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Abstract: The magnetic bearing–rotor system has the advantages of no mechanical friction and active
vibration control. A magnetic bearing with redundant structures provides an effective method to
apply fault-tolerant control to the magnetic bearing–rotor system. In this paper, in order to improve
the robustness of a rotor suspended by a magnetic bearing with redundant structures, the harmonic
current suppression approach is proposed. Firstly, the generation mechanism of harmonic current
in the magnetic bearing–rotor system is analyzed. Secondly, on the basis of the current distribution
theory of magnetic bearing with redundant structures, the linearization model of electromagnetic
force is established. Then, the eight-pole symmetrical radial magnetic bearing is taken as the research
object, and the control system model with a multi-excitation disturbance source is established under
the condition of no coil failure. Lastly, considering the periodicity of disturbance signals, a repetitive
controller that is suitable for magnetic bearing with redundant structures is proposed in this paper,
Moreover, in order to verify the effectiveness of the proposed control strategy, we inserted the
repetitive controller into the original controller applied to the magnetically levitated rotor with
redundant structures, and the corresponding simulation was carried out. The results demonstrate
that the repetitive control method proposed in this paper can effectively suppress the harmonic
current and improve the suspension accuracy of the rotor supported by the magnetic bearing with
redundant structures.

Keywords: magnetic bearings; redundant structures; harmonic current; repetitive control

1. Introduction

Compared with mechanical bearings, magnetic bearings are considered to be superior
with characteristics of no physical contact, low rotation friction, high speed, and long
life. These advantages have led magnetic bearings to become the key components of
important industrial fields, such as aero engines, turbine generators, and energy storage
flywheels [1–3]. However, mechanical component damage and electrical part failure will
render the system unable to continue working, and the rotor will fail. Therefore, the
fault-tolerant design of magnetic bearings is an effective way to solve the problem that
will improve the reliability of the magnetic-levitated bearing system while under extreme
conditions [1,4,5].

On the basis of the strongly coupled fluxes and equivalent magnetic circuit model
of the heteropolar magnetic bearing, Maslen and Meeker et al. first proposed magnetic
bearings with redundant structures and designed the fault-tolerant control strategy when
different coils fail [6]. The core of fault-tolerant control is to obtain the current distribution
matrix and make the magnetic bearing generate the desired force with residual normal coils.
Furthermore, the bias current linearization theory and current distribution matrix provide
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an approach to achieve the fault-tolerant control for magnetic bearings with redundant
structures. After the theory was proposed, related research was further carried out. Na and
Palazzolo [7] proposed the Lagrange multiplier approach to obtain the current distribution
matrix and analyzed the position stiffness and voltage stiffness of the magnetic bearing with
redundant structures. They adopted the simulation and experiment to verify the validity
of the fault-tolerant control strategy [8]. Moreover, Noh [9] established a fault-tolerant
controller for the eight-pole symmetrical radial magnetic bearing with redundant structures
and carried out an experiment on a turbo-molecular vacuum pump. They realized that the
rotor remained levitated with the failure of three simultaneous coils at the rotor speed of
4200 rpm. Considering the magnetic leakage, eddy current, and reluctance of the ferromag-
netic material path factors in the magnetic bearing, Na and Palazzolo [10–12] introduced a
compensation coefficient to the force of magnetic bearing and obtained the corresponding
current distribution matrix. Recently, Meeker [13] proposed an unbiased control theory to
design a fault-tolerant controller for magnetic bearings with redundant structures, which
can be applied to the encompassed bearings with an arbitrary number of poles. The current
distribution matrix reflects the mapping relationship between electromagnetic force and
current. Cheng and Cheng [14,15] extended the theory of calculating the current distri-
bution matrix from the equilibrium position to nonequilibrium position and designed
an improved fault-tolerant controller. The simulation results showed an improvement in
the performance of the magnetic bearing–rotor system with the proposed fault-tolerant
control strategy. For stators with the characteristics of an even number of evenly spaces
poles of equal area, Meeker and Maslen [16] proposed an effectively simplified method
to design a fault-tolerant controller while some coils fail in magnetic bearings. Different
bias current coefficients can lead the magnetic bearing to produce different characteristics
of electromagnetic force. Cheng and Deng [17] proposed an optimal algorithm to acquire
the reasonable bias current coefficient, and the simulation results illustrated that the pro-
posed approaches improve the system performance. Furthermore, according to the need
of a fault-tolerant controller applied to magnetic bearings with redundant structures, they
designed a fault-tolerant control scheme that includes dual DSP microprocessors and a
power amplifier [18]. However, for magnetic bearings with redundant structures, most
research has focused on obtaining the current distribution matrix when different coils fail.
Nevertheless, there are several scientific questions that have been studied and solved in
magnetic bearings under the differential control method.

For a rotor suspended with magnetic bearings under the differential control strategy,
some advanced control methods have been applied to solve specific problems; a typical
example is the mass unbalances of a rotor, and some researchers have proposed a series of
approaches to suppress unbalanced rotor vibration. Mao et al. [19] designed a real-time
variable step polygon iterative search algorithm that includes an unbalance compensator
to suppress rotor vibration. Jian et al. [20] proposed an online unbalance compensation
algorithm based on the least mean squares method and the influence coefficient method,
and the experiment was carried out on a maglev rotor platform; the results demonstrated
the effectiveness of the proposed control algorithm. In order to suppress the harmonic
current of coils and rotor vibration produced by the mass unbalances and sensor runout,
Cui et al. [21–24] analyzed the characteristics of the disturbance signal and proposed several
repetitive controllers with different structures. Simulation and experimental results were
given to show the superiority of proposed repetitive controllers. Moreover, to suppress
the harmonic components in the full speed range, Cui [25] and He [26] proposed multiple
phase-shift notch filters in series and in parallel modes. Moreover, in order to suppress
the harmonic vibration of a magnetically suspended control moment gyro, Cui et al. [27]
proposed a control algorithm that uses the orthogonal characteristics of the output signals
of the x-direction and y-direction displacement sensors. The electromagnetic force of
the magnetic bearing in a magnetically suspended control moment gyro was directly
used as the input signal of the control to produce zero magnetic force control, and the
experimental results demonstrated the validity of the algorithm. Jin [28] designed a
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linear active disturbance rejection (LADRC) for magnetic bearings, and the experiments
demonstrated that the LADRC had better anti-interference performance compared to
the PID controller. Ran et al. [29] analyzed the dynamic characteristic of a flexible rotor
suspended by magnetic bearings, and, according to the model of the system, the robust H∞
controller was proposed. The experimental results indicated that the controller had superior
performance of vibration suppression, enabling the flexible rotor to pass the first bending
critical speed. Furthermore, Zhang et al. [30] proposed a nonlinear adaptive algorithm
whose asymptotic stability is guaranteed by Lyapunov’s theory to suppress the harmonics
vibration of the magnetic bearing system. Using an unbalance suppression algorithm
applied to piezoelectric active bearings for rotating machinery, Borquegallego et al. [31]
presented a novel generalized notch filter for harmonic suppression control for magnetically
levitated rotors, and the experimental results demonstrated that the control algorithm
reduced the rotor in the level of generated vibrations by at least one order of magnitude.
Sun et al. [32] proposed a modified iterative learning control including an extended state
observer to suppress the disturbance of the hybrid magnetic bearing system, and the
experimental results showed that the proposed strategy had better reference tracking and
disturbance suppression ability than PID and neural network inverse control.

According to the aforementioned analysis, there has been no advanced control method
studied for magnetic bearings with redundant structures. However, similar harmonic
vibration exists in magnetic bearing systems with redundant structures. In this paper,
magnetic bearings with redundant structures and no coil failure were considered as the
research object. This paper proposed the inverse of the current distribution matrix W−1

used in the equivalent control closed-loop model with the current of each coil not being
neglected. On the basis of the equivalent control model, the repetitive control is designed
and applied to the system of magnetic bearings with redundant structures. The numerical
results demonstrate that the proposed control scheme in this paper can not only suppress
the harmonic current of each coil but also improve the robustness of the whole system.

The paper is organized as follows: the model of mass unbalance and sensor runout
of is described in Section 2. The characteristics and control strategy of magnetic bearings
with redundant structures are described, and the equivalent control closed-loop model is
established in Section 3. The repetitive control (RC) is designed for magnetic bearings with
redundant structures, and the simulation results are discussed in Section 4. Section 5 gives
the conclusion.

2. Mode of Mass Unbalance and Sensor Runout

Periodic vibration is a typical problem in the system of a magnetically levitated rotor,
and the vibration is mainly caused by the characteristics of the whole system. Therefore,
it is necessary to analyze and express the motion characteristics and system noise of the
structural parts of the system. In essence, the support between the magnetic bearing and
rotor can be regarded as an elastic support with air gap. The mechanical structure uses
its own material characteristics and mutual cooperation to form the electromagnetic field,
and the electromagnetic force is formed between the rotor and the stator. The existence
of machining error of the mechanical structure, uneven material, rotor imbalance, sensor
noise, and nonlinear characteristics of each module of the control system can produce
vibration with rich frequency components. Under the joint action of multisource vibration,
the harmonic component disturbances of the fundamental and multiple frequencies are gen-
erated in the whole magnetic bearing–rotor system, and the current with the corresponding
multi-frequency components is generated through the control system.

Uneven rotor mass is the main factor causing rotor vibration. Rotor unbalance mainly
includes static imbalance and dynamic imbalance. Static unbalance refers to the devia-
tion between the inertia axis center and the geometric axis center of the rotor. Dynamic
unbalance means that the inertia axis of the rotor is different from the geometric axis.

The section of the single radial magnetic bearing–rotor system is shown in Figure 1. It
is supposed that the geometric center plane of the rotor coincides with the inertial center
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plane, and the geometric center of the rotor Og is concentric with the geometric center of
the magnetic bearing, The center of inertia of the rotor is Oi, and ε is the mass eccentricity.
When the rotor rotates around the geometric center during operation, the unbalance forces
Fex and Fey in the x- and y-directions can be expressed as{

Fex = mεω2 cos(ωt + ζ)
Fey = mεω2 sin(ωt + ζ),

(1)

where m is the mass of the rotor, ω is the rotor speed, and ζ is the initial phase.

Figure 1. Section of single radial magnetic bearing–rotor system.

Due to the inevitable manufacturing errors in the rotor and stator of the magnetic
bearing system shown in Figure 2, there is a lack of concentricity of the sensing surface
and no uniform electrical or magnetic properties around the sensing surface. Therefore,
while the rotor is in the process of rotation, the output signal of the displacement sensor
contains the harmonic interference of synchronous and multiple frequencies of rotation
speed. Thus, in a magnetically levitated rotor system with redundant structures, the signal
of displacement sensors can be described as{

xs = x0 + xd(t)
ys = y0 + yd(t),

(2)

where xd(t) and yd(t) denote the sensor runout in the x- and y-directions of sensors, and
the mathematical model can be described as

xd(t) =
n
∑

i=1
axi cos(iωt + φxi)

yd(t) =
n
∑

i=1
ayi cos(iωt + φyi)

, i = 1, 2, · · · , n, (3)

where i is the order of harmonics, axi and ayi represent the sensor runout corresponding to
the x- and y-direction sensors, and φxi and φyi are the initial phases.

Figure 2. Mechanism diagram of sensor runout.
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3. Characteristic and Control Strategy of Magnetic Bearings with Redundant Structures

Compared with magnetic bearings that adopt a differential control strategy, the coil
of each pole is independent in magnetic bearings with n-pole heteropolar redundant
structures. According to the mapping relationship between the electromagnetic forces and
each pole of the magnetic bearing, a linear relationship between electromagnetic force and
currents is constructed. Then, according to the inverse of the model, the current distribution
controller can be designed. In this paper, an eight-pole symmetrical radial magnetic bearing
was taken as the research object to illustrate the control strategy for magnetic bearings with
redundant structures.

3.1. Force Mode of Eight-Pole Magnetic Bearings with Redundant Structures

A radial magnetic bearing with eight-pole heteropolar redundant structures is depicted
in Figure 3a, and the equivalent magnetic circuit model is illustrated in Figure 3b. The only
sources of magnetic excitation in the bearing are the coils that are wound on each pole, and
almost all circuit reluctance is due to the air gap associated with each pole.

Figure 3. Eight-pole bearing arrangement (a) and equivalent magnetic circuit (b).

The relationship between the coil current and the magnetic flux can be written as

Rjφj − Rj+1φj+1 = N j Ij − N j+1 Ij+1, j = 1, 2, · · · , 8, (4)

Rj =
gj

µ0 Aj
, (5)

where Rj is the reluctance of the j-th pole gap, gj is the length of the j-th air gap, µ0 is the
permeability of vacuum, j is the number of poles, and Aj, φj, N j+1, and Ij represent the area,
magnetic flux, turns of the coil, and current in the j-th coil, respectively.

The air gap gj is variable while the rotor deviates from its equilibrium position, and it
can be described as follows [6]:

gj = g0 − x cos θj − y sin θj. (6)

Meanwhile, the flux conservation is described as

n

∑
j=1

φj = 0. (7)

Therefore, Equation (4) can be rearranged as

RΦ = NI. (8)
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Assuming that the magnetic flux density is uniform in the gap, the flux conservation
can be described by Equation (9).

Φ = AB, (9)

where A is the diagonal matrix of the pole area, and B is the magnetic flux density matrix
of the air gap, expressed as

B = A−1R−1NI = VI. (10)

The current distribution matrix W can be defined to describe the relationship between
the current in each coil of the magnetic bearing and the logical control currents as shown in
Equation (11).

W =
[
wb, wx, wy

]
,

I = W

 C0
ix
iy

 = WIc, (11)

where C0 is the bias coefficient, and ix and iy are the logical control currents in the x- and
y-directions, respectively. The resultant forces in the x- and y-directions can be described as

Fx(x, y) = Ic
TWT MxWIc, (12)

Fy(x, y) = Ic
TWT MyWIc, (13)

where 
Mx(x, y) = −VT DxV
My(x, y) = −VT DyV

Dx =
Aj

2µ0
diag

[
cos θj

]
Dy =

Aj
2µ0

diag
[
sin θj

] . (14)

Furthermore, in order to ensure the linearization of the electromagnetic force, the
current distribution matrix W(x, y) should be obtained to satisfy Equation (15).{

WT(x, y)MxW(x, y)−Qx = 0
WT(x, y)MyW(x, y)−Qy = 0

, (15)

where the matrices (Qx and Qy) are defined as

Qx =

 0 0.5 0
0.5 0 0
0 0 0

, Qy =

 0 0 0.5
0 0 0

0.5 0 0

. (16)

Through the calculation of the above theory, the electromagnetic forces can be lin-
earized as {

Fx(x, y) = C0ix
Fy(x, y) = C0iy

. (17)

3.2. Stiffness of Magnetic Bearing with Redundant Structures

It is considered that the air gap between the poles and rotor is 0.4 mm while the
rotor is at the equilibrium position, and the displacement of the rotor is tiny when the
rotor is suspended by the magnetic bearing; thus, the electromagnetic force forms a linear
relationship with the displacement and the logical control currents ix and iy. By using
Taylor series expansion, the resultant forces in the x- and y-directions can be linearized as
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Fx(x, y, ix, iy) ≈
∂Fx

∂x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

x +
∂Fx

∂y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

y +
∂Fx

∂ix

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

ix +
∂Fx

∂iy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

iy, (18)

Fy(x, y, ix, iy) ≈
∂Fy

∂x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

x +
∂Fy

∂y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

y +
∂Fy

∂ix

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

ix +
∂Fy

∂iy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

iy. (19)

Kxx, Kxy, Kyx, and Kyy are the position stiffness, and Kixx , Kixy , Kiyx , and Kiyy are the cur-
rent stiffness. On the basis of the nonlinear magnetic forces shown in Equations (12) and (13),
the model of position stiffness can be presented as

− Kxx =
∂Fx

∂x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

= wT
b

∂Mx

∂x
wbC2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x = 0
y = 0

= wT
b Mxx0wbC2

0 , (20)

− Kxy =
∂Fx

∂y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

= wT
b

∂Mx

∂y
wbC2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x = 0
y = 0

= wT
b Mxy0wbC2

0 , (21)

− Kyx =
∂Fy

∂x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

= wT
b

∂My

∂x
wbC2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x = 0
y = 0

= wT
b Myx0wbC2

0 , (22)

− Kyy =
∂Fy

∂y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

= wT
b

∂My

∂y
wbC2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x = 0
y = 0

= wT
b Myy0wbC2

0 . (23)
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The model of current stiffness can be calculated as

Kixx =
∂Fx

∂Ic

∂Ic

∂ix

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

= wT
x MxwbC0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x = 0
y = 0

+ wT
b MxwxC0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x = 0
y = 0

, (24)

Kixy =
∂Fx

∂Ic

∂Ic

∂iy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

= wT
y MxwbC0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x = 0
y = 0

+ wT
b MxwyC0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x = 0
y = 0

, (25)

Kiyx =
∂Fx

∂Ic

∂Ic

∂iy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

= wT
x MywbC0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x = 0
y = 0

+ wT
b MywxC0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x = 0
y = 0

, (26)

Kiyy =
∂Fx

∂Ic

∂Ic

∂iy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x = 0
y = 0
ix = 0
iy = 0

= wT
y MywbC0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x = 0
y = 0

+ wT
b MywyC0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ x = 0
y = 0

. (27)

According to the above analysis, the decoupled linearized magnetic forces can be
expressed with position stiffness and current stiffness, and they can be used to design a
control law to ensure the stability of the system.

3.3. Control Strategy and Analysis of Magnetic Bearings with Redundant Structures

The essence of the current distribution matrix W is the mapping relationship between
the logic currents and the current of each coil. The current distribution control strategy is
designed with the mapping relationship described in Equation (10), and the distribution
control strategy can be treated as a part of the system control strategy in the magnetic
bearing with redundant structures. The entire system controller is described in Figure 4.

In Figure 4, the system controller includes the PID controller and current distribution
controller. According to the error between the desired rotor position signal and the feed-
back of the actual rotor position, the PID algorithm controls the rotor position. With the
control strategy described in Figure 4, the electromagnetic forces of the rotor while at the
equilibrium position can be considered as a linear relationship with displacement and logic
current. For a deep analysis of the relationship between logic control current and current
of each coil in the magnetic bearing, we can use the inverse of the current distribution
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matrix and current of each coil to form the logic control current; this relationship can be
described as

Ic = W−1I. (28)

Figure 4. Closed-loop control strategy in magnetic bearings with redundant structures.

In this paper, the structural parameters of the eight-pole symmetrical radial magnetic
bearing are shown in Table 1. The corresponding current distribution matrix W is

W =
g0

4N
√

µ0 A



2 2 0
−2 −

√
2 −

√
2

2 0 2
−2

√
2 −

√
2

2 −2 0
−2

√
2

√
2

2 0 −2
−2 −

√
2
√

2


. (29)

Table 1. Structural parameters of magnetic bearing.

Structure Parameter Value Unit

Pole area, A0 5.4 × 10−5 m2

Turns per coil, N 56 /
Pole initial gap, g0 4 × 10−4 m

Pole angle, θj (j − 1)π/4 rad
Saturation magnetic-flux density, Bsat

Rotor weight, m
1.2
0.8

T
kg

On the basis of the structural parameters of the magnetic bearing and current distribu-
tion matrix, the position stiffness and current stiffness can be calculated using Equations
(20)–(27), where Kxx = −40,000 N/m, Kxy = Kyx = 0, Kyy = −40,000 N/m, Kix = 4 A/m,
Kixy = Kiyx = 0, and Kiyy = 4 A/m. The results show that the essence of the bias current
coefficient is current stiffness. For the eight-pole symmetrical radial magnetic bearing
studied in this paper, the electromagnetic forces can also be described as

Fx = −Kxxx + Kixx ix
Fy = −Kyyy + Kiyy iy

(30)

Furthermore, considering the unbalanced force and neglecting the torque of the rotor,
the rotor dynamic equation in the x- and y-directions can be written as

m
..
x = Fx + Fex

m
..
y = Fy + Fey

(31)
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Through the above analysis, the equivalent control schematic diagram of the entire
system can be depicted as shown in Figure 5.

Figure 5. Closed-loop equivalent control schematic diagram of the entire system.

As shown in Figure 5, x*, y*, i*x, and i*y denote the desired position and desired
logic control current, respectively. Gcx and Gcy are the position control law in the x- and
y-directions; Gw is the transfer function of the amplifier, where Gw = 1 A/V; Ksx and Ksy
are the gain of sensors. I(s) denotes the current of each coil in magnetic bearing. From
Figure 5, although the currents in the coils determine the displacement of the rotor in both
x- and y-directions, in view of the logic control current, the motion of the rotor in the x-
and y-directions can be considered decoupled. Therefore, the equivalent control schematic
diagram in the x-direction can be described as shown in Figure 6.

Figure 6. Equivalent control schematic diagram in the x-direction.

According to Figure 6, the logic current ix(s) influenced by the unbalance force and
sensor runout can be described as

ix(s) =
Gcx(s)Gw(s)

1+Ksx(s)Gcx(s)Gw(s)Gpx(s)
x ∗+ −Ksx(s)Gcx(s)Gw(s)

1+Ksx(s)Gcx(s)Gw(s)Gpx(s)
xd(s)

+
−Ksx(s)Gcx(s)Gw(s)Gpx(s)

Kixx(s)[1+Ksx(s)Gcx(s)Gw(s)Gpx(s)]
Fex(s)

(32)

From Equation (32), it can be concluded that the unbalance force Fex and sensor runout
xd will induce the logic harmonic ix. Logic current reflects the harmonic characteristics of
current in the coils, which will cause undesirable multifrequency vibration of the rotor. If
not suppressed, the vibration caused by unbalance mass and sensor runout will degrade the
system performance and even lead to system instability. In a magnetic bearing–rotor system
with redundant structures, to achieve the purpose of suppressing current harmonics, it is
necessary to add the corresponding method in the control loop of the x- and y-directions at
the same time.

4. Suppression of Harmonic Current in AMB with Redundant Structures

The idea of repetitive control (RC) is derived from the internal model principle of
control theory. In essence, repetitive control uses the periodic compensation of errors to
realize the tracking of the desired signal and suppression of disturbance signals. According
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to the characteristics of the disturbance signals occurring in the magnetic bearing–rotor
system, repetitive controllers can effectively suppress harmonic currents. Furthermore,
the design of the repetitive controller can be independent of the design of the original
system controller. For a system that does not include a repetitive controller, there is no
need to make any changes to the original system parameters; one can simply insert the
repetitive controller into the original system and ensure that the new system meets the
stability conditions.

4.1. Analysis of Magnetic Bearing System with RC

Taking the control loop of the magnetic bearing–rotor system in the x-direction as
an example, the repetitive controller GxRC is added into the original system. The control
block diagram with RC is depicted in Figure 7, where Q(s) is the low-pass filter, C(s) is the
phase compensator for the middle and low frequencies, the phase compensator e−T2s is
used for high frequency, e−T1s is the time delay element, Krc is the gain of RC and ensures
the robustness of the system, T1 + T2 = T = 1/f, and f is the fundamental frequency of the
disturbance signal.

Figure 7. Control schematic diagram in x-direction with RC.

The transfer function of the proposed RC can be expressed as

GxRC(s) =
e−T1s

1− e−(T1+T2)s
Q(s)Krc(s)C(s). (33)

S0 is the sensitivity function of the system without RC, and it can be expressed as

S0(s) =
Gc(s)Gw(s)

1 + Gc(s)Gw(s)Gp(s)Ks(s)
. (34)

The logical current ix is as the virtual output of the magnetic bearing, according to
Figure 7. The logical current ix can be written as

ix(s) =
S0(s)

[
1− e−Ts][R(s)− D(s)K(s)]

1− e−Ts − KrcC(s)Q(s) S0(s)
Gw(s)

e−T1s
. (35)

While the frequency w of disturbance signal is lower than the cut-off frequency
wc,ω = 2π

T n (n = 1, 2, 3, . . . ). Obviously, according to Euler’s formula, we can conclude
that

∣∣e−Ts
∣∣
s=jω = 1 and arg

[
e−Ts]

s=jω = −2nπ; therefore,

1− e−Ts = 0. (36)

Equation (36) denotes that the proposed RC can eliminate the disturbances which
consist of multiples of the fundamental frequency f. However, the system with the RC



Appl. Sci. 2022, 12, 4126 12 of 21

should satisfy the stability conditions of the system. The transfer function of the whole
system is

G(s) =
Gcx(s)Gw(s)Gp(s)

1− Gcx(s)GxRC(s) + Gcx(s)Gw(s)Gp(s)Ks(s)
. (37)

The closed-loop characteristic equation can be obtained as

1− Gcx(s)GxRC(s) + Gcx(s)Gw(s)Gp(s)Ks1(s) = 0. (38)

Equation (38) can be rearranged as

M(s)− e−TsN(s) = 0, (39)

where

M(s) = 1 + Gc(s)Gw(s)Gp(s)Ks(s),
N(s) = 1 + Gc(s)KrcC(s)Q(s)eT2s + Gc(s)Gw(s)Gp(s)Ks(s).

The regeneration spectrum of the whole system can be obtained as

R(ω) =

∣∣∣∣ N(s)
M(s)

∣∣∣∣
jω

=

∣∣∣∣1 + KrcC(s)Q(s)eT2s × Gc(s)
1 + Gc(s)Gw(s)Gp(s)Ks(s)

∣∣∣∣
s=jω

. (40)

Generally, a smaller value of the regeneration spectrum function denotes better relative
stability of the system. According to the small gain theory, the sufficient condition of the
closed-loop system depicted in Figure 7 is given by

(1) F(s) = Gc(s)
1+Gc(s)Gw(s)Gp(s)Ks(s)

is stability, (2) R(ω) < 1.
It is assumed that the original system is stable, and that the system has met condition 1.

Therefore, the structure of the repetitive controller needs to be designed to make the system
meet condition 2. Hence, we assume that w<wc, and we define F(s)|s=jω = A(ω)ejθ(ω),

C(s)|s=jω = B(ω)ejθc(ω), and β(ω) = θ(ω) + θc(ω) + T2ω, T2 = N2Ts, where N2 is an
integer and Ts is the sampling period of the system. Combining Equation (40) with
condition 2, we obtain ∣∣∣1 + KrcB(ω)A(ω)ej[θ(ω)+θc(ω)+T2ω]

∣∣∣
s=jω

<1. (41)

Then,

|1 + KrcB(ω)A(ω)cosβ(ω) + jKrcB(ω)A(ω) sin β(ω)|s=jω<1. (42)

Furthermore, we get

2KrcB(ω)A(ω)cosβ(ω) + [KrcB(ω)A(ω)]2<0. (43)

The stability of the system with RC can be guaranteed, if the following condition
is satisfied: {

90◦<β(ω)<270◦

Krc< 2min|cos β(ω)|
max[A(ω)B(ω)]

. (44)

4.2. Design of the RC for AMB with Redundant Structures

In this paper, as shown in Figure 7, Ksx = 5000 V/m, Ts = 0.0002 s, and Gw = 1 A/V
were defined. The transfer functions of the controllers Gcx and Gpx are described as

Gcx(s) = kp +
ki
s
+ kds, (45)
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Gpx(s) =
Kixx

ms2 − Kxx
, (46)

where kp = 10, ki = 4, and kd = 0.01.
Considering the mode of the magnetic bearing with redundant structures and control

system, the phase–frequency characteristic curve of the F(s) is presented in Figure 8, and
it is shown that the phase is below 90◦ in the middle- and high-frequency range. Hence,
the phase θ(ω) of the F(s) does not satisfy the stability requirement. In order to solve the
problem, we can design the repetitive controller to adjust the phase of the entire system.

Figure 8. Phase–frequency diagram of F(s).

(1) Design of low-pass filter Q(s)
The main function of the low-pass filter (LPF) is to ensure the cutoff frequency of

the system and eliminate the influence of high-frequency interference components that
are applied to the entire system. To avoid the harmonic disturbance in the low-frequency
region, the gain of the low-pass filter is usually required to be 0 dB, and the phase of the
low-pass filter is required to be zero so as to ensure that the system is stable.

Assuming a rotor speed of 60 Hz, and considering that the first, second, third, and
fourth harmonic currents are required to be suppressed, the cutoff frequency of the
low-pass filter was chosen as 1000 Hz. The conventional LPF is usually designed as
Q1(s) = 1

0.0000159s+1 . However, this will lead to phase delay in the repetitive controller loop
and degrade the performance of the system. To avoid this problem, was zero-phase low-
pass filter was designed to replace the conventional LPF. Considering the cutoff frequency
of the system, the zero-phase LPF was designed as follows:

Q(z) = 0.212z + 0.575 + 0.212z−1. (47)

In Figure 9, the blue and red lines indicate the amplitude and phase curve of the zero-
phase low-pass filter and conventional LPF, respectively. By comparing the characteristics
of Q(z) and Q1(z), the following conclusions can be drawn: for a conventional LPF, although
the gain is 0 dB, the phase changes in the middle- and high-frequency domain, but there
is no phase change for the zero-phase low-pass filter. Hence, we adopted the zero-phase
low-pass filter shown in Equation (47).

(2) Design of phase compensator of F(s)
According to the analysis of the previous sections, the phase compensator eT2s was

used to improve the performance of F(s) in the high-frequency domain, and the C(s)
was designed to compensate for the phase of the transfer function F(s) in the middle-
frequency band.

(a) Design of eT2s for F(s) in high-frequency domain

For the magnetically levitated rotor with redundant structures in this paper, in order
to suppress the noise of the system below the cutoff frequency, the phase–frequency
characteristics in (0, 6283) rad/s should be considered. As shown in Figure 8, θ(ω) = 86.5◦
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when the frequency is 6283 rad/s. Thus, in order to satisfy Equations (44), eT2s should meet
the following criterion:

4.4
◦
< T2ω|ω=ωc

<184.4◦, (T2 = N2Ts). (48)

The sampling time Ts = 0.0002 s, and N2 can be chosen as 1 or 2. The phase responses
of β(ω) with different N2 are shown in Figure 10. Obviously, when N2 was set to 1 or 2, the
phase θ(ω) at ωc was changed to about 150◦ or 230◦. This result indicates that the system
satisfies the stability condition. Considering sufficient stability margin of the system, the
value of N2 was selected as 1.

Figure 9. Bode plot of Q(z) with different filters.

Figure 10. Bode plot of F(s)eT2s.

(b) Design of C(s) for F(s) in the middle-frequency domain

Although, by inserting eT2s, the phase characteristic of eT2sF(s) in the high-frequency
domain is compensated for and improved, as shown in Figure 10, the value of the phase is
still unchanged and below 90◦ in the middle-frequency domain; thus, the phase lag eT2sF(s)
in the middle-frequency domain will lead to system instability. Therefore, it is necessary
to design the phase compensator to improve the phase characteristic of the system in the
middle-frequency range. To avoid the insertion of the phase lead compensator affecting the
phase in the high-frequency range, the phase lead and phase lag were combined to form
the phase compensator C(s) as

C(s) =
0.0015s + 1
0.00526s + 1

• 0.0068s + 1
0.00051s + 1

. (49)



Appl. Sci. 2022, 12, 4126 15 of 21

After introducing the phase compensator C(s), the phase–frequency curve is as shown
in Figure 11.

Figure 11. Phase–frequency curve of F(s) (black line) and C(s)F(s) (red dotted line).

As shown in Figure 11, the black line denotes the phase–frequency characteristic of
F(s), and the red dotted line denotes the phase–frequency characteristic of C(s)F(s)eT2s.
It can be observed that the phase range was about (100◦, 175◦) within (0, ωc). Thus, it
can be seen that, when the phase compensator eT2s and C(s) are applied in the system,
Equation (44) is satisfied.

(3) Design of fractional delay filters
In practice, the repetitive controller generally is adopted in discrete form. The discrete

form of delay e−T1s in repetitive control is z−N , and N is an integer. It depends on the ratio
of the sampling frequency f s to the fundamental frequency f. The value of f s is usually
fixed, and it is possible to make the value of N a non-integer for sampling frequency f s
with different values. In this paper, fundamental frequency f = 60 Hz, sampling frequency
f s = 5000 Hz, and N = 83.333. To solve this problem, Lagrange interpolation-based fractional
delay (FD) filters were adopted to approximate the fractional part. For the standard
fractional delay function HF(z) = z−F, it can be described as

HF(z) ≈
Nm
∑

n=0
h(z)z−n

h(z) =
Nm
∏

k = 0
k 6= n

F−k
n−k , (n = 0, 1 · · ·Nn) (50)

In this paper, because N2 = 1 and N1= N − N2 = 82.333, the discrete form of
e−T1s can be written as z−82.333, which can be divided into integer and decimal parts,
i.e., z−82.333 = z−81 × z−1.333. According to Equation (50) and Nm = 3, we can obtain
h(0) = −0.0617, h(1) = 0.7411, h(2) = 0.3699, and h(3) = −0.0493. Therefore, z−1.333 can
be rewritten as

z−1.333 ≈ h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3. (51)

Furthermore, according to Equation (44), Krc = 0.001 in this paper. Accordingly,
combining the designed modules, the structure of the proposed repetitive controller for the
magnetically suspended rotor with redundant structures in the x-direction can be depicted
as in Figure 12.

4.3. Simulation Verification and Analysis

In order to verify the effectiveness of the proposed control strategy, simulations
on the magnetic bearing–rotor system with redundant structures were carried out on
Matlab/Simulink. The repetitive controller was designed according to the loop model of
the equivalent control system shown in Figure 7. The currents of the coils were determined
by the x and y control loops in the maglev bearing–rotor system. On the basis of the
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closed-loop equivalent control schematic diagram of the entire system shown in Figure 5,
we established the control structure shown in Figure 13. GxRC(s) and GyRC(s) represent
the repetitive controllers applied to the x- and y-directions, respectively. Considering the
symmetry of the magnetic bearing, we defined the structure of GyRC(s) as the same as
GxRC(s), and that of Gcx(s) as the same as Gcy(s).

Figure 12. Structure of proposed repetitive controller in this paper.

Figure 13. Control block diagram of the entire system with repetitive controllers.

However, there was a phase lead link z in the zero-phase LPF, and it could not be
used directly in the Simulink platform. To solve this problem, we took an approximate
approach to replace z. For this paper, the continuous model of z was e0.0002s, which could
be approximately expressed as

e0.0002s ≈ 1 + 0.0002s +
1
2
(0.0002)2s2. (52)

The phase frequency characteristic curves of e0.0002s and 1 + 0.0002s + 1
2 (0.0002)2s2

are expressed by red line and dotted blue line, respectively, in Figure 14, revealing a very
small error between the two curves for frequencies below the cutoff frequency. Therefore,
we used 1 + 0.0002s + 1

2 (0.0002)2s2 to replace e0.0002s in the Simulink platform.
In order to ensure the validity of the disturbance signal, we obtained the date of the

displacement sensor from the experimental platform as shown in Figure 15.
As shown in Figure 15, perturbation information can be considered within the sixth

harmonic, and the parameters of mass unbalance and sensor runout are given in Table 2.
Additionally, we assumed that the mode of sensor runout yd(s) was the same as xd(s).

In order to demonstrate the advantages of introducing the repetitive controller to
effectively suppress the harmonic disturbance of the system, the transient response of
currents in the time domain in each coil before and after applying the repetitive controller is
displayed in Figure 16. It should be noted that the positive and negative currents result in
the poles of the magnetic bearing producing different magnetic field (NSN . . . NS), which
is a typical characteristic of a heteropolar magnetic bearing with redundant structures when
no coil fails.
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Figure 14. Phase–frequency characteristics of e0.0002s and 1 + 0.0002s + 1
2 (0.0002)2s2.

Figure 15. Frequency characteristics of displacement sensor in x-direction.

Table 2. Parameters of mass unbalance and sensor runout.

Parameter Value Parameter Value

ax1 41 µm φx1 −17.83◦

ax2 7.9 µm φx2 −52.36◦

ax3 5.8 µm φx3 −87.28◦

ax4 5.7 µm φx4 −165.5◦

ax5 2.7 µm φx5 −192.4◦

ax6 3.4 µm φx6 −201◦

ε 10 µm ζ −17.83◦
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Figure 16. Transient response of current in each coil with the proposed control strategy.

By analyzing Figure 16, we can draw some conclusions. When the repetitive con-
trollers were applied at 1 s, there was a short magnitude pulse in each coil. However, after
the pulse, the current amplitude of each magnetic pole began to decay gradually until
zero. Since the two repetitive controllers together determine the current characteristics
of each coil and there are strongly coupling characteristics in the magnetic bearing with
redundant structures, the frequency-domain characteristics of the entire system changed
when the repetitive controllers acted at 1 s, causing the current to oscillate at 1 s, as shown
in Figure 16. As shown in Figure 16, at time = 0–1 s, the current amplitude in the coil was
approximately ±0.5 A. After 1 s, the current amplitude gradually decayed from ±1 A to
0 A. It is obvious that the proposed repetitive controllers had a good suppression effect
on harmonic current in the redundant magnetic suspension bearing–rotor system. In
order to verify that current harmonic suppression could improve the suspended perfor-
mance of the rotor, the displacements of the rotor in x- and y-directions are displayed in
Figures 17 and 18, respectively.
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Figure 17. Trajectory of the rotor in x-direction with repetitive control (blue curve) and without
repetitive control (red curve).

Figure 18. Trajectory of the rotor in the y-direction with repetitive control (blue curve) and without
repetitive control (red curve).

For a rotor suspended by a magnetic bearing with redundant structures, Figures 17 and 18
display the displacement of the rotor before and after repetitive control implementation in red
and blue, respectively. When repetitive controllers were not applied to the system, the value
of x fluctuated in the range ±1.6 × 10−5 m, and y fluctuated in the range ±1.5 × 10−5 m.
However, for the system which adopted repetitive controllers, the value of x fluctuated in
the range ±0.5 × 10−5 m, and y fluctuated in the range ±0.8 × 10−5 m. It is obvious that the
corresponding amplitudes of x and y decreased by about 68.7% and 46.6% when using the
proposed control strategy in this paper. However, due to the existence of the unbalanced
force of the rotor, the vibration of the rotor could not be completely eliminated, and there
was still a vibration of displacement as shown by the blue lines in Figures 17 and 18.
Furthermore, a time of about 1 s was needed for the rotor to maintain a stable state after
the repetitive controllers were applied to the system.
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The simulation results show that the repetitive controllers designed in this paper can be
applied to a redundant structure magnetic bearing–rotor system, and the harmonic current
of each coil can be effectively suppressed. This allows not only reducing the system’s power
consumption but also improving the robustness of the magnetically levitated rotor.

5. Conclusions

For a rotor suspended by a heteropolar magnetic bearing with redundant structures,
there is disturbance from the mass unbalance and sensor runout in the systems, which
causes harmonic currents in the coil. To address this problem, this paper first analyzed the
stiffness properties of the magnetic bearing with redundant structures and established the
corresponding equivalent closed-loop model. Then, on the basis of the equivalent closed-
loop model and the requirements of system stability, a repetitive controller was designed
and applied in the magnetic bearing–rotor system with redundant structures. Lastly, the
corresponding simulation was carried out, and the numerical results demonstrated that,
compared to the case with no repetitive controller in the system, the proposed repetitive
controller could effectively suppress the harmonic current of the coils and improve the anti-
interference ability of the system. More importantly, by introducing repetitive controllers
in the magnetic bearing–rotor system with redundant structures, the rotor suppression
accuracy was greatly improved. Additionally, inserting the repetitive controller not only
improved the robustness of the magnetically levitated rotor but also reduced the power
consumption of the system. However, there are two shortcomings of the repetitive controller
proposed in this paper. On the one hand, the response time is long, exceeding 1 s. On
the other hand, the repetitive controller requires the exact knowledge of the period of the
external signals, and the period is required to be constant. To address these drawbacks
of the repetitive controller, we will design improved repetitive control to improve the
robustness of the system in future work. Furthermore, when the repetitive control law is
applied to the DSP platform for a magnetic bearing, some aspects should be considered.
The sampling time must be accurate, and filters should be used to reduce the noise of signal.
In particular, the approximate approach can be adopted to realize the phase lead link z of
repetitive control.
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