diagnosis process in this research is to determine whether the
training dataset is sufficient and balanced. The CNN fault diagnosis classification is made
directly through signal pre-processing if the dataset is sufficient and balanced. On the
contrary, the DCGAN generates new samples to fill in the insufficient training data, adjusts
the data imbalance ratio to one, and then performs CNN fault diagnosis classification to
explore the feasibility of DCGAN on the imbalance of training data.
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4. Experimental Case Analysis and Discussion

This section first describes the data source of the induction motor and the design of
the dataset. Then, we analyze the experimental case covering the comparison of different
signal processing methods, the problem of data imbalance, and the feasibility of DCGAN.

4.1. Escription of Induction Motor Dataset

The data source of this research is a laboratory-made defect model of a small induction
motor, and we obtained the operating status data through a data measurement platform.
The sampling frequency was set to 20 kHz, and the sampling time was 5 s.

In addition, there are five active state types in the self-made induction motor defect
model of this research, including healthy status (Healthy, H), bearing outer ring damage
(Bearing, B), broken rotor bars (Rotor, R), short circuit between stator turns (Stator, S),
and centering failure (Misaligned, M). Various operating conditions were operated under
full load and half load to facilitate the acquisition of operating data under different loads.
Figure 8a,b shows the distribution of vibration acceleration signals in the time domain and
frequency spectrum in various operating conditions under other loads.
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Finally, in this research, as shown in Table 3, the captured initial vibration acceleration
signal was converted through different signal processing and used as the input source
of the diagnostic model. As shown in Table 4, we designed the corresponding dataset
according to the needs of the case analysis. In terms of actual balanced data, they were
mainly used as a control group for data imbalance cases, as shown in Table 5. In terms of
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insufficient data, it was assumed that there were only 100,000 points (62 samples) of data
for each operating state used as the input of DCGAN to train the generator and amplify the
data, as shown in Table 6. Regarding the imbalance of training data, the imbalance rate
was used to define the degree of imbalance of the data, as shown in Table 6, to discuss the
problem of imbalance of data categories.

Table 3. Signal Pre-Processing.

Sampling Length Pre-Treatment Method Resolution Geometry Processing Dimension

1600 2T (460, 460) Scaling (80, 80)
1600 FFT (460, 460) Scaling (80, 80)
1600 STFT (607, 607) Scaling (80, 80)
1600 WT (607, 607) Scaling (80, 80)

Table 4. Actual data with sufficient dataset.

Healthy Condition Health Bearing Stator Rotor Asymmetry Load

Label 0 1 2 3 4

Dataset (H1) Training set 1500 1500 1500 1500 1500 50%
Dataset (H1) Testing set 500 500 500 500 500 50%
Dataset (F2) Training set 1500 1500 1500 1500 1500 100%
Dataset (F2) Testing set 500 500 500 500 500 100%
Dataset (M1) Training set 1500 1500 1500 1500 1500 Mix
Dataset (M2) Testing set 500 500 500 500 500 Mix

Table 5. Actual data with insufficient dataset.

Points Sampling Length Number of Samples Load Condition

100,000 1600 62 Half-load

Table 6. Actual data with Imbalance dataset.

Healthy Condition Health Bearing Stator Rotor Asymmetry Imbalance Rate

Label 0 1 2 3 4

Dataset (C1) 500 150 150 150 150 1:0.3
Dataset (C1) 500 50 50 50 50 1:0.1
Dataset (C3) 500 25 25 25 25 1:0.05

4.2. Sufficient Data Balance—Comparison of Different Signal Processing Methods

In order to explore the problem of unbalanced training data, this section uses balanced
data and sufficient classification accuracy as a control group for subsequent experimental
cases. The input data are shown in Tables 3 and 4. After the input signal is pre-processed
by four different signals, the results are shown in Table 6. In the time–frequency analysis,
the window length is 64, the Morlet wavelet is used as the STFT-CNN and WT-CNN
parameters. It can be observed from Table 7 that under the same load, the four signal
pre-processing can obtain high accuracy. When the load is changed, the accuracy of the
time domain signal (2T) is significantly reduced if the low-load test is used as the training
set. Only about 70% accuracy is left in the time-domain signal and only about 82% accuracy
in the spectrum signal, which shows that the single signal processing of the two is not
sound in fault diagnosis for changing load. However, in any time–frequency analysis, both
methods reach 95.06% and 96.38% accuracy rates, which highlights that time–frequency
analysis has more advantages in fault diagnosis and is less affected by load changes. In the
same way, it can be verified in the cross-domain load test, which uses the high load test as
the training set, and it can be found from Table 7 that we can obtain higher accuracy by
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using the low load side as the training set. Finally, the overall average accuracy is more
observable. The accuracy of the signal after STFT and WT can reach up to 97%, which
is significantly higher than the other two. Time–frequency analysis is effective in fault
diagnosis, and frequency-domain signals are better than time-domain signals to handle
problems with different load conditions.

Table 7. Comparison of Different Signal Processing Accuracy.

Model
Classification Accuracy of Operating Status

* H1 H1→F2 F1 F1→H2 M1 M1→F2 M1→H2 Avg.

2T-CNN 94.45% 71.83% 99.54% 60.75% 99.34% 98.93% 99.13% 89.14%
FFT-CNN 99.99% 82.21% 99.99% 86.17% 99.97% 95.79% 99.97% 94.87%

STFT-CNN 99.97% 95.06% 99.94% 85.37% 99.95% 99.72% 99.81% 97.12%
WT-CNN 99.89% 96.38% 99.97% 86.59% 99.92% 99.63% 99.93% 97.47%

* H1: Train with H1 dataset and test with H1 dataset.

4.3. Generative Adversarial Network—Actual and Generative Graph Comparison

At the beginning of this section, we took advantage of the imbalanced data as found
in Table 6 for the input of DCGAN. Then, used it to fit similar generated data and balanced
and expanded the insufficient training dataset. This research used the bearing outer ring
injury as an example to show the result of generating data. Figure 9 shows the process
of DCGAN training, and it can be seen that the discriminator can reach a convergence
accuracy of 70% to 80% after training. When the model reaches stable training, it can be
observed in Figure 10 that generated data and the actual data are not the same. However,
after signal processing, there are similar features. It showed that DCGAN had learned key
features on the input signal, which showed the superiority of this method in extracting
features. In the same way, the method can be applied to other operating conditions to
obtain generative models of various operating conditions.
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4.4. Imbalance Dataset

Through the generator trained by DCGAN in each operating state, the subsequent
data can be generated by the generator and expand the insufficient data. It can be divided
into three cases to discuss the effectiveness of the generated data.

4.4.1. The Strategy of Data Imbalance Resolution

In Table 8, when the training data are sufficient and balanced, we can obtain the 99%
results of any time–frequency analysis, and the balanced dataset generated by DCGAN
can obtain a 75% result after the wavelet transformation. When the training data are
unbalanced, it can be seen in Table 9. Under signal processing, the smaller the unbalance
ratio, the lower the accuracy rate obtained by the test set. It indicates that the data-
driven fault diagnosis method is susceptible to an unbalanced training dataset. In the
processing of down-sampling, we can improve the accuracy of the diagnostic model
with a balanced dataset even if the data amount is insufficient; in the processing of over-
sampling-balance (Pro-Balanced), the accuracy rate is increased to more than 90%, which is
a significant improvement, and can even be close to the level of the actual balanced dataset;
in the processing of over-sampling-expanding (Pro-Expand), the improved accuracy is
very similar to that of over-sampling-balanced (Pro-Balanced). It can be seen that the
oversampling method has advantages in the solution strategy, which can be close to the
accuracy of the actual balanced dataset with high efficiency of over-sampling-balanced (Pro-
Balanced). It shows the validity and superiority of DCGAN in generating a new sample.
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Table 8. Comparison of different signal processing.

Signal Processing Real Data Balanced DCGAN Generated Data (All-Fake)

WT 99.88% 76.22%
STFT 99.32% 65.71%

Table 9. Comparison of different signal processing and data imbalance.

Signal Processing Unbalanced Rate Imbalanced Under-Sampling Pro-Balanced Pro-Expand

WT
C1 90.57% 90.61% 98.6% 99.2%
C2 31.02% 47.67% 96.07% 98.98%
C3 20.58% 36.35% 94.39% 91.97%

STFT
C1 96.36% 88.21% 98% 97.51%
C2 57.77% 61.17% 92.82% 90.57%
C3 21.86% 44.42% 88.52% 86.71%

Actual balance dataset: All datasets are actual datasets and each type has 500 sheets. Generated balanced dataset:
500 pieces of generated data for each type are used as the training set. Down-sampling: Take the minimum
number of samples in each dataset type as the balanced number of each type. Over-sampling-balance: Add a few
types of samples to the number of heath conditions. Over-sampling-expansion: Amplify the total amount of data
to 7500 sheets by generated data.

4.4.2. Enhancement of Other Dataset

The image processing technology is another standard data enhancement method.
However, the time–frequency diagram is composed of vibration acceleration signals in
a sequence of numbers; it is not suitable for generating images in a rotating manner.
Therefore, this research case chooses vertical (horizontal) translation, scaling, and color
enhancement to expand the short dataset. In Table 10, we compare it with the results of
DCGAN. It can be found that if all generated data are used as the training set, the test
accuracy of DCGAN under the wavelet transformation can be close to 80%, while the
image processing technology is about 70%. In Table 11, for data after the over-sampling-
balanced (Pro-Balanced) processing, both the two data enhancement technologies can
increase the accuracy of the unbalanced training dataset to more than 90%. It is close to the
accuracy of the actual balanced dataset, and only a slight difference in accuracy between the
two. After processing the over-sampling-expanding (Pro-Balanced) method, there was no
noticeable difference in the test accuracy of the two data enhancement techniques. However,
the training dataset expanded by DCGAN had higher accuracy than image processing
technology under wavelet transformation. If the deep learning method (DCGAN) can be
effectively adjusted, its accuracy can be higher than image processing technology.

Table 10. Comparison of DCGAN and image processing techniques.

Signal Processing DCGAN Generated Data (All-Fake) Image Processing Generated Data (All-Fake)

WT 76.22% 70.72%
STFT 65.71% 67.77%

Table 11. Comparison of DCGAN and image processing techniques.

Signal Processing Unbalanced Rate Imbalanced
DCGAN Image Processing Technology

Pro-Balanced Pro-Expand Pro-Balanced Pro-Expand

WT
C1 90.57% 90.60% 99.20% 98.72% 97.40%
C2 31.02% 96.07% 98.98% 96.96% 97.08%
C3 20.58% 94.39% 91.97% 88.45% 95.31%

STFT
C1 96.36% 98.00% 97.51% 96.84% 95.71%
C2 57.77% 92.82% 90.57% 91.45% 94.43%
C3 21.86% 88.52% 86.71% 88.17% 91.02%
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4.4.3. Different Load Condition

In the case analysis in Table 12, it is mentioned that the accuracy of different signal
processing under the actual data is sufficient and balanced. This section discusses the
impact of generated data on the cross-load diagnosis. Take time–frequency analysis and
low-load measurement as the training set. For example, the unbalanced training data are
expanded through the over-sampling-expanding (Pro-Expand) method. The data in the
training set can make the accuracy rate comparison under the same number. The result of
the comparison is shown in Table 8. We can obtain the time–frequency analysis and 95%
accuracy in the cross-load test when the training data are adequately balanced. However,
under the imbalance of the training data, the accuracy of the cross-load test with wavelet
transformation can still reach close to 85%. We also found that if the imbalance rate is lower,
the accuracy rate is lower. When the data are unbalanced, the DCGAN generated data and
the amplified training dataset cannot achieve the diagnosis effect of the actual and balanced
data. However, it still has an accuracy rate of 80%, and through VGG16 classification, an
accuracy rate of up to 94.20% can be obtained. This shows that the generated data have
learned distinguishable fault characteristics, and it also shows the ability of DCGAN to
learn the characteristics of the input signal.

Table 12. Comparison of accuracy of data augmentation technology.

Condition Method Training Set Testing Set Accuracy Ratio

Condition1:
Balanced data
(Actual data)

2T-CNN H1

F2
(Actual data)

71.83%
FFT-CNN H1 82.21%

STFT-CNN H1 95.06%
WT-CNN H1 96.38%

Condition2:
Imbalanced data

(Add generated data)

STFT-GAN-CNN
C1-expand 84.25%
C2-expand 77.6%
C3-expand 73.93%

WT-GAN-CNN
C1-expand 83.03%
C2-expand 79.07%
C3-expand 78.68%

Condition3:
Imbalanced data

(Different CNN models)

STFT-GAN-CNN
(ResNet50)

C1-expand 85.03
C2-expand 82.27
C3-expand 80.63

STFT-GAN-CNN
(VGG16)

C1-expand 93.28%
C2-expand 91.52%
C3-expand 82.91%

WT-GAN-CNN
(ResNet50)

C1-expand 85.03
C2-expand 78.91
C3-expand 75.83

WT-GAN-CNN
(VGG16)

C1-expand 94.20%
C2-expand 92.68%
C3-expand 89.28%

5. Conclusions

In this paper, two learning models of Deep Convolutional Generation Confrontation
Network (DCGAN) and Convolutional Neural Network (CNN) are used to complete the
fault diagnosis of induction motors for solving the problem of unbalanced training data.
First of all, four signal processing methods are compared on the actual and balanced dataset.
Time–frequency analysis has the advantage of fault diagnosis under different loads, and
the accuracy rate measured by using the low-load side as the training set is higher, which
can reach 95.06% and 96.38%. It is significantly better than single signal processing. When
the training data are unbalanced, the more unbalanced the training data, and the lower
the accuracy of the obtained test set under any signal pre-processing. It shows that the
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data-driven fault diagnosis method is susceptible to the impact of the unbalanced training
dataset. Therefore, the DCGAN-generated data is about 80% similar to the real examples in
addition to the actual samples. After over-sampling the unbalanced data, the classification
accuracy can be increased to more than 90%, which is closer to the accuracy of the actual
balanced dataset, and the over-sampling-balanced (Pro-Balanced) method is better. In
addition, if the parameters of DCGAN can be adjusted effectively, the generated samples
can be better than image processing technology, but the training time will be longer. In
the cross-load test, we can obtain up to about 85% of the diagnosis results after adding
the unbalanced data to the generated data. It shows that the generated data have learned
different fault characteristics, and better diagnostic results can be obtained through a deeper
CNN model. It also highlights the ability of DCGAN to learn the characteristics of the
input signal.

Finally, after the case analysis of this study, it is confirmed that the Deep Convolution
Generative Adversarial Network (DCGAN) can improve the impact of the imbalance of
training data. However, in the application of actual fault diagnosis, most of them still
hope to find the potential fault of the induction motor and repair it as soon as possible.
This research can only reach the classification diagnosis after the induction motor fails, so
the technology has yet to breakthrough. In addition, unlabeled data still account for the
majority of collected data. Therefore, in the future, semi-supervised learning technology can
be introduced, and the useful information can be extracted from labeled data and unlabeled
data, which will improve the usability of diagnostic models. Transfer Learning, which is
still in the development stage, is expected to be applied to cross-domain fault diagnosis in
the future and bring breakthroughs to the research of induction motor fault diagnosis.
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