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Featured Application: The ENT battery presents vulnerabilities that will be shown in this work.
The scope of this work is important because, in the light of the results obtained, the design of the
battery tests should be reconsidered for its more effective use.

Abstract: Randomness testing is a key tool to analyse the quality of true (physical) random and
pseudo-random number generators. There is a wide variety of tests that are designed for this purpose,
i.e., to analyse the goodness of the sequences used. These tests are grouped in different sets called
suites or batteries. The batteries must be designed in such a way that the tests that form them are
independent, that they have a wide coverage, and that they are computationally efficient. One such
battery is the well-known ENT battery, which provides four measures and the value of a statistic
(corresponding to the chi-square goodness-of-fit test). In this paper, we will show that this battery
presents some vulnerabilities and, therefore, must be redefined to solve the detected problems.
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1. Introduction

In many applications in different areas such as Statistics (Refs. [1–3], among oth-
ers), Computational Simulation (for example, [4–6]) or Cryptography (for example, [7–9]),
among others, it is necessary to work with random (or pseudo-random) sequences(A se-
quence of numbers is a finite ordered set {xi}n−1

i=0 , such that xi ∈ C for all i : 0 ≤ i ≤ n− 1,
where C is a finite set of integers. Usually, C = {0, 1} or C = {k ∈ Z : 0 ≤ k ≤ 255}. Nota-
tion by juxtaposition is allowed: x = x0 . . . xn−1 [10]. A sequence of numbers x = x0 . . . xn−1
(where xi ∈ C = {0, . . . , k− 1}) is random if it corresponds to a simple random sample of n
independent and identically distributed random variables (i.i.d.), with a discrete Uniform
distribution U{0, k− 1}. Note that if C = {0, 1}, U{0, 1} = Bernoulli(0.5) [10]). It is of vital
importance that these sequences are reliable. Imagine, for example, in a cryptographic key
security application, any vulnerability in the sequence used could have catastrophic results
such as the possibility of the key being discovered and the system being attacked. This is
why it is necessary to check the sequences before considering their further use. The most
powerful tools that can be considered for this purpose are hypothesis tests. These tests
measure from different perspectives whether a sequence verifies the desired properties
of uniformity and randomness. Generally, these tests are grouped in sets called batteries
or suites. These batteries or suites provide the user with the possibility to perform the
sequence checks in an organized and rather mechanical way. A battery or suite must fulfill
some essential properties, the tests that compose them must be carefully chosen so that
there are no dependent tests (which would slow down the use of the battery and would not
provide more information about the sequence); furthermore, the tests that are incorporated
into a battery must have a solid mathematical basis and must efficiently verify whether
or not a sequence fulfills a certain property. On the other hand, a battery must have a
wide coverage. There are several batteries or suites in the literature such as Diehard [11],
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Dieharder [12], NIST SP 800-22 [10], Cryp-X [13] or ENT [14], among others (for a more
complete vision of this issue, you can see [15]).

This paper will focus on the ENT battery. As will be seen throughout this paper, this
battery, which is widely used due to its simplicity and ease of implementation, has some
vulnerabilities that make it unsuitable for certain applications such as cryptographic security.

2. ENT Battery

The aim of the battery is to evaluate pseudo-random number generators (a pseudo-
random number generator is an algorithm that, given an input known as a seed, produces
a sequence of pseudo-random numbers. The output of pseudo-random generators is
usually a deterministic function with respect to its seed, so that the input must be from a
random source. This is why they are called pseudo-random) for cryptographic, sampling,
compression algorithms and other applications [14]. The sequence is treated at the byte
level (there is also the additional option to treat it at the bit level). That is, eight bits at a
time are interpreted as non-negative integers between 0 and 255, inclusive (If we represent
a sequence x = x0 . . . xn−1 as a sequence of numbers of m binary digits (with m|n), we will
have x = {xi}n/m−1

i=0 , where xi ∈ {0, 1, . . . , 2m− 1}. If the considered sequence is a sequence
of bytes (eight bits), the sequence is treated as numbers between 0 and 28 − 1 = 255). This
battery provides five results corresponding to the calculation of four measures and the
value of the chi-square test statistic: entropy, chi-square, arithmetic mean, Monte Carlo
estimation of π and serial correlation. In what follows, we will describe them briefly.

2.1. Entropy

The battery gives the entropy as conceived in information theory [16]. Let the sequence
of bytes be denoted x = {xk}n−1

k=0 . The occurrences of each number i between 0 and 255 in
the sequence are counted, and their frequencies are computed to consider the probability
that each number has. In this way, it is said that Px(i) = Api

n , where Api = #{0 ≤ k ≤
n− 1 : xk = i}. Next, the expectation of the logarithm in base two of one divided by the
probability of each number is found [16]:

H(x) = −
255

∑
i=0

Px(i) log2 Px(i). (1)

Intuitively, entropy tells how many bits of incompressible information each byte of
the sequence contains. Thus, running the test on a sequence gives a value between 0 and
8, where 0 means that the sequence does not contain any information, while 8 means that
the sequence is noncompressible. In turn, it is shown on the screen how compressible the
sequence is, which is obtained by the following fraction:

100× 8− entropy
8

.

Therefore, a sequence with 8 bits per byte of entropy is 0% compressible, while a
sequence with 4 bits per byte will be 50% compressible. Note that to achieve perfect
entropy, the numbers must be uniformly distributed, which will result in Px(i) = 2−8 for
each i ∈ {0, 1, . . . , 255}, so that H(x) = −∑i 2−8(−8) = 8. It is easy to see that this test
could be fooled, and biased sequences could present a good value for this measure. That
is, it is enough to have a counter from 0 to 255 cyclically to obtain a perfect statistic on
this measure.
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2.2. Chi-Square

The χ2 test measures the goodness-of-fit with respect to the number of occurrences that
can be expected for each number in a byte under the assumption of uniform randomness.
Let us refer to the statistic it obtains as X2, which has the following form [14]:

X2 = ∑
0≤i≤255

(Api − ApTi)
2

ApTi
(2)

where Api are the occurrences of the number i in the sequence and ApTi are the theoretical oc-
currences under randomness assumption. In other words, Api = #{0 ≤ k ≤ n− 1 : xk = i}
and ApTi = n

256 . In addition, it gives as a percentage a p-value, that is, how likely it
is to obtain the seen or a more extreme (larger) output under the randomness assump-
tion: p-value = P(χ2

255 ≥ X2), where χ2
255 is the chi-square distribution with 255 de-

grees of freedom. As it can be seen, this test focuses, again, on whether the occurrences
are well-balanced.

2.3. Arithmetic Mean

It is nothing else than the average of all bytes interpreted as numbers between 0 and
255, with an expectation of 127.5 under randomness. It is denoted by x = 1

n ∑n−1
i=0 xi.

2.4. Monte Carlo Estimation of π

To perform this test, coordinates are taken from the plane in the rectangle [0, 224 − 1]2.
To take a point, three bytes are used for the abscissa x and another three for the ordinate y.
As 3 bytes correspond to 24 bits, they represent integer values between 0 and 224 − 1.
Having found the pair (x, y), it is wanted to see if it is inside the closed Euclidean ball of
the center (0, 0) and radius r = 224 − 1. This is true if and only if x2 + y2 ≤ r2.

The points inside the ball and the total number of points are counted. With the
quotient between the coordinates inside the circle and the total number of coordinates, the
division between the area of the circle inside the rectangle and the area of the rectangle is
approximated. This is given by:

points inside the circle
total points

' area of the partial ball
area of the rectagle

=
π · r2/4

r2 = π/4. (3)

Then, the estimation of π is obtained by π̃ = 4 · points inside the circle
total points = 4 · pointsin

points .
In addition, the percentage error of the estimation is given.

2.5. Serial Correlation

We measure how much each byte depends on its immediately preceding byte. It
counts the occurrences of each pair of bytes and returns a value between −1 and 1, where 0
means that the bytes are totally uncorrelated and an absolute value of 1 would mean that
they are totally correlated.

This coefficient is obtained through the Pearson’s correlation coefficient r between the
sequence x = x0 . . . xn−1, and the sequence shifted one byte “to the left” x′ = x1 . . . xn−1x0.

Recall that the sample correlation coefficient for two random samples x, y, with sample
means x and y, respectively, is given by the following expression:

r =

n−1
∑

i=0
(xi − x)(yi − y)√

n−1
∑

i=0
(xi − x)2

√
n−1
∑

i=0
(yi − y)2

. (4)
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which, in this case with x and x′, results in:

r =

n−1
∑

i=0
xix(i+1) mod n − nx2

n−1
∑

i=0
x2

i − nx2

As explained, only one of the measures is a test and has a p-value. This means that the
interpretation of the remaining statistics is not firmly established.

3. Experimentation Design and Results

Due to the weakness of the ENT battery, it is possible to conceive of deliberately biased
sequences which, on the contrary, are able to provide good test and measures results. To
demonstrate this, in this experimentation, sequences generated from biased generators will
be used. These generators were designed in [17], and their designs were made in such a
way as to introduce biases at varying levels into an apparently random sequence, which
will then be checked by the tests, in this case, of the ENT battery. From the results obtained,
it will be possible to deduce whether the battery tests are sensitive enough to detect these
biases and reject the sequence. Specifically, the generated biases that will be used are AES
σ-counter, ε-hole and t-counter.

The parameters σ, ε and t will indicate how much bias is introduced into sequences
between 0 and 1.

These generators have very apparent biases, and it would not be appropriate to use
them for encryption purposes, as these biases can be used against them for malicious
purposes, such as brute force attacks.

To test what thresholds the ENT battery is or is not capable of detecting, a wide range
of parameters will be considered. The three generators are parameterized, respectively,
by σ, ε and t. For the experiment shown in this paper, 21 parameter values are taken,
varying them from 0 to 1 (both inclusive) with 0.05 jumps. For each parameter value,
100 files are taken, resulting in 2100 files for each generator. To unify the nomenclature of
the parameters in the experimentation, they will be denoted by θ. The file sizes are 13 MB,
10 MB and 1 MB, respectively. In our notation, we will refer to M = 106, as is the usual
convention in science, not the 220 that would be in computer science. To have a benchmark
against which to test the biases, we will use 10,000 files from /dev/urandom.

The ENT battery will be run for all generated data, and the results will be compiled
for further interpretation.

The biased generators used in the experimentation will be briefly described below.

3.1. AES σ-Counter

First, a sequence S = S = {Si}255
i=0 is fixed, which is a permutation of {0, 1, 2, . . . , 255}

(understood as an ordered set) and apparently random, achieved by encrypting the latter
set by means of AES. Then, and keeping a circular counter from 0 to 255 (which goes from
255 to 0), the sequence is obtained as follows. Let the i-th element of the sequence be
denoted by Xi, and let Ri be a random byte obtained using the generator of the computer:

Xi =

{
Sc with probability σ

Ri with probability 1− σ
(5)

whenever Sc is drawn, c is incremented, c′ = (c + 1) mod 256. Thus, the counter is
“filtering” the sequence set with probability σ. When σ = 1, the output of the generator is S
repeated in a loop.
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3.2. ε-Hole

This generator creates a “hole”, eliminating occurrences of a certain number. Let b be
that number. For the experiments, b has been taken to be b = 255. Then, the output is:

Xi =

{
Ri\{b} with probability ε

Ri with probability 1− ε

3.3. t-Counter

This generator has somewhat more subtle differences than the previous ones. Using
the same fixed sequence S as before, the output of the generator is either a random number,
with probability 1− t, or a Sy, where the index y will be “jumping” between close values of
the index used in the previous use of S, which will be called i. That is to say, this would give:

y = i + r mod 256, r ∈ [−n, . . . , 2n] random.

The indices will change back and forth, but always within a small “window” of
fixed size 3n + 1, centered on the previously observed index. We will always have that
|y− i| ≤ 2n. For our generation, we have used n = 20. So:

Xi =

{
Sy with probability t
Ri with probability 1− t

3.4. Results

In Figure 1, the results obtained with the different sequences generated are represented.
The data generated by /dev/urandom, not having a parameter on which they depend, have
simply been divided into 21 groups in the order in which they were tested, so that they can
be used for reference and comparison.

As it can be seen, in Figure 1a, all generators have good entropy data in principle,
except for the ε-hole. This is very intuitive: As the θ parameter grows, the more likely
it is that the 255 byte in the sequence will be missed. Finally, when θ is 1, there are no
255 s in the sequence, and so the numbers are not well distributed and entropy drops
considerably. Note that even so, the lowest values when θ = 1 are on the order of 7.99,
despite being comparatively disastrous compared to random data (dev/urandom), or evenly
distributed data (albeit sequentially), such as the AES σ-counter case. The Figure 1b reflects
the same trend as above, as 255 disappears from the sequence, the summand of Equation (2)
belonging to i = 255 shoots up, having Ap255 = 0. This is reflected in low p-values for
this generator. In fact, for θ = 0.05 , 91 out of 100 ε-hole sequences have a p-value less
than 0.01. This shows that ENT detects the epsilon-hole bias very easily. Figure 1c also
shows the bias of ε-hole, which obviously sees its arithmetic mean significantly reduced
as the number of occurrences of 255 decreases. In addition, this graph also shows that the
t-counter sequences take quite alternating values and are quite distant from 127.5. However,
looking at the glaring difference with the data from dev/urandom, everything points to the
fact that the means of these generators are not in an acceptable range. Meanwhile, Figure 1d
shows that both the σ-counter and ε-hole obtain values with large error as their parameter
grows. Finally, Figure 1e reveals that for both the t-counter and the σ-counter, the sequence
depends heavily on the previously observed values. In fact, if we look at the expression (5)
that defines the sequence, it can be seen that when σ = 1, the sequence is just a periodic
repetition of S. This is reflected in how the values are triggered in Figure 1e. However, we
note that the highest value observed is 0.015. It is therefore not straightforward to determine
at a glance how much correlation is acceptable, and how the length of the sequence affects
the threshold to be chosen. Therefore, it would also be useful to have a p-value associated
with this test.
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(a) Entropy (b) Chi-square

(c) Arithmetic Mean (d) Monte Carlo estimation of π

(e) Serial Correlation

Figure 1. Result of the statistics for each generator and the values of θ.

4. Conclusions

As we have seen, it is possible to define generators that produce certain biases in the
sequences that are capable of deceiving the ENT battery. Thus, it has been seen how it is
possible to vary the values of the θ parameter, and even if deliberately biased sequences
are generated, it is not possible for the ENT battery tests to detect such biases. In particular,
for small values of θ (read 0–0.2), all biased generators provide sequences that show very
similar results to those that would result from applying the battery to sequences generated
by dev/urandom of known quality. This is why we do not consider this battery suitable as
a testing tool, especially for cryptographic applications, where security is a fundamental
requirement. We recommend a review of the tests that make it up.
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