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Abstract: Identification of bearings’ stiffness and damping coefficients, which strongly affects the
dynamic characteristics of rotors, is another inverse problem of Rotor Dynamics. In this paper,
aiming at multi-disc and multi-span rotors, two novel algorithms are proposed for identifying each
bearing’s coefficients based on the continuous rotor dynamic analysis method. A linear functional
relationship between the main complex coefficients and the cross-coupled complex coefficients is
obtained, which eliminates the coupling between the coefficients and the rotor unbalance in the
forward problem. Then, Algorithm I is proposed. However, it is only suitable for rolling-bearing.
To solve the problem, changing the rotating speed slightly is proposed to solve the difficulty that
another set of equations cannot be developed because the slope of the proposed linear function is
constant when the rotating speed is maintained at a fixed speed. Then, Algorithm II, which can
be applied to both rolling-bearing and oil-journal bearing, is provided. Numerical investigations
are conducted to study the two methods. It is indicated that there should be a measuring point,
called an adjustment point, near each bearing, whose coefficients should be identified, to obtain high
identification accuracy. Moreover, the identification accuracy of the two algorithms is strongly related
to sensor resolution. When the measuring errors of all the required unbalance responses are zero or
the same, the identification errors are almost equal to zero. In conclusion, the proposed algorithms
provide a method for monitoring the stiffness and damping coefficients of all bearings in a multi-disc
and multi-span rotor under operation conditions to predict rotor dynamic behavior for the safe and
steady running of rotating machines.

Keywords: identification of bearing stiffness and damping coefficients; inverse problem; rotor
dynamics; multi-disc and multi-span rotor

1. Introduction
1.1. Background and Formulation of the Problem

The vibration characteristics of the rotor-bearing system (typically regarded as the
main element of rotating machines) are strongly affected by the stiffness and damping
coefficients of bearings [1,2]. Bearing coefficients are related to installation, operation and
maintenance conditions. Hence, the actual value of bearing coefficients at running status is
quite different from the value at the design stage, which results in inconsistency between
the operating condition and the design condition. Sometimes it even leads to the failure of
large rotating machinery after a trial operation or running for a period of time. Owing to
a lack of information on the actual stiffness and damping coefficients of bearings under
working conditions, rotor dynamic behavior cannot be predicted accurately for the safe
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and steady running of rotating machines. In view of these, the identification of bearing
coefficients has been an active area of research.

1.2. Literature Survey

Identification of bearing coefficients in a rotor-bearing system is an old problem.
Some scholars have investigated theoretical model-based methods to obtain the bearing
stiffness and damping coefficients. Snyder [3] tried to predict dynamic coefficients of
sliding bearings based on the Reynolds equation and Computational Fluid Dynamics.
Li [4] calculated stiffness and damping coefficients of journal bearing using a 3D transient
flow calculation. Dyk [5] obtained bearing coefficients based on the approximate analytical
solutions of the Reynolds equation. Merelli [6] evaluated the dynamic coefficients of finite
length journal bearing using a regular perturbation method. However, the simplification in
modeling inevitably leads to errors between the calculated and actual values [7].

Therefore, experimental identification methods were developed. They can be cate-
gorized according to the applied load (static load and dynamic force, i.e., using exciter,
impulse, or unbalanced force) [8–10]. The static load approach is sensitive to measur-
ing errors, and the methods using an exciter or an impact hammer are not easy to carry
out and are time-consuming. From the perspective of practicality, it is easier to apply
an unbalanced force than an excitation force because no sophisticated device is required.
Hagg and Sankey [11] measured for the first time the journal-bearing coefficients by us-
ing an unbalanced force; however, they ignored the cross-coupled stiffness and damping
coefficients. Duffin and Johnson [12] used the aforementioned method and proposed an
iterative procedure to calculate coefficients including the cross-coupled coefficients of large
journal bearings. With the assumption that the excitation frequency does not influence
bearing coefficients. Tiwari [13] developed an estimation algorithm using the unbalance
responses from bearing housings in the horizontal and vertical directions with the assump-
tion that bearing coefficients are speed dependent. At least two run-downs with different
unbalance configurations are obtained. The method has considerable potential because the
synchronous responses of rotating machines from a machine run-down/run-up are not
difficult to obtain.

Additionally, optimization techniques were investigated. The Bayesian inference
optimization technique combined with the imbalance excitation methods was proposed
to improve the identification accuracy [14]. However, this method may involve an ill-
conditioned matrix problem. To avoid the problem, Chen [15] proposed four complemen-
tary equations that are uncorrelated with the dynamic equations from unbalance responses.
The least-squares method is combined with vibration theory by Song [16] for estimating
the dynamic characteristics of journal bearings.

Some scholars tried to estimate bearing coefficients and rotor unbalance simultane-
ously [17]. Bently and Muszynska applied different frequency excitations to estimate
rotor unbalance as well as bearing coefficients [18]. Based on the method proposed by
Stanway [19], Hiroshi Iida [20] conducted an experiment that applied impulse excitation
on a double-disc and single-span rotor to identify rotor unbalance as well as stiffness and
damping coefficients. Tiwari [21] developed an algorithm to simultaneously estimate rotor
unbalance, and four stiffness coefficients and four damping coefficients of bearings in
a multi-degree-of-freedom (MDOF) flexible rotor using impulse responses transformed as
frequencies. The rotor is modeled as a Timoshenko beam with gyroscopic effects using the
finite element method. Standard condensation is utilized to reduce the model’s degree of
freedom. The algorithm can incorporate any type and any number of bearings. Tiwari [22]
subsequently formulated another algorithm for the simultaneous estimation method using
unbalance responses from three different unbalance configurations for both clockwise and
anti-clockwise rotations. Recently, Tiwari [17] proposed an algorithm for flexible rotors for
the simultaneous estimation of bearing coefficients and rotor unbalance from run-down
responses. In the estimation, ill-conditioning occurred because of considerable differences
among the parameter values. To resolve this, Tikhonov regularization was employed. The
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above methods require an exciter and are difficult to implement. In the case of large rotors,
high-power exciters, which may damage rotors, are necessary.

Few scholars have investigated the simultaneous estimation methods that do not
require external excitation. Tiwari [23] developed a method for the estimation of rotor un-
balance and bearing coefficients for MDOF rotors simultaneously. The unbalance responses
of the rotor, which alternately rotates clockwise and anti-clockwise, are employed to resolve
the ill-conditioning of the regression matrix. Wang [24] proposed a simultaneous estimation
of bearing coefficients and rotor unbalance of continuous single-disc and single-span rotors
using the Rayleigh beam model. However, the methods do not incorporate any number of
bearings and discs.

1.3. Scope and Contribution of This Study

In the present paper, two novel algorithms are proposed to identify all bearings’
coefficients of multi-disc and multi-span rotor with m discs and n bearings from unbalance
responses based on the continuous rotor dynamic analysis method (CRDAM). The matrix
method is proposed to overcome the difficulties that equations of the inverse problem are
non-linear transcendental, too many unknown variables are included in the equations and
rotor unbalances and bearing coefficients are coupling together. Then, a linear function,
which represents the relationship between the main complex coefficients and the cross-
coupled complex coefficients, is proposed to obtain Algorithm I. However, the algorithm
can only be applied to identifying the main stiffness and damping coefficients of rolling-
bearing, of which the cross-coupled coefficients can be considered zero. To identify the
cross-coupled coefficients together with the main coefficients, there is a difficulty that
another set of equations cannot be easily developed based on the proposed function just by
using doubled unbalance responses as input. The reason is the slope of the proposed linear
function is constant when the rotating speed is maintained at a fixed speed. Changing
the rotating speed slightly is proposed to obtain another equation set and Algorithm II is
provided for estimating all the eight coefficients of a bearing. Algorithm II is suitable for
the identification of coefficients of both rolling bearings and journal bearings in a rotor. The
number of required measuring points of unbalance responses is m + n + 1. Three kinds of
numerical simulations are conducted to validate the two algorithms. It is indicated that
the two algorithms have high identification accuracy when the measurement errors of all
input unbalance responses are zero or the same. There should be a measuring point, called
an adjustment point, to achieve high identification accuracy. The adjustment point should
be near the bearing, whose coefficients are to be identified. The proposed algorithms do
not require a machine run-down/run-up and external exciters, and have the flexibility to
incorporate any number of bearings and discs.

1.4. Organization of the Paper

The remainder of this paper is organized as follows. Section 2 discusses the mod-
eling of the proposed algorithms based on CRDAM. Section 3 describes the numerical
investigations for examining the algorithms. Section 4 summarizes the conclusions of
the study.

2. Theory
2.1. Algorithm I for Identification of Main Stiffness and Damping Coefficients of Rolling Bearings

Aiming at a rotor with m discs and n bearings shown in Figure 1, the continuous rotor
dynamic analysis method (CRDAM) is proposed in reference [25]. Based on CRDAM, the
unbalance response can be expressed as the function of the position, rotor unbalances, the
bearings’ stiffness and damping coefficients. Accordingly, the inverse problem, which is
identifying rotor unbalances, is solved in reference [26]. The matrix method is proposed to
solve the problems that: the equations built based on CRDAM are non-linear transcendental,
there are too many unknown variables in the equations, and the rotor unbalances and
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bearings’ coefficients are coupling together. The following equations, which eliminate the
coupling between the coefficients and the rotor unbalances, are proposed in reference [26].



π · w2 ·m1ue1 · (sin α1 − i · cos α1) + L · w2 ·m1dU1d
...

π · w2 ·mmuem · (sin αm − i · cos αm) + L · w2 ·mmdUmd
−L · k1s·yx ·V1b − L · k1s·yy ·U1b

...
−L · kns·yx ·Vnb − L · kns·yy ·Unb


m+n

=
EI
L2 · H1

−1



U(q1s)
...

U(qms)

U
(

q(m+1)s

)
...

U
(

q(m+n)s

)


= H2 (1)



π · w2 ·mu1 · e1 · (cos α1 + i · sin α1) + w2 ·m1dL ·V1d
...

π · w2 ·mmu · em · (cos αm + i · sin αm) + w2 ·mmdL ·Vmd
−L · k1s·xyU1b − L · k1s·xxV1b

...
−L · kns·xyUnb − L · kns·xxVnb


m+n

=
EI
L2 · H3

−1



V(q1s)
...

V(qms)

V
(

q(m+1)s

)
...

V(qns)


= H4 (2)

where w is the rotation frequency; L is the length of the shaft; E is the elastic modulus of
the shaft; I is the diametric shaft cross-sectional geometric moment of inertia; m1u · · ·mmu
are the eccentric masses of #1 · · ·m disc; e1 · · · em are the eccentric distance of #1 · · ·m disc;
α1 · · · αm are the eccentric angles, which are defined as the angles between the x-axis and the
disc’s eccentric position in the rotation direction; m1d · · ·mmd are the masses of #1 · · ·m disc;
U1d · · ·Umd represent the dimensionless unbalance response of each disc in the frequency
domain in the y direction; V1d · · ·Vmd represent the dimensionless unbalance response of
each disc in the frequency domain in the x direction; U1b · · ·Unb represent the dimensionless
unbalance response of each bearing in the frequency domain in the y direction; V1b · · ·Vnb
represent the dimensionless unbalance response of each bearing in the frequency domain
in the x direction. q1s, . . . , qms and q(m+1)s, . . . , q(m+n)s are their dimensionless values of
locations on the shaft excluding locations of all discs and bearings; U(q1s), . . . , U(qms)

and U
(

q(m+1)s

)
, . . . , U

(
q(m+n)s

)
are the measured dimensionless unbalance responses

in the frequency domain in the y direction of locations excluding all discs and bearings;
V(q1s), . . . , V(qms) and V

(
q(m+1)s

)
, . . . , V

(
q(m+n)s

)
are the measured dimensionless un-

balance responses in the frequency domain in the y direction of locations excluding all
discs and bearings; k1s·xx, k1s·yy, . . . , kns·xx, kns·yy are the main complex coefficients; k1s·xy,
k1s·yx, . . . , kns·xy, kns·yx are the cross-coupled complex coefficients defined in Equation (3);
H1 and H3 are the (m + n)× (m + n) matrices defined in Equations (4) and (5) and can be
calculated using Green’s functions Gu(q, qi) and Gv(q, qi) as long as the locations of the
measuring points, the bearings and the discs are known; q = z/L; z is the axial position of
the shaft; qi is the dimensionless location of the bearings and discs.

k1s·xx = k1·xx + i · w · c1·xx
k1s·xy = k1·xy + i · w · c1·xy
k1s·yy = k1·yy + i · w · c1·yy
k1s·yx = k1·yx + i · w · c1·yx

, · · · ,


kns·xx = kn·xx + i · w · cn·xx
kns·xy = kn·xy + i · w · cn·xy
kns·yy = kn·yy + i · w · cn·yy
kns·yx = kn·yx + i · w · cn·yx

(3)
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H1 =



Gu(q1s, q1d) · · · Gu(q1s, qmd) Gu(q1s, q1b) · · · Gu(q1s, qnb)
...

...
...

...
...

...
Gu(qms, q1d) · · · Gu(qms, qmd) Gu(qms, q1b) · · · Gu(qms, qnb)

Gu

(
q(m+1)s, q1d

)
· · · Gu

(
q(m+1)s, qmd

)
Gu

(
q(m+1)s, q1b

)
· · · Gu

(
q(m+1)s, qnb

)
... · · ·

...
... · · ·

...
Gu

(
q(m+n)s, q1d

)
· · · Gu

(
q(m+n)s, qmd

)
Gu

(
q(m+n)s, q1b

)
· · · Gu

(
q(m+n)s, qnb

)


(m+n)×(m+n)

(4)

H3 =



Gv(q1s, q1d) · · · Gv(q1s, qmd) Gv(q1s, q1b) · · · Gv(q1s, qnb)

Gv(qms, q1d) Gv(qms, qmd) Gv(qms, q1b) Gv(qms, qnb)

Gv

(
q(m+1)s, q1d

)
Gv

(
q(m+1)s, qmd

)
Gv

(
q(m+1)s, q1b

)
Gv

(
q(m+1)s, qnb

)
Gv(qns, q1d) Gv(qns, qmd) Gv(qns, q1b) Gv(qns, qnb)


(m+n)×(m+n)

(5)

where q1d = z1d/L, · · · , qmd = zmd/L, q1b = z1b/L, · · · , qnb = znb/L; z1d, · · · , zmd are
the z coordinate positions of each disc; z1b, · · · znb are the z coordinate positions of each
bearing; Gu(q, q1d), · · · , Gu(q, qmd), Gu(q, q1b), · · · , Gu(q, qnb), Gv(q, q1d), · · · , Gv(q, qmd),
Gv(q, q1b), · · · , Gv(q, qnb) are Green’s coefficients, which can be calculated using Green’s
functions; Green’s functions Gu(q, qi) and Gv(q, qi) can be found in reference [24].
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Figure 1. Multi-disc and multi-span rotor-bearing system.

According to Equation (1), Equation (6) can be obtained.
−L · k1s·yx ·V1b − L · k1s·yy ·U1b = H2(m + 1, 1)

...
−L · kns·yx ·Vnb − L · kns·yy ·Unb = H2(m + n, 1)

(6)

Write Equation (6) in another form and the linear functional relationship between the
main complex coefficients and the cross-coupled complex coefficients in the y direction can
be proposed in Equation (7).

k1s·yx + k1s·yy · U1b
V1b

= −H2(m+1,1)
L·V1b

...
kns·yx + kns·yy · Unb

Vnb
= −H2(m+n,1)

L·Vnb

(7)

For rolling bearings, the cross-coupled stiffness coefficient and the cross-coupled
damping coefficient in the y direction can be considered zero. k1s·yx = · · · = kns·yx = 0.
Hence, Equation (8) can be obtained according to Equation (7).

k1s·yy = H2(m+1,1)
−L·U1b

...
kns·yy = H2(m+n,1)

−L·Unb

(8)
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Therefore, the main stiffness coefficients and main damping coefficients in the y
direction can be calculated based on Equation (8). In the formula, the matrix H2 can be
calculated using m + n unbalance responses in the y direction, and the unbalance response
of the bearing, whose coefficients are to be estimated, must be measured. Hence, the total
number of input unbalance responses in the y direction is m + n + 1. To identify all the
bearings’ coefficients simultaneously, the unbalance responses of all the bearings in the y
direction are required.

Similarly, Equation (9) can be obtained according to Equation (2) in the x direction.
−L · k1s·xyU1b − L · k1s·xxV1b = H4(m + 1, 1)

...
−L · kns·xyUnb − L · kns·xxVnb = H4(n, 1)

(9)

According to Equation (9), the linear functional relationship between the main complex
coefficients and the cross-coupled complex coefficients in the x direction can be obtained in
Equation (10). 

k1s·xy + k1s·xx · V1b
U1b

= H4(m+1,1)
−L·U1b

...
kns·xy + kns·xx · Vnb

Unb
= H4(n,1)
−L·Unb

(10)

For rolling bearings, the cross-coupled stiffness coefficient and the cross-coupled
damping coefficient in the x direction can be considered zero. k1s·xy = · · · = kns·xy = 0.
Hence, Equation (11) can be obtained according to Equation (10).

k1s·xx = H4(m+1,1)
−L·V1b

...
kns·xx = H4(n,1)

−L·Vnb

(11)

Hence, the main coefficients in the x direction can be calculated based on Equation (11).
In the formula, the matrix H4 be calculated using m + n unbalance responses in the x
direction and the unbalance response of the bearing, whose coefficients are to be estimated,
must be measured. Hence, the total number of input unbalance responses in the x direction
is m + n + 1. To identify all the bearings’ coefficients simultaneously, the unbalance
responses of all the bearings in the x direction should be measured.

2.2. Algorithm II for Identification of Bearings’ Main and Cross-Coupled Coefficients

Although the algorithm provided by Equations (8) and (11) is suitable to identify the
main stiffness and damping coefficients of each bearing in a rolling-bearing rotor with m
discs and n bearings, it cannot be used for estimating both the main and the cross-coupled
coefficients of journal bearings. The reason is that the cross-coupled stiffness and damping
coefficients of journal bearings are very big and cannot be ignored. Another set of equations
is required in this case. However, the second equation set cannot be simply built just
by adding more measuring unbalance responses because the slop Unb/Vnb can be proved
constant for a single-span and single-disc rotor when the rotating speed is maintained at
a fixed speed [27]. Moreover, using double measuring points can make the measuring
system complex and costly.

Although the values of the stiffness and damping coefficients change with the rotating
speed, the changing relationship is extremely gradual. Hence, the bearing coefficients
can be considered unchangeable when the rotating speed is slightly modified. By slightly
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changing the rotating speed from w to w′, the second set of Equations (12) and (13) are
obtained according to Equations (7) and (10).

k1s·yx + k1s·yy · U1b
′

V1b
′ =

−H2
′(m+1,1)

L·V1b
′

...

kns·yx + kns·yy · Unb
′

Vnb
′ =

−H2
′(n+1,1)

L·Vnb
′

(12)


k1s·xy + k1s·xx · V1b

′

U1b
′ =

H4
′(m+1,1)
−L·U1b

′

...

kns·xy + kns·xx · V1b
′

U1b
′ =

H4
′(n,1)

−L·Unb
′

(13)

where U1b
′, U2b

′, . . . , Unb
′ represent the dimensionless unbalance responses of each bearing

in the frequency domain in the y direction when the rotating frequency is changed to ω′;
V1b
′, V2b

′, . . . , Vnb
′ represent the dimensionless unbalance responses of each bearing in the

frequency domain in the x direction when the rotating frequency is changed to ω′. H2
′

and H4
′ can also be calculated based on CRDAM using the m + n measuring unbalance

responses when the rotating frequency is changed to ω′.
By expanding the complex coefficients in Equations (12) and (13) to form the imaginary

part and real part, the following can be obtained k1·yx + i · w · c1·yx +
(
k1·yy + i · w · c1·yy

)
· U1b

V1b
= −H2(m+1,1)

L·V1b

k1·yx + i · w′ · c1·yx +
(
k1·yy + i · w′ · c1·yy

)
· U1b

′

V1b
′ =

−H2
′(m+1,1)

L·V1b
′

... kn·yx + i · w · cn·yx +
(
kn·yy + i · w · cn·yy

)
· Unb

Vnb
= −H2(n+1,1)

L·Vnb

kn·yx + i · w′ · cn·yx +
(
kn·yy + i · w′ · cn·yy

)
· Unb

′

Vnb
′ =

−H2
′(n+1,1)

L·Vnb
′

(14)

 k1·xy + i · w · c1·xy + (k1·xx + i · w · c1·xx) · V1b
U1b

= H4(m+1,1)
−L·U1b

k1·xy + i · w′ · c1·xy + (k1·xx + i · w′ · c1·xx) · V1b
′

U1b
′ =

H4(m+1,1)
−L·U1b

′

... kn·xy + i · w · cn·xy + (kn·xx + i · w · cn·xx) · Vnb
Unb

= H4(n,1)
−L·Unb

kn·xy + i · w′ · cn·xy + (kn·xx + i · w′ · cn·xx) · Vnb
′

Unb
′ =

H4(n,1)
−L·Unb

(15)

Therefore, according to Equation (14), Equation (16) is obtained. It can be used to
calculate the stiffness and damping coefficients of each bearing in the y direction. According
to Equation (15), Equation (17), which can be used for estimating the coefficients of each
bearing in the x direction, is obtained. According to Equations (16) and (17), there should
be m + n unbalance responses in both x and y directions to obtain the matrices H2, H2

′, H4
and H4

′. If a bearing’s coefficients should be identified, its unbalance responses in both
x and y directions are required. Hence, there should be m + n + 1 measured unbalance
responses in the two orthogonal directions. To identify all the bearings’ coefficients, the
unbalance responses of all bearings must be measured.
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(16)
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(17)

where Re() is the real part of a complex number and Im() is the imaginary part of a com-
plex number.

Equations (8) and (11) are the formulas of Algorithm I, which provides an efficient
means for rolling-bearing coefficients identification. Equations (16) and (17) are the formu-
las of Algorithm II, and can be applied to the identification of rolling-bearing coefficients
and oil-journal bearing coefficients. The input is m + n + 1 unbalance responses, which
can be measured under working conditions. The unbalance responses of the measured
bearings must be included.

In engineering, the m + n measuring points can be at the location of the discs and
the bearings and the last measuring point can be at any other location on the rotor shaft.
There is no need for external excitation and a machine run-down/run-up when using the
two algorithms. Moreover, the two proposed methods can be applied to rotors with any
discs and any bearings.

2.3. Identification Procedures of the Two Algorithms

The identification procedures of using the proposed algorithms to identify the stiffness
and damping coefficients of each disc are defined in Figure 2.
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Step 1: The unbalance responses at each bearing and other m + 1 unbalance responses
should be measured and changed to dimensionless unbalance responses in the frequency
domain according to Equation (18). Meanwhile, the rotating speed should also be measured.
The inherent parameters, which are the length of the shaft, the mass per unit length of the
rotor shaft, the elastic modulus of the shaft and the diameter of the shaft, should be known
as prior knowledge and the location of the selected measured points on the shaft should
also be used as input.

Step 2: The matrices H1 and H3 can be calculated according to Equations (4) and (5),
respectively. Then, H2 and H4 can be calculated according to Equations (1) and (2), respectively.

Step 3: Using H2 and the dimensionless unbalance responses in the y direction in the
frequency domain, each bearing’s main stiffness and main damping coefficients in the y
direction can be calculated according to Equation (8). According to Equation (11), each
bearing’s main stiffness and main damping coefficients in the x direction can be obtained
using H4, and the dimensionless unbalance responses in the x direction in the frequency
domain. This is the procedure for using Algorithm I.

Step 4: Change the rotating speed slightly to w′ and repeat step 1 to step 3 to obtain
H2
′ and H4

′. Then, using H2, H4, H2
′ and H4

′, the main stiffness coefficients, the main
damping coefficients, the cross-coupled stiffness coefficients and the cross-coupled damping
coefficients in both x and y directions are calculated according to Equations (16) and (17).
These are the identification procedures of using Algorithm II.

UD =
A

πL
[cos(α) + i· sin(α)] (18)

where UD is the dimensionless unbalance responses in the frequency domain; A and α are
the amplitude and phase of the unbalance responses in the time domain, respectively.

3. Numerical Simulations and Discussion
3.1. Methodology of Numerical Simulations

Based on Algorithm I and Algorithm II, programs are developed by Matlab for the
numerical simulations. In the simulations, the identified bearing coefficients are compared
with their setting values for the validation of the two algorithms. Six computational
examples are used. They represent single-span and single-disc rotor (g1.1 and h1.1), single-
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span and four-disc rotor (g1.4 and h1.4), and four-span and four-disc rotor (g4.4 and h4.4).
They are supported by rolling bearings and oil-journal bearings. Their parameters are the
same as what is listed in Tables 1–6 in reference [26]. The computational example g1.1, g1.4,
g4.4, h1.1 and h1.4 are the same as what is shown in Figures 3 and 4 in reference [26]. The
computational example h4.4 is shown in Figure 3.
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Three kinds of numerical simulations are conducted. Firstly, the simulated unbalance
responses calculated by CRDAM are fed into Algorithm I and Algorithm II to estimate the
bearing coefficients. Secondly, similar identification exercises are performed by contaminat-
ing simulated unbalance responses by the set measured error of 5%∠5◦. The relative error
of the unbalance response amplitude is 5% and the absolute error of the unbalance response
angle is 5◦. Thirdly, the resolution of the vibration displacement sensor is considered in
the simulation. Three kinds of typical sensor resolutions (0.1 nm, 1 nm and 1 um) are
considered. By limiting the number of digits after the decimal point in the unbalance
responses, the resolution of unbalance responses measurement systems are applied. In the
simulations, the calculation rotating frequency is from 1 to 2001 Hz and the interval is 2 Hz.

For simulation validation of Algorithm I, the maximum relative errors of identified
main coefficients to the setting values are obtained. For Algorithm II, the maximum relative
errors of identified main stiffness and damping coefficients to the setting values and the
maximum absolute value of identified cross-coupled stiffness and damping coefficients are
obtained in the computational examples g4.4, g1.4 and g1.1. In the computational examples
h4.4, h1.4 and h1.1, the maximum relative errors of identified main and cross-coupled
coefficients to the setting values are obtained. Moreover, in the third kind of simulation,
statistical results of the amount of the frequency point called low error frequency points
(LEFPs) are counted. At LEFPs, the relative error of the identified coefficient is less than
10% or the absolute value of the identified coefficient is less than 10.

3.2. Finding of Adjustment Point
3.2.1. Results
The First Kind of Simulation Based on Algorithm I

Using the points in Table 1 as the last measuring points, respectively, eight kinds of
simulations are conducted, and then Equations (19)–(22) are obtained using the computa-
tional example g4.4. They represent the biggest relative error of the identified main stiffness
and damping coefficients of each bearing. The nodes, where the bearings and discs are
located, are used as the m + n measuring points in these simulations.

Table 1. The last measuring point.

#14 #29 #33 #49 #53 #69 #73 #91

In Equations (19)–(22), the elements in a row of the matrix are the maximum identifica-
tion errors of bearing coefficients of #1–#8 bearings, respectively, when using the same point
as the last measuring point. For the elements in a column, they are the maximum identifica-
tion errors of bearing coefficients of the same bearing when the measuring points #14, #29,
#33, #49, #53, #69, #73 and #91 are applied, respectively. According to Equations (19)–(22),
the results are the following.
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(1) #14 point as the last measuring point.

When #14 point, which is near #1 bearing, is used, the maximum identification error
of bearing coefficients of #1 disc is the smallest among those of the eight bearings. The
maximum identification errors of k1.xx and k1.yy are 5.75 × 10−7%, and 9.74 × 10−8%,
respectively. They are almost equal to zero. Moreover, the maximum relative errors of c1.xx
and c1.yy are also almost equal to zero; although, they are bigger than that of k1.xx and
k1.yy. They are only 0.0882% and 0.00795%, respectively.

However, the identification error becomes bigger for some other bearings. For the
main stiffness coefficient in the x direction, the biggest of the eight maximum errors, which
is 1.19%, occurs at #6 bearing. For the main stiffness coefficient in the y direction, the biggest
of the maximum errors occurs at #8 bearing and is 7.94%. While for the main damping
coefficients in the x and y directions, they occur at #8 bearing. They are too big and are
389,897% and 924,266%, respectively.

(2) #29 point as the last measuring point.

When #29 point, which is near #2 bearing, is used, the identification error of #2
bearing coefficients is very small; although, it is not the smallest among those of the eight
bearings. The maximum relative errors of k2.xx and k2.yy, which are only 5.75 × 10−7%
and 9.74 × 10−8%, respectively, almost equal zero. Moreover, the maximum relative errors
of c2.xx and c2.yy are also almost equal to zero; although, they are bigger than those of
k2.xx and k2.yy. They are only 0.0882% and 0.00795%, respectively.

However, the identification error becomes bigger for some other bearings. For the main
stiffness coefficient in the x direction, the biggest of the eight maximum errors occurs at #6
bearing. For the main stiffness coefficient in the y direction, the biggest of the maximum
errors occurs at #8 bearing. For the main damping coefficients in the x and y directions,
they are at #8 bearing. They are too big and are 3878% and 28,609%, respectively.

(3) #33 point as the last measuring point.

When #33 point, which is near #3 bearing, is used, the identification error of #3
bearing coefficients is very small; although, it is not the smallest among those of the eight
bearings. The maximum relative errors of k3.xx and k3.yy, which are only 7.88 × 10−6%
and 7.43 × 10−7%, respectively, almost equal zero. Moreover, the maximum relative errors
of c3.xx and c3.yy are also almost equal to zero; although, they are bigger than that of k3.xx
and k3.yy. They are only 0.495% and 0.948%, respectively.

However, the identification error becomes bigger for some other bearings. For the main
stiffness coefficient in the x direction, the biggest of the eight maximum errors occurs at #6
bearing. For the main stiffness coefficient in the y direction, the biggest of the maximum
errors occurs at #8 bearing. For the main damping coefficients in the x and y directions,
they are at #8 bearing. They are too big and are 15,859% and 21,915%, respectively.

(4) #49 point as the last measuring point.

When #49 point, which is near #4 bearing, is used, the identification error of #4 bearing
coefficients is very small; although, it is not the smallest among the eight bearings. The
maximum relative errors of k4.xx and k4.yy, which are only 5.59× 10−6% and 6.70 × 10−6%,
respectively, almost equal zero. Moreover, the maximum relative errors of c4.xx and c4.yy
are also almost equal to zero; although, they are bigger than that of k4.xx and k4.yy. They
are only 0.503% and 0.0455%, respectively.

However, the identification error becomes bigger for some other bearings. For the main
stiffness coefficient in the x direction, the biggest of the eight maximum errors occurs at #7
bearing. For the main stiffness coefficient in the y direction, the biggest of the maximum
errors is at #8 bearing. For the main damping coefficients in the x and y directions, they are
at #8 bearing and are 702% and 456%, respectively.
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(5) #53 point as the last measuring point.

When #53 point, which is near #5 bearing, is used, the identification error of #5 bearing
coefficients is the smallest among the eight bearings. The maximum relative errors of k5.xx
and k5.yy, which are only 5.03 × 10−5% and 2.16 × 10−5%, respectively, almost equal
zero. Moreover, the maximum relative errors of c5.xx and c5.yy are also almost equal to
zero; although, they are bigger than that of k5.xx and k5.yy. They are only 1.60% and
3.52%, respectively.

However, the identification error becomes bigger for some other bearings. For the main
stiffness coefficient in the x direction, the biggest of the eight maximum errors occurs at #6
bearing. For the main stiffness coefficient in the y direction, the biggest of the maximum
errors occurs at #2 bearing. For the main damping coefficients in the x and y directions,
they are at #1 bearing and are 512% and 420%, respectively.

(6) #69 point as the last measuring point.

When #69 point, which is near #6 bearing, is used, the identification error of #6 bearing
coefficients is very small; although, it is not the smallest among the eight bearings. The
maximum relative errors of k6.xx and k6.yy, which are only 8.03× 10−6% and 8.19 × 10−6%,
respectively, almost equal zero. Moreover, the maximum relative errors of c6.xx and c6.yy
are also almost equal to zero; although, they are bigger than that of k6.xx and k6.yy. They
are only 0.332% and 0.540%, respectively.

However, the identification error becomes bigger for some other bearings. For the
main stiffness and damping coefficients in the x and y directions, the biggest values of the
eight maximum errors occur at #1 bearing. For the main damping coefficients in the x and
y directions, they are at #1 bearing and are 5169% and 2235%, respectively.

(7) #73 point as the last measuring point.

When #73 point, which is near #7 bearing, is used, the identification error of #7 bearing
coefficients is very small; although, it is not the smallest among the eight bearings. The
maximum relative errors of k7.xx and k7.yy, which are only 5.28× 10−6% and 7.84 × 10−6%,
respectively, almost equal zero. Moreover, the maximum relative errors of c7.xx and c7.yy
are also almost equal to zero; although, they are bigger than those of k7.xx and k7.yy. They
are only 0.223% and 0.0215%, respectively.

However, the identification error becomes bigger for some other bearings. For the
main stiffness and damping coefficients in the x and y directions, the biggest values of the
eight maximum errors occur at #1 bearing. For the main damping coefficients in the x and
y directions, they are at #1 bearing and are 14,705% and 42,741%, respectively.

(8) #91 point as the last measuring point.

When #91 point, which is near #8 bearing, is used, the identification error of #8 bearing
coefficients is the smallest among the eight bearings. The maximum relative errors of k8.xx
and k8.yy, which are only 1.91 × 10−7% and 5.98 × 10−8%, respectively, almost equal
zero. Moreover, the maximum relative errors of c8.xx and c8.yy are also almost equal to
zero; although, they are bigger than that of k8.xx and k8.yy. They are only 0.00755% and
0.000922%, respectively.

However, the identification error becomes bigger for some other bearings. For the main
stiffness coefficient in the x direction, the biggest of the eight maximum errors occurs at #3
bearing. For the main stiffness coefficient in the y direction, the biggest of the maximum
errors occurs at #3 bearing. For the main damping coefficient in the x direction, the biggest
of the maximum errors is much bigger. It occurs at #2 bearing and is 11,985%. For the main
damping coefficient in the y direction, the biggest of the eight maximum errors, which is
10,846%, occurs at #1 bearing.
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A1− Kxxg44 =



#1B #2B #3B #4B #5B #6B #7B #8B

#14P 5.75× 10−7 3.85× 10−5 3.34× 10−5 0.0127 0.0575 1.19 0.434 0.695

#29P 4.36× 10−6 2.84× 10−6 4.16× 10−6 0.00246 0.0111 0.235 0.0887 0.204

#33P 3.57× 10−5 2.00× 10−5 7.88× 10−6 0.000774 0.00387 0.119 0.0735 0.0417

#49P 0.000168 3.33× 10−5 0.000106 5.59× 10−6 6.82× 10−5 0.000459 0.000974 0.00518

#53P 0.00115 0.000970 0.000390 5.76× 10−5 5.03× 10−5 0.000666 0.000266 0.000255

#69P 0.0229 0.0148 0.0194 2.10× 10−5 0.000212 8.03× 10−6 1.82× 10−5 2.79× 10−5

#73P 0.154 0.0769 0.0934 0.000940 0.00237 2.98× 10−5 5.28× 10−6 6.00× 10−6

#91P 0.0519 0.147 0.211 0.000302 0.00182 0.0001159 4.73× 10−5 1.91× 10−7



(19)

A1− Kyyg44 =



#1B #2B #3B #4B #5B #6B #7B #8B

#14P 9.74× 10−8 0.000137 0.000322 0.0272 0.142 5.32 3.76 7.92

#29P 4.13× 10−6 7.08× 10−6 2.68× 10−5 0.000259 0.00210 0.145 0.133 0.597

#33P 6.16× 10−5 2.53× 10−5 7.43× 10−7 0.000722 0.00379 0.139 0.0991 0.150

#49P 6.83× 10−5 0.000437 0.000490 6.70× 10−6 7.61× 10−5 0.00646 0.00534 0.00650

#53P 0.000546 0.000922 0.000321 2.28× 10−5 2.16× 10−5 0.000498 0.000216 0.000192

#69P 0.00358 0.00149 0.00175 0.000144 0.000230 8.19× 10−6 4.84× 10−6 1.43× 10−5

#73P 0.0999 0.0182 0.814 0.00132 0.00125 3.46× 10−5 7.84× 10−6 1.26× 10−5

#91P 0.0185 0.0532 0.115 0.00104 0.000430 4.79× 10−5 1.83× 10−5 5.98× 10−8



(20)

A1− Cxxg44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.0882 5.72 22.2 95.6 1083 179713 187922 389897
#29P 0.669 0.436 1.644 22.7 191 34293 36147 73878
#33P 4.25 0.695 0.495 45.5 111 7595 10478 15859
#49P 105 24.7 27.2 0.503 7.60 402 333 702
#53P 512 146 220 0.607 1.60 91.7 98.3 191
#69P 5169 972 29.3 54.5 89.8 0.332 0.354 3.59
#73P 14705 2328 3093 281 375 0.0995 0.223 0.0620
#91P 5045 11985 2611 639 1113 9.72 1.39 0.00755


(21)

A1− Cyyg44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.00795 5.25 40.9 2761 8824 190712 358496 924266
#29P 0.150 0.161 0.888 115 472 5714 993 28609
#33P 0.366 1.19 0.948 74.8 238 4857 9290 21915
#49P 38.7 3.36 27.5 0.0455 13.1 43.8 215 456
#53P 420 91.7 163 1.07 3.52 65.8 71.3 158
#69P 2235 462 570 3.79 15.5 0.534 0.274 1.99
#73P 42741 7580 6283 298 513 5.05 0.0215 1.01
#91P 10846 8473 5519 392 674 5.86 0.916 0.000922


(22)

where A1− Kxxg44, A1− Kyyg44, A1− Cxxg44 and A1− Cyyg44 are the matrices of the
maximum identification error of the main stiffness coefficient in the x direction, the main
stiffness coefficient in the y direction, the main damping coefficient in the x direction and
the main damping coefficient in the y direction of #1 to #8 bearings under different last
measuring point conditions in the simulation of g4.4 using Algorithm I; the red numbers
show the best identification results when the last measuring point is changed.

The First Kind of Simulation Based on Algorithm II

(1) Results of the computational example g4.4.

Equations (23)–(30) can be obtained using the computational example g4.4 when the
points #14, #29, #33, #49, #53, #69, #73 and #91 points are used as the last measuring point,
respectively. It shows the maximum relative errors of each bearing’s main coefficients and
the maximum absolute value of each bearing’s cross-coupled coefficients. The nodes, where
the bearings and discs are located, are used as the m + n measuring points.
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According to the first rows of the matrix in Equations (23)–(30), the identification error
of #1 bearing coefficients is the smallest among the eight bearings when #14 point is used.
For the identified main coefficients, the maximum relative errors of k1.xx and k1.yy, which
are only 6.89 × 10−7% and 2.13 × 10−7%, respectively, almost equal zero. Moreover, the
maximum relative errors of c1.xx and c1.yy are also almost equal to zero; although, they
are bigger than that of k1.xx and k1.yy. They are only 0.0179% and 0.0945%, respectively.
While for the cross-coupled coefficients, the identification errors of cross-coupled damping
coefficients are bigger than those of cross-coupled stiffness coefficients; although, they are
almost equal to zero (the setting value). The maximum absolute values of k1.xy and k1.yx
are 0.0945 and 0.135, respectively. The maximum absolute values of c1.xy and c1.yx are
0.0210 and 0.00298, respectively.

However, the identification error becomes bigger for some other bearings. For the
main stiffness coefficient in the x direction, the biggest of the eight maximum errors, which
is 2.67%, occurs at #8 bearing. For the main stiffness coefficient in the y direction, the
biggest of the maximum errors occurs at #8 bearing and is 9.53%. While for the four main
damping coefficients in the x and y directions, the biggest values of the maximum errors
are much bigger. They occur at #8 bearing and are 76,824% and 183,620%, respectively. For
the cross-coupled coefficients, the biggest values of the maximum errors, which are 369,059,
325,011, 12,758 and 143,445, occur at #8, #7, #8 and #8 bearing, respectively.

By changing the last measuring point to #29, #33, #49, #53, #69, #73 and #91 points,
respectively, similar results can be obtained according to the other rows of the matrices in
Equations (23)–(30).

A2− Kxxg44 =



#1B #2B #3B #4B #5B #6B #7B #8B

#14P 6.89× 10−7 4.59× 10−5 4.04× 10−5 0.0152 0.0687 1.41 0.514 2.67

#29P 6.37× 10−6 3.41× 10−6 1.21× 10−5 0.00295 0.0134 0.284 0.220 0.327

#33P 0.000102 2.41× 10−5 9.38× 10−6 0.000930 0.00524 0.143 0.0887 0.208

#49P 0.000201 6.44× 10−5 0.000125 6.71× 10−6 8.20× 10−5 0.000788 0.00142 0.00618

#53P 0.00137 0.00116 0.000479 6.90× 10−5 6.04× 10−5 0.000797 0.000321 0.000429

#69P 0.0274 0.0178 0.0232 6.17× 10−5 0.000372 9.65× 10−6 2.18× 10−5 7.78× 10−5

#73P 0.185 0.0924 0.112 0.00112 0.00282 3.58× 10−5 6.33× 10−6 7.23× 10−6

#91P 0.213 0.270 0.253 0.0105 0.0166 0.000262 8.30× 10−5 2.38× 10−7



(23)

A2− Cxxg44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.0179 1.13 4.32 18.2 229 35442 36599 76824
#29P 0.128 0.0869 0.330 7.33 25.4 6703 7211 14857
#33P 0.850 0.144 0.0963 9.46 23.8 1538 2123 3265
#49P 20.7 4.84 5.36 0.0967 1.47 78.8 65.4 138
#53P 101 29.1 43.9 0.132 0.309 18.3 19.6 38.1
#69P 1012 189 16.4 10.8 17.8 0.0734 0.0621 0.698
#73P 3017 491 587 57.1 76.7 0.0202 0.0437 0.00965
#91P 911 2428 555 130 226 1.96 0.285 0.00145


(24)

A2− Kyyg44 =



#1B #2B #3B #4B #5B #6B #7B #8B

#14P 2.13× 10−7 0.000165 0.000385 0.0327 0.173 6.39 4.52 9.53

#29P 7.74× 10−6 8.49× 10−6 3.21× 10−5 0.000950 0.00632 0.316 0.407 0.715

#33P 0.000125 3.02× 10−5 1.28× 10−6 0.000871 0.00456 0.183 0.208 0.365

#49P 0.000123 0.000525 0.000586 8.03× 10−6 9.19× 10−5 0.00776 0.00641 0.00781

#53P 0.000671 0.00111 0.000388 2.74× 10−5 2.59× 10−5 0.000605 0.000263 0.000283

#69P 0.0160 0.00236 0.00293 0.000173 0.000275 9.80× 10−6 5.84× 10−6 1.73× 10−5

#73P 0.120 0.0218 0.0980 0.00157 0.00207 4.13× 10−5 9.38× 10−6 1.51× 10−5

#91P 0.0837 0.236 0.280 0.0101 0.0164 0.000192 6.97× 10−5 1.61× 10−7



(25)
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A2− Cyyg44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.00130 1.02 8.16 554 1764 37038 71313 183620
#29P 0.0345 0.0273 0.181 23.4 96.5 1267 186 5303
#33P 0.185 0.252 0.187 14.3 43.8 1061 1923 4489
#49P 8.02 0.742 5.50 0.0211 2.63 10.3 42.3 90.5
#53P 80.5 17.7 32.6 0.181 0.680 12.7 14.1 31.5
#69P 468 96.9 116 0.949 3.46 0.107 0.0594 0.409
#73P 8540 1504 1228 59.7 103 1.00 0.00685 0.199
#91P 1852 1595 1018 75.2 129 1.10 0.165 0.000174


(26)

A2− Kxyg44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.0945 5.44 20.9 188 1207 169914 178123 369059
#29P 1.84 0.416 1.56 188 1158 40398 34398 70167
#33P 18.8 1.47 0.465 48.7 577 13264 11645 21011
#49P 96.5 23.4 25.7 0.477 7.14 380 316 664
#53P 467 140 208 0.632 1.51 86.9 93.5 181
#69P 5232 923 438 52.0 84.6 0.320 0.659 3.39
#73P 14927 2242 2909 269 355 1.09 0.213 0.824
#91P 20565 11457 41342 611 1145 9.24 4.86 0.0108


(27)

A2− Kyxg44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.135 4.74 37.3 2502 8090 173327 325011 219685
#29P 2.07 0.566 1.03 230 1059 51095 29962 17229
#33P 26.7 2.08 0.864 106 498 21106 9260 15441
#49P 32.0 3.81 25.1 0.408 12.0 59.8 194 149
#53P 343 82.6 149 0.945 3.20 59.7 64.6 39.8
#69P 2620 422 522 7.72 15.0 0.492 0.551 1.73
#73P 35142 6858 5721 270 470 4.59 0.162 0.921
#91P 15428 39749 28480 575 624 12.9 6.43 0.0137


(28)

A2− Cxyg44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.0210 0.661 0.527 221 983 20020 6934 12758
#29P 0.170 0.0520 0.0807 44.3 201 4484 1874 2968
#33P 1.38 0.364 0.135 14.1 69.8 2172 1352 819
#49P 6.17 0.603 1.83 0.0987 1.19 8.11 16.6 89.8
#53P 42.0 17.5 7.11 1.03 0.888 11.9 4.84 5.17
#69P 821 264 341 0.411 3.90 0.143 0.322 0.496
#73P 5675 1386 1677 16.4 41.4 0.535 0.0941 0.110
#91P 1736 2663 3798 5.56 32.6 2.09 0.854 0.00331


(29)

A2− Cyxg44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.00298 2.46 5.85 485 2591 95895 67788 143445
#29P 0.150 0.126 0.480 4.19 36.4 2619 2413 10651
#33P 2.21 0.443 0.0164 13.2 69.2 2467 1717 2522
#49P 2.20 7.83 8.86 0.120 1.37 117 96.2 118
#53P 22.5 17.2 6.77 0.410 0.381 9.40 4.31 4.52
#69P 141 23.3 36.1 2.62 4.16 0.143 0.0894 0.268
#73P 3552 333 1472 23.1 22.0 0.623 0.138 0.228
#91P 572 912 1981 17.3 6.462 0.831 0.3101 0.000972


(30)

where A2− Kxxg44, A2− Kyyg44, A2− Cxxg44, A2− Cyyg44,A2− Kxyg44, A2− Kyxg44,
A2− Cxyg44 and A2− Cyxg44 are the matrices of the maximum identification error of the
main stiffness coefficient in the x direction, the main stiffness coefficient in the y direction,
the main damping coefficient in the x direction, the main damping coefficient in the y
direction, the cross-coupled stiffness coefficient in the x direction, the cross-coupled stiffness
coefficient in the y direction, the cross-coupled damping coefficient in the x direction and
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the cross-coupled damping coefficient in the y direction of #1 to #8 bearings under different
last measuring point condition in the simulation of g4.4 using Algorithm II; the red numbers
show the best identification results when the last measuring point is changed.

(2) Results of the Computational Example h4.4.

For rotor h4.4 supported by oil journal bearings, Equations (31)–(38), which show the
biggest relative errors of each bearing’s main and cross-coupled coefficients, are obtained
using #14, #29, #31, #49, #51, #69, #71 and #89 point as the last one measuring point,
respectively. The nodes, where the bearings and discs are located, are used as the m + n
measuring points.

According to the first rows of the matrices in Equations (31)–(38), the identification
error of #1 bearing coefficients is very small; although, it is not the smallest among the eight
bearings. For the stiffness coefficients, the maximum relative error of k1.xx, k1.yy, k1.xy and
k1.yx are 0.444%, 0.346%, 1.23% and 0.514%, respectively. While for the damping coefficients,
the maximum relative error of c1.xx, c1.yy, c1.xy and c1.yx, which are 0.00337%, 0.00490%,
0.0634% and 0.0209%, respectively, are smaller than that of the stiffness coefficients.

However, the identification error becomes bigger for some other bearings. For the
main stiffness coefficient in the x direction, the biggest of the eight maximum errors, which
is 102%, occurs at #7 bearing. For the main stiffness coefficient in the y direction, the
biggest of the maximum errors occurs at #7 bearing and is 1054%. While for the four main
damping coefficients in the x and y directions, the biggest values of the maximum errors
are much smaller. They occur at #7 bearing and are 2.59% and 9.51%, respectively. For the
cross-coupled coefficients, they are 61.0%, 499%, 3.22% and 23.4%, respectively, and they
occur at #7, #7, #8 and #7 bearings, respectively.

By changing the last measuring point to other points listed in Table 2, respectively, simi-
lar results can be obtained according to the other rows of the matrices in Equations (31)–(38).

A2− Kxxh44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.444 0.0489 1.976 3.83 9.18 2.70 102 8.52
#29P 0.482 0.0148 0.682 0.230 0.750 12.4 94.0 586
#31P 1.79 0.0424 0.673 0.324 1.05 17.4 132 854
#49P 4.27 0.00675 0.743 0.000898 0.000540 0.0113 0.205 5.24
#51P 69.4 0.0629 0.658 0.000775 0.00119 0.00499 0.0620 0.541
#69P 134 1.22 18.9 0.00660 0.00959 0.000199 0.00622 0.161
#71P 944 7.18 35.8 0.0187 0.00690 0.000207 0.00635 0.0280
#89P 53.4 25.5 44.7 0.0514 0.155 0.00144 0.0140 0.0591


(31)

A2− Cxxh44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.00337 0.0111 0.0938 0.149 0.0551 0.629 2.594 0.262
#29P 0.00366 0.000564 0.0268 0.0159 0.00248 0.106 0.362 8.18
#31P 0.0203 0.00167 0.0264 0.0227 0.00341 0.439 2.02 12.0
#49P 0.0325 0.000606 0.0296 4.98× 10−5 2.39× 10−5 0.00190 0.00671 0.00887
#51P 0.530 0.00183 0.0272 4.04× 10−5 2.40× 10−5 0.000947 0.001978 0.0232
#69P 2.38 0.103 0.859 0.000397 6.51× 10−5 1.26× 10−5 0.000200 0.00101
#71P 7.14 0.307 1.38 0.000479 0.000666 2.13× 10−5 0.000214 0.000408
#89P 0.4038 0.547 2.00 0.0170 0.00527 0.000332 0.000408 0.000497


(32)

A2− Kyyh44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.346 0.159 2.95 10.4 14.7 12.5 1054 178
#29P 0.634 0.0199 1.60 1.77 2.20 19.4 564 7679
#31P 2.68 0.0596 1.63 2.53 2.96 27.4 879 8720
#49P 3.46 0.0384 1.85 0.00436 0.00337 0.0508 2.01 75.7
#51P 24.1 0.726 3.70 0.00201 0.00494 0.00826 0.406 125
#69P 176 11.4 46.7 0.142 0.0781 0.000415 0.0190 0.398
#71P 592 7.51 61.6 0.256 0.0892 0.000842 0.00913 1.07
#89P 8.57 166 175 2.15 0.749 0.00815 0.0986 0.628


(33)
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A2− Cyyh44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.00490 0.00295 0.0610 0.00972 0.00753 0.758 9.51 0.193
#29P 0.0150 0.000540 0.0282 0.00607 0.00351 0.963 5.13 8.04
#31P 0.0946 0.00147 0.0288 0.00749 0.00707 1.44 7.90 10.9
#49P 0.0430 0.000613 0.0329 1.91× 10−5 1.59× 10−5 0.00292 0.0180 0.0102
#51P 0.438 0.00449 0.0652 2.98× 10−5 1.34× 10−5 0.000332 0.00341 0.0482
#69P 1.65 0.197 1.12 0.000498 0.000102 2.90× 10−5 0.000173 0.000844
#71P 29.3 0.419 0.467 0.000441 0.000468 4.81× 10−5 7.92× 10−5 0.000118
#89P 0.206 0.845 1.63 0.00443 0.00544 0.000410 0.000892 5.57× 10−5


(34)

A2− Kxyh44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 1.23 0.303 0.789 45.0 45.6 29.7 61.0 28.5
#29P 1.97 0.0931 0.285 3.12 3.77 48.7 26.4 1598
#31P 6.71 0.266 0.282 4.42 5.28 68.2 45.1 2337
#49P 6.09 0.0418 0.310 0.0114 0.00255 0.103 0.144 0.807
#51P 81.1 0.397 0.272 0.00972 0.00580 0.0608 0.0429 3.83
#69P 1240 7.61 7.66 0.0859 0.0485 0.000627 0.00432 0.123
#71P 1179 45.3 15.1 0.1487 0.0316 0.00202 0.00455 0.0794
#89P 57.3 158 18.1 1.29 0.819 0.0203 0.00913 0.0668


(35)

A2− Kyxh44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.514 0.0849 2.867 3.36 7.83 14.6 499 22.0
#29P 1.57 0.0107 1.50 0.515 1.18 27.5 263 2744
#31P 9.91 0.0319 1.53 0.752 1.59 36.4 419 3885
#49P 4.49 0.0208 1.74 0.00121 0.00184 0.0446 0.970 4.05
#51P 45.8 0.384 3.48 0.000416 0.00267 0.0171 0.214 8.82
#69P 175 6.08 47.0 0.0410 0.0418 0.000668 0.00885 0.328
#71P 3068 4.01 52.2 0.0804 0.0487 0.00189 0.00457 0.155
#89P 20.9 88.3 149 0.679 0.415 0.00370 0.0465 0.0852


(36)

A2− Cxyh44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.0634 0.0100 0.117 0.0844 0.0661 1.51 3.16 3.22
#29P 0.0688 0.000508 0.0339 0.0116 0.00178 0.219 0.445 11.7
#31P 0.322 0.00150 0.0334 0.0167 0.00218 1.10 2.49 16.9
#49P 0.610 0.000808 0.0373 3.39× 10−5 4.29× 10−5 0.00543 0.00835 0.319
#51P 9.93 0.00192 0.0342 2.68× 10−5 3.71× 10−5 0.00225 0.00246 0.0914
#69P 28.6 0.0922 1.08 0.000278 0.000160 3.26× 10−5 0.000249 0.0117
#71P 135 0.276 1.74 0.000729 0.000670 2.57× 10−5 0.000267 0.000512
#89P 7.61 0.514 2.51 0.0156 0.00509 0.000785 0.000504 0.00464


(37)

A2− Cyxh44 =



#1B #2B #3B #4B #5B #6B #7B #8B
#14P 0.0209 0.00251 0.0692 0.0168 0.00240 1.73 23.4 1.08
#29P 0.064 0.000460 0.0318 0.00500 0.00187 2.25 12.6 42.2
#31P 0.405 0.00125 0.0324 0.00657 0.00408 3.33 19.4 50.6
#49P 0.234 0.000523 0.0371 1.43× 10−5 9.84× 10−6 0.00672 0.0443 0.312
#51P 1.87 0.00384 0.0735 1.67× 10−5 7.89× 10−6 0.00113 0.00849 0.560
#69P 6.88 0.168 1.28 0.000406 5.18× 10−5 6.56× 10−5 0.000424 0.00283
#81P 125 0.357 0.509 0.000512 0.000248 0.000111 0.000196 0.00401
#89P 1.35 0.753 1.86 0.00413 0.00346 0.000955 0.00219 0.00237


(38)

where A2− Kxxg44, A2− Kyyg44, A2− Cxxg44, A2− Cyyg44,A2− Kxyg44, A2− Kyxg44,
A2− Cxyg44 and A2− Cyxg44 are the matrices of the maximum identification error of the
main stiffness coefficient in the x direction, the main stiffness coefficient in the y direction,
the main damping coefficient in the x direction, the main damping coefficient in the y
direction, the cross-coupled stiffness coefficient in the x direction, the cross-coupled stiffness
coefficient in the y direction, the cross-coupled damping coefficient in the x direction and the
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cross-coupled damping coefficient in the y direction of #1 to #8 bearings under different last
measuring point conditions in the simulation of h4.4 using Algorithm II; the red numbers
show the best identification results when the last measuring point is changed.

Table 2. The last measuring point.

#14 #29 #31 #49 #51 #69 #71 #89

3.2.2. Discussion

In the first kind of numerical simulation, the unbalance responses calculated by CR-
DAM are directly put into Algorithm I and Algorithm II to identify the bearing coefficients.

In the simulation of g4.4 based on Algorithm I, the relative identification errors of #1
bearing’s main coefficients are almost equal to zero, while the identification errors of other
bearings can be very big when #14 node near #1 bearing is used as the last measuring point.
Moreover, when #29 node (near #2 bearing), #33 (near #3 bearing), #49 (near #4 bearing),
#53 (near #5 bearing), #69 (near #6 bearing), #73 (near #7 bearing) and #91 (near #8 bearing)
are used as the last measuring points, respectively, the relative identification errors of #2,
#3, #4, #5, #6, #7 and #8 bearing’s main coefficients are almost equal to zero, respectively.

Moreover, the same rule can be obtained according to the simulation results of g4.4
and h4.4 based on Algorithm II. It is indicated that the measuring points in Tables 1 and 2
can adjust the identification error. If the measuring point is near a bearing, the identi-
fication accuracy of the bearing is high. Hence, the points in Tables 1 and 2 are called
adjustment points.

In addition, the identification errors of main stiffness coefficients are smaller than
that of the main damping coefficients in the simulation based on Algorithm I. This is
because the main stiffness coefficients are far greater than the main damping coefficients
for a rolling bearing. The numerical calculation errors of computers, such as rounding error
and calculation accuracy, have little influence on big numbers and a great influence on
small numbers.

In the simulations of g4.4 based on Algorithm II, the identification errors of main
stiffness coefficients are also smaller than that of the main damping coefficients. It is also
because the main stiffness coefficients are much bigger than the main damping coefficients,
and the numerical calculation errors have little influence on big numbers and a great
influence on small numbers. However, the identification errors of cross-coupled stiffness
coefficients are bigger than that of the cross-coupled damping coefficients. The cross-
coupled stiffness and damping coefficients are equal and are nearly zero in g4.4. This
indicates that when the difference between the cross-coupled stiffness coefficient and cross-
coupled damping coefficient is small, the identification errors of the cross-coupled stiffness
coefficients are bigger than those of the cross-coupled damping coefficients.

Similarly, the identification errors of damping coefficients are also smaller than those of
the stiffness coefficients in the simulation of h4.4 based on Algorithm II. This is because the
difference between the stiffness coefficients and damping coefficients is not particularly big.
It can be inferred that the damping coefficients of journal bearings can be better identified
than the stiffness coefficients by using Algorithm II.

3.3. Application of Adjustment Point
3.3.1. Results
Results of the First Kind of Simulation

(1) Simulation results based on Algorithm I.

In this simulation, the computational examples are g1.1 and g1.4. The adjustment
points in Tables 3 and 4 are considered. Tables 5 and 6, which show the maximum rela-
tive errors of identified coefficient of each bearing’s main stiffness coefficients and main
damping coefficients, are obtained.
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Table 3. The measuring points for g1.1.

The m + n measuring points #15 (#1 bearing) #90 (#2 bearing) #61 (#disc)
Adjustment point #14 #91

Table 4. The measuring points for g1.4.

The m + n measuring points #15 (#1 bearing) #90 (#2 bearing) #21 (disc) #41 (disc) #61 (disc) #81 (disc)
Adjustment point #14 #91

Table 5. The biggest relative error of the identified main coefficients, based on Algorithm I and g1.1.

Relative error
(%)

k1.xx k2.xx c1.xx c2.xx k1.yy k2.yy c1.yy c2.yy
2.706 × 10−7 6.16 × 10−8 0.0306 0.00977 2.39 × 10−7 8.162 × 10−8 0.141 0.0175

Table 6. The biggest relative error of the identified main coefficients based on Algorithm I and g1.4.

Relative error
(%)

k1.xx k2.xx c1.xx c2.xx k1.yy k2.yy c1.yy c2.yy
4.11 × 10−7 8.13 × 10−8 0.0227 0.00204 1.24 × 10−7 5.31 × 10−8 0.0130 0.00834

For g1.1, according to Table 5, the maximum relative errors of the two bearings’ main
coefficients are almost equal to zero. The maximum relative errors of k1.xx, k1.yy, k2.xx and
k2.yy are only 2.71 × 10−7%, 6.16 × 10−8%, 2.39 × 10−7% and 8.16 × 10−8%, respectively.
Moreover, the maximum relative errors of c1.xx, c1.yy, c2.xx and c2.yy, which are 0.0306%,
0.00977%, 0.141% and 0.0175%, respectively, almost equal zero; although, they are bigger
than those of the main stiffness coefficients.

For g1.4, according to Table 6, the maximum relative errors of the two bearings’ main
coefficients are almost equal to zero. They are only 4.11 × 10−7%, 8.13 × 10−8%, 0.0227%,
0.00204%, 1.24 × 10−7%, 5.31 × 10−8%, 0.0130% and 0.00834%, respectively. Moreover, the
identification errors of the main stiffness coefficients are smaller than those of the main
damping coefficients.

(2) Simulation results based on Algorithm II.

Simulations considering adjustment points shown in Tables 3, 4, 7 and 8 are conducted
using g1.1, g1.4, h1.1 and h1.4, respectively. Tables 9–12 show the maximum relative errors
of identified coefficients of each bearing obtained. The results are the following.

Table 7. The measuring points for h1.1.

The m + n measuring points #3 (#1 bearing) #47 (#2 bearing) #31 (#disc)
Adjustment point #2 #48

Table 8. The measuring points for h4.4.

The m + n measuring points #3 (#1 bearing) #47 (#2 bearing) #21 (disc) #41 (disc) #61 (disc) #81 (disc)
Adjustment point #2 #48

Table 9. The biggest relative identification errors of main coefficients and the maximum identified
absolute value of cross-coupled coefficients using g1.1.

Relative error
(%)

k1.xx k2.xx c1.xx c2.xx k1.yy k2.yy c1.yy c2.yy
3.25 × 10−7 6.00 × 10−7 0.00573 0.00192 3.11 × 10−7 5.63 × 10−7 0.0287 0.00352

Identified absolute
value

k1.xy k2.xy c1.xy c2.xy k1.yx k2.yx c1.yx c2.yx
0.0333 0.0108 0.00998 0.00108 0.117 0.0159 0.00888 0.00155
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Table 10. The biggest relative identification error of main coefficients and the maximum identified
absolute value of cross-coupled coefficients using g1.4.

Relative error
(%)

k1.xx k2.xx c1.xx c2.xx k1.yy k2.yy c1.yy c2.yy
4.94 × 10−7 1.85 × 10−7 0.00472 0.000425 2.22 × 10−7 9.48 × 10−8 0.00278 0.00170

Identified absolute
value

k1.xy k2.xy c1.xy c2.xy k1.yx k2.yx c1.yx c2.yx
0.0210 0.00870 0.0154 0.00145 0.0108 0.00762 0.00480 0.000967

Table 11. The biggest relative identification error using h1.1.

Relative error
(%)

k1.xx k2.xx k1.yy k2.yy k1.xy k2.xy k1.yx k2.yx
0.00435 0.00350 0.00537 0.0118 0.0324 0.0218 0.00346 0.00633

Relative error
(%)

c1.xx c2.xx c1.yy c2.yy c1.xy c2.xy c1.yx c2.yx
1.56 × 10−5 0.000229 2.45 × 10−5 0.000204 0.000416 0.000188 9.41 × 10−5 0.000190

Table 12. The biggest relative identification error using h1.4.

Relative error
(%)

k1.xx k2.xx k1.yy k2.yy k1.xy k2.xy k1.yx k2.yx
0.0535 0.0367 0.0184 0.181 0.677 0.241 0.0131 0.0879

Relative error
(%)

c1.xx c2.xx c1.yy c2.yy c1.xy c2.xy c1.yx c2.yx
0.000281 0.000627 0.000152 0.000612 0.00926 0.000473 0.000265 0.000604

For g1.1, according to Table 9, the maximum relative errors of the two bearings’ main
coefficients, which are only 3.25× 10−7%, 6.00× 10−7%, 0.00573%, 0.00192%, 3.11× 10−7%,
5.63 × 10−7%, 0.0287% and 0.00352%, respectively, are also quite small. Moreover, the
identification errors of the main stiffness coefficients are smaller than those of the main
damping coefficients. For the cross-coupled coefficients of the two bearings, the absolute
identified values are only 0.0333, 0.0108, 0.00998, 0.00108, 0.117, 0.0159, 0.00887 and 0.00155,
respectively. They are almost equal to zero.

For g1.4, according to Table 10, the maximum relative errors of the two bearings’
main coefficients, which are only 4.94 × 10−7%, 1.85 × 10−7%, 0.00472%, 0.000425%,
2.22 × 10−7%, 9.48 × 10−8%, 0.00278% and 0.00170%, respectively, are also quite small.
Moreover, the identification errors of the main stiffness coefficients are smaller than those
of the main damping coefficients. For the cross-coupled coefficients of the two bearings, the
absolute identified values are only 0.0210, 0.00870, 0.0154, 0.00145, 0.0108, 0.00762, 0.00480
and 0.000967, respectively. They are almost equal to zero.

For h1.1, according to Table 11, the maximum relative errors of the two bearings’ stiff-
ness coefficients are almost equal to zero. They are 0.00435%, 0.00350%, 0.00537%, 0.0118%,
0.0324%, 0.0218%, 0.00346% and 0.00633%, respectively. Moreover, the maximum relative
errors of the two bearings’ damping coefficients, which are only 1.56 × 10−5%, 0.000229%,
2.45 × 10−5% and 0.000204%, 0.000416%, 0.000188%, 9.41 × 10−5% and 0.000190%, respec-
tively, are smaller than those of the stiffness coefficients.

For h1.4, according to Table 12, the maximum relative errors of the two bearings’ stiff-
ness coefficients are almost equal to zero. They are 0.0535%, 0.0367%, 0.01841841%, 0.181%,
0.677%, 0.241% and 0.0131%, 0.0880%, respectively. Moreover, the maximum relative errors
of the two bearings’ damping coefficients, which are only 0.000281%, 0.000627%, 0.000152%,
0.0006124%, 0.00926%, 0.000473%, 0.000265% and 0.000604%, respectively, are smaller than
those of the stiffness coefficients.

Results of the Second Kind of Simulation

(1) Simulation results based on Algorithm I.

The proposed adjustment points are applied in the second kind of simulation. Figure 4,
which represents the maximum identified relative errors of each bearing’s main coefficients,
is obtained using g4.4. The points in Table 1 are used as adjustment points.
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Figure 4. The biggest relative identification error obtained using g4.4 based on Algorithm I.

For g4.4, according to Figure 4, the maximum relative errors of k1.xx, k2.xx, . . . ,
k8.xx are almost equal to zero. They are only 5.75 × 10−7%, 2.84 × 10−6%, 7.88 × 10−6%,
5.59 × 10−6%, 5.03 × 10−5%, 8.03 × 10−6%, 5.28 × 10−6% and 1.91 × 10−7%, respectively.
The maximum relative errors of c1.xx, c2.xx, . . . , c8.xx, which are only 0.0882%, 0.436%,
0.495%, 0.503%, 1.60%, 0.332%, 0.223% and 0.00755%, respectively, are bigger than that of
the main stiffness coefficients in the x direction. However, they are quite small. Moreover,
the maximum relative errors of k1.yy, k2.yy, . . . , k8.yy are only 9.74× 10−8%, 7.08 × 10−6%,
7.43 × 10−7%, 6.70 × 10−6%, 2.16 × 10−5%, 8.19 × 10−6%, 7.84 × 10−6% and 5.98 × 10−8%,
respectively. They are also almost equal to zero. The maximum relative errors of c1.yy,
c2.yy, . . . , c8.yy are very small, but are bigger than that of the stiffness coefficients in the y
direction. They are only 0.00795%, 0.161%, 0.948%, 0.0455%, 3.52%, 0.540%, 0.0215% and
0.000922%, respectively.

Tables 13 and 14, which represent the maximum identified relative errors of each
bearing’s main coefficients, are obtained in the second kind simulations of g1.4 and g1.1.
The nodes in Tables 3 and 4 are used as adjustment points. Similar rules can be obtained
according to Tables 13 and 14.

Table 13. The biggest relative identification error using the computational example g1.4.

Relative error
(%)

k1.xx k2.xx c1.xx c2.xx k1.yy k2.yy c1.yy c2.yy
4.11 × 10−7 8.13 × 10−8 0.0227 0.00204 1.24 × 10−7 5.31 × 10−8 0.0130 0.00834

Table 14. The biggest relative identification error using the computational example g1.1.

Relative error
(%)

k1.xx k2.xx c1.xx c2.xx k1.yy k2.yy c1.yy c2.yy
2.71 × 10−7 6.16 × 10−8 0.0306 0.00977 2.39 × 10−7 8.16 × 10−8 0.141 0.0175

(2) Simulation results based on Algorithm II.

Figure 5, which shows the maximum relative errors of each bearing’s main coefficients
and the absolute value of each bearing’s cross-coupled coefficients, is obtained using g4.4.
The nodes, where the bearings and discs are located, are used as the m + n measuring
points in these simulations. The adjustment points shown in Table 1 are used.



Appl. Sci. 2022, 12, 4251 22 of 40

Appl. Sci. 2022, 12, 4251 24 of 44 
 

Table 14. The biggest relative identification error using the computational example g1.1. 

Relative error 
(%) 

k1.xx k2.xx c1.xx c2.xx k1.yy k2.yy c1.yy c2.yy 
2.71 × 10−7 6.16 × 10−8 0.0306 0.00977 2.39 × 10−7 8.16 × 10−8 0.141 0.0175 

(2) Simulation results based on Algorithm II. 
Figure 5, which shows the maximum relative errors of each bearing’s main coeffi-

cients and the absolute value of each bearing’s cross-coupled coefficients, is obtained us-
ing g4.4. The nodes, where the bearings and discs are located, are used as the m + n meas-
uring points in these simulations. The adjustment points shown in Table 1 are used. 

 

Figure 5. The biggest identification error obtained using g4.4 based Algorithm II. 

According to Figure 5, for the main coefficients, the maximum relative errors of k1.xx, 
k2.xx, …, k8.xx are almost equal to zero. They are only 6.89 × 10−7%, 3.41 × 10−6%, 9.38 × 
10−6%, 6.71 × 10−6%, 6.04 × 10−5%, 9.65 × 10−6%, 6.33 × 10−6% and 2.39 × 10−7%, respectively. 
The maximum relative errors of c1.xx, c2.xx, …, c8.xx are bigger than that of the stiffness 
coefficients. They are 0.0179%, 0.0869%, 0.0963%, 0.0967%, 0.309%, 0.0734%, 0.0437% and 
0.00145%, respectively, and are quite small. In the y direction, the maximum relative er-
rors of k1.yy, k2.yy, …, k8.yy are only 2.12 × 10−7%, 8.49 × 10−6%, 1.28 × 10−6%, 8.03 × 10−6%, 
2.59 × 10−5%, 9.80 × 10−6%, 9.38 × 10−6% and 1.60 × 10−7%, respectively. The maximum rela-
tive errors of the identified c1.yy, c2.yy, …, c8.yy, which are only 0.00130%, 0.0273%, 
0.187%, 0.0211%, 0.680%, 0.107%, 0.00685% and 0.000174%, respectively, are also very 
small; though, they are bigger than that of the stiffness coefficients. 

For the cross-coupled coefficients, the identified values are almost equal to zero (the 
setting value) and the identification errors of the cross-coupled stiffness coefficients are 
higher than those of the cross-coupled damping coefficients. The maximum absolute val-
ues of k1.xy, k2.xy, …, k8.xy are only 0.0945, 0.416, 0.465, 0.477, 1.51, 0.320, 0.213 and 
0.0108, respectively. The maximum absolute values of c1.xy, c2.xy, …, c8.xy are only 
0.0210, 0.0520, 0.135, 0.0987, 0.888, 0.143, 0.0941 and 0.00331, respectively. The maximum 
absolute values of k1.yx, k2.yx, …, k8.yx are only 0.135, 0.566, 0.864, 0.408, 3.20, 0.492, 
0.162 and 0.0137, respectively. The maximum absolute values of the identified c1.yx, c2.yx, 
…, c8.yx are only 0.00298, 0.126, 0.0164, 0.120, 0.381, 0.143, 0.138 and 0.000972, respec-
tively. 

Similar results can be obtained according to Tables 15 and 16, which show the simu-
lation results of g1.4 and g1.1. 

  

#1 #2 #3 #4 #5 #6 #7 #8
-0.00001
0.00000
0.00001
0.00002
0.00003
0.00004
0.00005
0.00006

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.0179 0.08690.0963
0.0967

0.309

0.0734
0.0437 0.00145

0.0013
0.0273

0.187

0.0211

0.68

0.107

0.00685

6.89x10-7

2.12x10-7

3.41x10-6
8.49x10-6

9.38x10-6

1.28x10-6 6.71x10-6
8.03x10-6

2.59x10-5

6.04x10-5

9.65x10-6
9.8x10-6

6.33x10-6
9.38x10-6

1.6x10-7

2.39x10-7

1.74x10-4

re
la

tiv
e 

er
ro

r (
%

)

bearing number

 kxx

 kyy

 cxx

 cyy

#1 #2 #3 #4 #5 #6 #7 #8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0945
0.416 0.465

0.477

1.51

0.32
0.213

0.0108
0.135

0.566 0.864 0.408

3.2

0.492
0.162 0.0137

0.021
0.052

0.135

0.0987

0.888

0.143 0.0941
0.00331

0.00298

0.126

0.0164
0.12

0.381

0.143

0.138

ab
so

lu
te

 e
rro

r

bearing number

 kxy

 kyx

 cxy

 cyx

9.72x10-4

Figure 5. The biggest identification error obtained using g4.4 based Algorithm II.

According to Figure 5, for the main coefficients, the maximum relative errors of k1.xx,
k2.xx, . . . , k8.xx are almost equal to zero. They are only 6.89 × 10−7%, 3.41 × 10−6%,
9.38 × 10−6%, 6.71× 10−6%, 6.04× 10−5%, 9.65× 10−6%, 6.33× 10−6% and 2.39× 10−7%,
respectively. The maximum relative errors of c1.xx, c2.xx, . . . , c8.xx are bigger than that of
the stiffness coefficients. They are 0.0179%, 0.0869%, 0.0963%, 0.0967%, 0.309%, 0.0734%,
0.0437% and 0.00145%, respectively, and are quite small. In the y direction, the maximum
relative errors of k1.yy, k2.yy, . . . , k8.yy are only 2.12× 10−7%, 8.49× 10−6%, 1.28× 10−6%,
8.03 × 10−6%, 2.59 × 10−5%, 9.80 × 10−6%, 9.38 × 10−6% and 1.60 × 10−7%, respectively.
The maximum relative errors of the identified c1.yy, c2.yy, . . . , c8.yy, which are only
0.00130%, 0.0273%, 0.187%, 0.0211%, 0.680%, 0.107%, 0.00685% and 0.000174%, respectively,
are also very small; though, they are bigger than that of the stiffness coefficients.

For the cross-coupled coefficients, the identified values are almost equal to zero (the
setting value) and the identification errors of the cross-coupled stiffness coefficients are
higher than those of the cross-coupled damping coefficients. The maximum absolute values
of k1.xy, k2.xy, . . . , k8.xy are only 0.0945, 0.416, 0.465, 0.477, 1.51, 0.320, 0.213 and 0.0108,
respectively. The maximum absolute values of c1.xy, c2.xy, . . . , c8.xy are only 0.0210, 0.0520,
0.135, 0.0987, 0.888, 0.143, 0.0941 and 0.00331, respectively. The maximum absolute values
of k1.yx, k2.yx, . . . , k8.yx are only 0.135, 0.566, 0.864, 0.408, 3.20, 0.492, 0.162 and 0.0137,
respectively. The maximum absolute values of the identified c1.yx, c2.yx, . . . , c8.yx are only
0.00298, 0.126, 0.0164, 0.120, 0.381, 0.143, 0.138 and 0.000972, respectively.

Similar results can be obtained according to Tables 15 and 16, which show the simula-
tion results of g1.4 and g1.1.

Table 15. The biggest identification error using the computational example g1.4.

Relative error
(%)

k1.xx k2.xx c1.xx c2.xx k1.yy k2.yy c1.yy c2.yy
4.94 × 10−7 1.11 × 10−7 0.00472 0.000425 1.51 × 10−7 9.51 × 10−8 0.00278 0.00170

Identified absolute
value

k1.xy k2.xy c1.xy c2.xy k1.yx k2.yx c1.yx c2.yx
0.0210 0.00870 0.0154 0.00145 0.0108 0.00762 0.00480 0.000967

Table 16. The biggest identification error using the computational example g1.1.

Relative error
(%)

k1.xx k2.xx c1.xx c2.xx k1.yy k2.yy c1.yy c2.yy
3.25 × 10−7 1.70 × 10−7 0.00573 0.00192 3.12 × 10−7 5.40 × 10−7 0.0287 0.00352

Identified absolute
value

k1.xy k2.xy c1.xy c2.xy k1.yx k2.yx c1.yx c2.yx
0.0333 0.0108 0.00998 0.00108 0.117 0.0159 0.00888 0.00155
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Using the rotor h4.4 supported by oil-journal bearings, the maximum relative errors
of each bearing’s main and cross-coupled coefficients are obtained in Figure 6. The nodes,
where the bearings and discs are located, are used as the m + n measuring points in these
simulations. The adjustment points in Table 2 are used.
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Figure 6. The biggest identification error obtained using h’4.4 based on Algorithm II.

According to Figure 6, for the main coefficients, the maximum relative errors of k1.xx,
k2.xx, . . . , k8.xx are almost equal to zero. They are only 0.444%, 0.0148%, 0.673%, 0.000898%,
0.00119%, 0.000141%, 0.00634% and 0.0591%, respectively. The maximum relative errors
of c1.xx, c2.xx, . . . , c8.xx are smaller than those of the stiffness coefficients. They are
0.00337%, 0.000564%, 0.0264%, 4.98 × 10−5%, 2.40 × 10−5%, 1.27 × 10−5%, 0.000214% and
0.000497%, respectively, and are quite small. In the y direction, the maximum relative errors
of k1.yy, k2.yy, . . . , k8.yy are only 0.346%, 0.0199%, 1.63%, 0.00436%, 0.00494%, 0.000453%,
0.00912% and 0.628%, respectively. The maximum relative errors of the identified c1.yy,
c2.yy, . . . , c8.yy, which are only 0.00490%, 0.000540%, 0.0288%, 1.91× 10−5%, 1.34× 10−5%,
2.90 × 10−5%, 7.93 × 10−5% and 5.57 × 10−5%, respectively, are smaller than that of the
stiffness coefficients.

For the cross-coupled coefficients, the identification errors are almost equal to zero and
the identification errors of the cross-coupled stiffness coefficients are higher than those of the
cross-coupled damping coefficients. The maximum relative errors of k1.xy, k2.xy, . . . , k8.xy
are only 1.23%, 0.0931%, 0.282%, 0.0114%, 0.00580%, 0.000826%, 0.00455% and 0.0668%,
respectively. The maximum relative errors of c1.xy, c2.xy, . . . , c8.xy are only 0.0634%,
0.000508%, 0.0334%, 3.39 × 10−5%, 3.71 × 10−5%, 3.28 × 10−5%, 0.000267% and 0.00464%,
respectively. The maximum relative errors of k1.yx and k2.yx, . . . , k8.yx are 0.514%,
0.0107%, 1.53%, 0.00121%, 0.00267%, 0.000671%, 0.00461% and 0.0852%, respectively. The
maximum relative errors of c1.yx and c2.yx, . . . , c8.yx are only 0.0209%, 0.000460%, 0.0324%,
1.43 × 10−5%, 7.89 × 10−6%, 6.56 × 10−5%, 0.000196% and 0.00237%, respectively.

Similar results can be obtained according to Tables 17 and 18, which show the simula-
tions results of h1.4 and h1.1.

Table 17. The biggest identification error using the computational example h1.4.

Relative error
(%)

k1.xx k2.xx c1.xx c2.xx k1.yy k2.yy c1.yy c2.yy
0.0535 0.0373 0.000281 0.000620 0.0184 0.182 0.000152 0.000618

Relative error
(%)

k1.xy k2.xy c1.xy c2.xy k1.yx k2.yx c1.yx c2.yx
0.677 0.2494 0.00926 0.000472 0.0131 0.0857 0.000265 0.000627
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Table 18. The biggest identification error using the computational example h1.1.

Relative error
(%)

k1.xx k2.xx c1.xx c2.xx k1.yy k2.yy c1.yy c2.yy
0.00435 0.00350 1.56 × 10−5 0.000229 0.00537 0.0118 2.45 × 10−5 0.000204

Relative error
(%)

k1.xy k2.xy c1.xy c2.xy k1.yx k2.yx c1.yx c2.yx
0.0324 0.0218 0.000416 0.000188 0.00345 0.00633 9.41 × 10−5 0.000190

3.3.2. Discussion

From the above, the identification errors are almost equal to zero when the set error
is zero by using the proposed adjustment point. Moreover, the identification errors are
also almost equal to zero; although, the set measured error is (5%, 5◦). This indicates that
if the errors of all measured unbalance responses are equal, the bearing coefficients will
be identified accurately. Therefore, the repeatability precision of each measuring channel
of the unbalance response measurement system is very important for Algorithm I and
Algorithm II.

In addition, when the two methods are used for rolling bearings, the identification
errors of the main stiffness coefficients are smaller than those of the main damping coeffi-
cients. While for the cross-coupled coefficients, the identification errors of the cross-coupled
stiffness coefficients are higher than that of the cross-coupled damping coefficients. When
Algorithm II is used for oil journal bearings, the identification errors of the main stiff-
ness coefficients are bigger than those of the main damping coefficients. Moreover, the
identification errors of the cross-coupled stiffness coefficients are bigger than those of the
cross-coupled damping coefficients. Hence, for Algorithm II used for rolling bearings, the
stiffness coefficients of rolling bearings can be better identified than the damping coeffi-
cients. Whereas, when Algorithm II is used for journal bearings, the damping coefficients
can be better identified than the stiffness coefficients. The reason is that the numerical
calculation errors of computers, such as rounding error and calculation accuracy, have little
influence on big numbers and a great influence on small numbers.

3.4. Effect of Sensor Resolution
3.4.1. Results

The unbalance responses calculated by CRDAM contaminating three kinds of typical
sensor resolution, which are 0.1 mn, 1 nm, and 1 um, respectively, are the input data to
the two algorithms. The adjustment points are in Tables 1 and 2. Figures 7–9 are obtained.
Figure 7 is the statistical results of the amount of LEFPs of the identified main coefficients
of g4.4 based on Algorithm I. Figures 8 and 9 are the statistical results of the amount of
LEFPs of the identified main coefficients of g4.4 and h4.4 based on Algorithm II.
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Figure 7. Cont.
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Figure 7. Statistical results of the amount of the frequencies, at which the related error is less than
10%: (a) #1 bearing; (b) #2 bearing; (c) #3 bearing; (d) #4 bearing; (e) #5 bearing; (f) #6 bearing; (g) #7
bearing; (h) #8 bearing.
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Figure 8. Statistical results of the amount of the frequencies, at which the related error is less than
10% or the absolute value is less than 10: (a) #1 bearing; (b) #2 bearing; (c) #3 bearing; (d) #4 bearing;
(e) #5 bearing; (f) #6 bearing; (g) #7 bearing; (h) #8 bearing.
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Figure 9. Statistical results of the amount of the frequencies, at which the related error is less than
10% or the absolute value is less than 10: (a) #1 bearing; (b) #2 bearing; (c) #3 bearing; (d) #4 bearing;
(e) #5 bearing; (f) #6 bearing; (g) #7 bearing; (h) #8 bearing.

Simulations Results Based on Algorithm I

According to Figure 7, the following can be obtained.

(1) 0.1 nm resolution.

Most identification errors of the main stiffness coefficients are smaller than 10% and
there are some identification errors of the main damping coefficients smaller than 10%.

In the x direction, the amounts of LEFPs of k1.xx, k2.xx, . . . , k8.xx are 1000, 999, 999,
998, 992, 993, 996 and 1000, respectively. While for c1.xx, c2.xx, . . . , c8.xx, the amounts are
885, 494, 433, 455, 347, 451, 499 and 929, respectively. In the y direction, there are 1000, 999,
999, 995, 995, 996, 998 and 1000 LEFPs of k1.yy, k2.yy, . . . , k8.yy, respectively. While for
c1.yy, c2.yy, . . . , c8.yy, the amounts are 882, 472, 407, 437, 288, 457, 487 and 931, respectively.

(2) 1 nm resolution.

Most identification errors of the main stiffness coefficients are smaller than 10%. Some
identification errors are smaller than 10% for the main damping coefficients.
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In the x direction, the amounts of LEFPs of k1.xx, k2.xx, . . . , k8.xx are 999, 994, 992,
987, 979, 982, 986 and 996, respectively. While for c1.xx, c2.xx, . . . , c8.xx, the amounts are
886, 495, 437, 460, 331, 452, 497 and 920, respectively. In the y direction, there are 999, 993,
989, 984, 983, 985, 990 and 996 LEFPs of k1.yy, k2.yy, . . . , k8.yy, respectively. While for c1.yy,
c2.yy, . . . , c8.yy, the amounts are 878, 471, 421, 51, 296, 447, 484 and 924, respectively.

(3) 1 um resolution.

Most identification errors of the main stiffness coefficients are smaller than 10%. While
for the main damping coefficients, only some identification errors are smaller than 10%.

In the x direction, the amounts of LEFPs of k1.xx, k2.xx, . . . , k8.xx are 927, 758, 681,
615, 462, 494, 588 and 835, respectively. While for c1.xx, c2.xx, . . . , c8.xx, the amounts are
457, 143, 87, 68, 13, 27, 38 and 500, respectively. In the y direction, there are 927, 765, 686,
615, 435, 477, 596 and 831 LEFPs of k1.yy, k2.yy, . . . , k8.yy, respectively. While for c1.yy,
c2.yy, . . . , c8.yy, the amounts are 455, 134, 84, 64, 18, 13, 32 and 495, respectively.

Other simulations results are obtained as follows.

(1) The maximum relative error of the identified coefficient is very big and it appears at
low frequency.

(2) The main stiffness coefficients cannot be identified at 1 Hz when 1 nm resolution is
used and the main stiffness coefficients cannot be identified from 1 to 33 Hz when
1 um resolution is applied.

Similar results can be obtained from the simulations of g1.4 and g1.1, whose results
are shown in Figures A1–A8 in Appendix A.

Simulations Results Based on Algorithm II

According to Figure 8, the following can be obtained.

(1) 0.1 nm resolution.

Most of the identification errors of the main stiffness coefficients are smaller than 10%, but
there are only several identification errors smaller than 10% for the main damping coefficients.

In the x direction, the amounts of LEFPs of k1.xx, k2.xx, . . . , k8.xx are 982, 786, 444,
719, 422, 446, 729 and 997, respectively. While for c1.xx, c2.xx, . . . , c8.xx, the amounts are
only 23, 6, 2, 10, 5, 7, 3 and 25, respectively. In the y direction, there are 988, 755, 466, 694,
422, 441, 754 and 996 LEFPs of k1.yy, k2.yy, . . . , k8.yy, respectively. While for c1.yy, c2.yy,
. . . , c8.yy, the amounts are only 18, 7, 3, 5, 0, 6, 3 and 32, respectively.

As for the cross-coupled stiffness coefficients in the x direction, there is no one LEFP
of k1.xy, k2.xy, . . . , k8.xy, whereas there are a few LEFPs of c1.xy, c2.xy, . . . , c8.xy. The
amounts are 177, 13, 10, 12, 6, 12, 16 and 290, respectively. In the y direction, the amounts
of LEFPs of k1.yx, k2.yx, . . . , k8.yx are all zero. However, there are some LEFPs of c1.yx,
c2.yx, . . . , c8.yx, whose numbers are 194, 14, 13, 11, 4, 9, 9 and 293, respectively.

(2) 1 nm resolution.

For the main stiffness coefficients, there are many identification errors smaller than
10%. While for the main damping coefficients, only several identification errors are smaller
than 10%.

In the x direction, the amounts of LEFPs of k1.xx, k2.xx, . . . , k8.xx are 978, 749, 375,
590, 281, 327, 618 and 983, respectively. While for c1.xx, c2.xx, . . . , c8.xx, the amounts are
only 27, 6, 4, 11, 2, 8, 3 and 27, respectively. In the y direction, there are 985, 698, 396, 563,
257, 317, 634 and 987 LEFPs of k1.yy, k2.yy, . . . , k8.yy, respectively. While for c1.yy, c2.yy,
. . . , c8.yy, the amounts are only 19, 5, 3, 5, 3, 4, 2 and 28, respectively.
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As for the cross-coupled stiffness coefficients in the x direction, there is no one LEFP
of k1.xy, k2.xy, . . . , k8.xy, whereas there are a few low error frequency points of c1.xy,
c2.xy, . . . , c8.xy. The amounts are 160, 14, 11, 17, 4, 16, 15 and 239, respectively. In the y
direction, the numbers of LEFPs of k1.yx, k2.yx, . . . , k8.yx are all zero. However, there
are some LEFPs of c1.yx, c2.yx, . . . , c8.yx, whose numbers are 165, 15, 10, 9, 6, 8, 13 and
224, respectively.

(3) 1 um resolution.

There are only some identification errors of the main stiffness coefficients smaller than
10% and several identification errors of the main damping coefficients are bigger than 10%.

In the x direction, the amounts of LEFPs of k1.xx, k2.xx, . . . , k8.xx are 195, 36, 25, 16,
17, 14, 11 and 79 and 983, respectively. While for c1.xx, c2.xx, . . . , c8.xx, the amounts are
only 24, 5, 2, 2, 2, 1, 0 and 10, respectively. In the y direction, there are 213, 40, 24, 24, 12, 17,
13 and 85 LEFPs of k1.yy, k2.yy, . . . , k8.yy, respectively. While for c1.yy, c2.yy, . . . , c8.yy,
the numbers are only 12, 6, 0, 1, 1, 2, 2 and 9, respectively.

As for the cross-coupled stiffness coefficients in the x direction, the LEFPs of k1.xy,
k2.xy, . . . , k8.xy are 0, 0, 0, 0, 0, 0, 0 and 1, respectively, whereas there are a few LEFPs
of c1.xy, c2.xy, . . . , c8.xy. The amounts are 15, 5, 4, 2, 3, 3, 1 and 5, respectively. In the
y direction, the numbers of LEFPs of k1.yx, k2.yx, . . . , k8.yx are 0, 0, 0, 0, 0, 1, 0 and 0,
respectively. However, there are some LEFPs of c1.yx, c2.yx, . . . , c8.yx, whose numbers are
only 15, 4, 3, 2, 1, 3, 1 and 4, respectively.

Other simulations results in which the bearing coefficients cannot be identified in
some frequency intervals are obtained as follows.

(1) When the resolution is 1 nm, the coefficients of #1–3 bearing cannot be identified at
1 Hz. From 1 to 3 Hz, the coefficients of #4 and #6–8 bearing cannot be identified.
From 1 to 5 Hz, the coefficients of #5 bearing cannot be identified.

(2) When the resolution is 1 um, the coefficients of #1 bearing cannot be identified from 1
to 65 Hz. From 1 to 57 Hz, the coefficients of #2 bearing cannot be identified. From
1 to 83 Hz, the coefficients of #3 bearing cannot be identified. From 1 to 99 Hz, the
coefficients of #4 bearing cannot be identified. From 1 to 163 Hz, the coefficients of #5
bearing cannot be identified. From 1 to 133 Hz, the coefficients of #6 bearing cannot be
identified. From 1 to 97 Hz, the coefficients of #7 bearing cannot be identified. From 1
to 107 Hz, the coefficients of #8 bearing cannot be identified.

Similar results can be obtained from simulations of g1.1 and g1.4 whose results are
shown in Figures A9 and A10 in Appendix B.

According to Figure 9, the following can be obtained.

(1) 0.1 nm resolution.

Some identification errors of the main stiffness coefficients are smaller than 10%. While
for the main damping coefficients, most of the identification errors are smaller than 10%.

In the x direction, the amounts of LEFPs of k1.xx, k2.xx, . . . , k8.xx are 190, 173, 106,
267, 183, 323, 142 and 166, respectively. While for c1.xx, c2.xx, . . . , c8.xx, the amounts are
900, 659, 477, 880, 954, 749, 790 and 959, respectively. In the y direction, there are 114, 73,
49, 87, 113, 250, 115 and 25 LEFPs of k1.yy, k2.yy, . . . , k8.yy, respectively. While for c1.yy,
c2.yy, . . . , c8.yy, the numbers are 869, 703, 480, 925, 974, 777, 805 and 942, respectively.

As for the cross-coupled stiffness coefficients in the x direction, there are a few LEFPs
of k1.xy, k2.xy, . . . , k8.xy whose numbers are 7, 58,144, 106, 73, 106, 291 and 143, respectively,
whereas the amounts of LEFPs of c1.xy, c2.xy, . . . , c8.xy are 356, 689, 447, 913, 971, 594, 754
and 781, respectively. In the y direction, the numbers of LEFPs of k1.yx, k2.yx, . . . , k8.yx are
109, 127, 61, 213, 118, 184, 93 and 32, respectively. However, there are more LEFPs of c1.yx,
c2.yx, . . . , c8.yx, whose numbers are 545, 751, 457, 972, 980, 678, 665 and 678, respectively.
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(2) 1 um resolution.

Few identification errors of the main stiffness coefficients are smaller than 10%. While
for the main damping coefficients, several identification errors are smaller than 10%.

In the x direction, the amounts of LEFPs of k1.xx, k2.xx, . . . , k8.xx are only 0, 6, 3, 1, 2,
4, 1 and 0, respectively. While for c1.xx, c2.xx, . . . , c8.xx, the amounts are 1, 46, 40, 61, 46,
60, 92 and 1, respectively. In the y direction, there are only 0, 3, 2, 0, 1, 2, 1 and 0 LEFPs of
k1.yy, k2.yy, . . . , k8.yy, respectively. While for c1.yy, c2.yy, . . . , c8.yy, the numbers are 16,
41, 58, 60, 47, 109, 113 and 50, respectively.

As for the cross-coupled stiffness coefficients in the x direction, there are very few
LEFPs of k1.xy, k2.xy, . . . , k8.xy whose numbers are 0, 0, 7, 0, 0, 2, 11 and 0, respectively,
whereas the amounts of LEFPs of c1.xy, c2.xy, . . . , c8.xy are 356, 689, 447, 913, 971, 594, 754
and 781, respectively. In the y direction, the numbers of LEFPs of k1.yx, k2.yx, . . . , k8.yx
are 0, 1, 4, 0, 1, 2, 0 and 0, respectively. However, there are several LEFPs of c1.yx, c2.yx, . . . ,
c8.yx, whose numbers are 0, 44, 60, 69, 52, 112, 56 and 2, respectively.

Other simulation results that the bearing coefficients cannot be identified in some
frequency intervals are obtained as follows.

(1) At 1 Hz, k5.xx, k6.xx and k8.xx, c5.xx, c6.xx and c8.xx, k1.yy, k4.yy and k5.yy, c1.yy,
c4.yy and c5.yy, k5.xy, k6.xy and k8.xy, c5.xy, c6.xy and c8.xy, k1.yx, k4.yx and k5.yx,
c1.yx, c4.yx and c5.yx cannot be identified when the resolution is 0.1 nm.

(2) When 1 um resolution is used, k1.xx and c1.xx, k1.xy and c1.xy cannot be identified
from 1 to 481 Hz and 515 to 1123 Hz. From 1 to 115 Hz, k2.xx and c2.xx, k2.xy and
c2.xy cannot be identified. From 1 to 105 Hz, k3.xx and c3.xx, k3.xy and c3.xy cannot
be identified. From 1 to 467 Hz, k4.xx and c4.xx, k4.xy and c4.xy cannot be identified.
From 1 to 307 Hz, k5.xx and c5.xx, k5.xy and c5.xy cannot be identified. From 1 to
335 Hz, k6.xx and c6.xx, k6.xy and c6.xy cannot be identified. From 1 to 109 Hz and
121 to 249 Hz, at 859 Hz, from 863 to 865 Hz, k7.xx and c7.xx, k7.xy and c7.xy cannot
be identified. From 1 to 797 Hz and 865 to 1289 Hz, k8.xx and c8.xx, k8.xy and c8.xy
cannot be identified. As for the coefficients in the y direction, k1.yy and c1.yy, k1.yx
and c1.yx cannot be identified from 1 to 477 Hz and 511 to 1117 Hz. From 1 to 109 Hz,
k2.yy and c2.yy, k2.yx and c2.yx cannot be identified. From 1 to 101 Hz, k3.yy and
c3.yy, k3.yx and c3.yx cannot be identified. From 1 to 461 Hz, k4.yy and c4.yy, k4.yx
and c4.yx cannot be identified. From 1 to 301 Hz, k5.yy and c5.yy, k5.yx and c5.yx
cannot be identified. From 1 to 331 Hz, k6.yy and c6.yy, k6.yx and c6.yx cannot be
identified. From 1 to 115 Hz, 119 to 255 Hz, k7.yy and c7.yy, k7.yx and c7.yx cannot
be identified. From 1 to 793 Hz and 869 to 1285 Hz, k8.yy and c8.yy, k8.yx and c8.yx
cannot be identified.

Similar results can be obtained from simulations of h1.1 and h1.4, whose results are
shown in Figures A11 and A12 in Appendix C.

3.4.2. Discussion

For Algorithm I, the following can be obtained when considering sensor resolutions.

(1) The numbers of LEFPs of the main stiffness coefficients are bigger than those of the
main damping coefficients. It is indicated that the main stiffness coefficients of rolling
bearings can be better identified than the main damping coefficients.

(2) The amounts of LEFPs decrease when the sensor resolution is reduced. Only several
stiffness coefficients’ relative errors are bigger than 10% when the sensor resolution is
0.1 nm. However, when the sensor resolution is 1 um, nearly half of the frequency
points at which the stiffness coefficients’ relative errors are bigger than 10% in the
simulation of g4.4.
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(3) When the sensor resolution is 0.1 nm, there are only dozens of, even zero LEFPs of the
main stiffness coefficients in the simulation of g4.4. It is indicated that the stiffness
bearing can be well identified by Algorithm I when the sensor resolution is 0.1 nm.
While for the main damping coefficients, the number of LEFPs is much less than those
of the main stiffness coefficients, which indicates that the stiffness coefficients cannot
be well-identified. However, the damping coefficients of rolling bearings are far less
than the stiffness coefficients. Hence, the damping coefficients of rolling bearings
can be considered as zero. Therefore, Algorithm I can be used for rolling bearing
in a multi-span and multi-disc rolling bearing-rotor system when the resolution is
0.1 nm.

As for Algorithm II used for rolling bearings, the following can be obtained.

(1) The numbers of LEFPs of the main stiffness coefficients are far greater than those of the
main damping coefficients and the cross-coupled stiffness and damping coefficients.
Hence, the main stiffness coefficients of rolling bearings can be better identified than
the other coefficients. The reason is also that there is a very big difference between the
main stiffness coefficients and the other coefficients of rolling bearings.

(2) The amounts of LEFPs decrease when the sensor resolution is reduced. In the compu-
tational example g4.4, when the sensor resolution is 0.1 nm, there is less than half of
the LEFPs of the main stiffness coefficients of #3, #5 and #6 bearing. There are about
seven hundred LEFPs of the main stiffness coefficients of #2, #4 and #8 bearing. There
are about nine hundred LEFPs of the main stiffness coefficients of #1 and #7 bearing.
When the resolution is 1 um, the number of LEFPs decreases to less than 100.

While for oil journal bearings, the following can be obtained for Algorithm II.

(1) The numbers of LEFPs of the damping coefficients of journal bearings are bigger than
those of the stiffness coefficients, which indicates that the damping coefficients of
journal bearings can be better identified than the stiffness coefficients.

(2) The amount of LEFPs decrease when the sensor resolution is reduced. In the compu-
tational example h4.4, when the sensor resolution is 0.1 nm, most relative errors of
the damping coefficients are lower than 10%. When the sensor resolution is 1 um, the
LEFPs decrease to less than 100. As for the stiffness coefficients, the number of LEFPs
is much less than that of the damping coefficients. There are only several, even zero
LEFPs of the stiffness coefficients in the simulation of h4.4. For journal bearings, it is
necessary to identify the four stiffness coefficients and the four damping coefficients.

Therefore, the sensor resolution plays a key role when using the two algorithms. The
sensor resolution affects the measured errors of the unbalance responses. Low resolution
causes big measured errors. Hence, high sensor resolution is very important for improving
identification accuracy. Moreover, the sensors’ resolution has a considerable influence on
unbalance responses at low rotating speed (frequency). This causes big measured errors of
unbalance responses. Therefore, at low frequencies, the identification errors are big, and
the coefficients cannot even be estimated when the resolution is low.

In addition, the identification results are improved for g1.4, g1.1,h1.4 and h1.1, in
which only two bearings are included. It is indicated that the identification results will
be improved when the two methods are used for simple rotors. The reason is that the
solution of the inverse matrix of H1 and H3 in the two algorithms is more accurate when
the algorithms are used for simple rotors g1.4, g1.1, h1.4 and h1.1. When the two algorithms
are used for complex rotors, the inverse matrix of H1 and H3 may be inaccurate and they
might not even be solved where the measured errors of unbalance responses are too big,
which is caused by low resolution.
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4. Conclusions

In this paper, two novel algorithms are proposed to estimate each bearings’ coefficients
of a multi-disc and multi-span rotor using unbalance responses. Numerical simulations are
conducted to study the proposed algorithms and the results are summarized as follows.

(1) The proposed algorithms provide a technique by which the stiffness and damping
coefficients of each bearing can be monitored online under operation conditions.
To identify the coefficients of all bearings in a rotor with n bearings and m discs,
there should be m + n + 1 measured unbalance responses in both x and y directions.
Moreover, the unbalance responses of each bearing should be measured. Algorithm I is
suitable for rolling bearing coefficient identification, while Algorithm II can be applied
to estimating both rolling-bearing coefficients and oil-journal bearing coefficients.
External excitations and test runs are not required for the two algorithms. However, it
is necessary to change the rotating speed slightly when using Algorithm II.

(2) Adjustment points play a critical role in improving the identification accuracy of the
two algorithms. Numerical simulations indicate that the coefficients of the bearing,
which the adjustment point is near, are accurately identified. While the identification
errors of the bearing, from which the adjustment point is far away, are often very
big. Hence, in order to identify all bearings’ coefficients accurately, there should be
an adjustment point near each bearing.

(3) Accuracy of the unbalance response measurement system is very important to the
two algorithms. Numerical simulations indicate that if the measuring errors of all the
required unbalance responses are zero or the same, the identification errors are almost
equal to zero. It is indicated that the repeatability precision of each measuring channel
of the unbalance response measurement system plays a key role when using the two
algorithms. Moreover, the two algorithms require high sensor resolution. The sensor
resolution is higher, and the estimation accuracy is higher. Sensors with a resolution
of 1 um should be avoided and sensors with a resolution of 0.1 nm are recommended
for practical application.

For further study, experimental investigations should be organized to prove the pro-
posed methods. The continuous model of the rotor can be developed based on Timoshenko
theory because gyroscopic moments are considered. The limitation of the proposed al-
gorithms is that high accuracy of the measurement of unbalance responses is strongly
demanded. The research method of this paper can be regarded as a tool for future study.
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Appendix A

(1) Simulation of g1.4.
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Figure A1. Identified bearing coefficients changing with frequency of g1.4 based on Algorithm I 
considering adjustment point and sensor resolution 1a: (a) obtained main stiffness coefficients in x 
and y directions from 0 to 2000 Hz; (b) obtained main damping coefficients in x and y directions. 
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Figure A1. Identified bearing coefficients changing with frequency of g1.4 based on Algorithm I
considering adjustment point and sensor resolution 1a: (a) obtained main stiffness coefficients in x
and y directions from 0 to 2000 Hz; (b) obtained main damping coefficients in x and y directions.
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Figure A2. Identified bearing coefficients changing with frequency of g4.4 based on Algorithm I
considering adjustment point and sensor resolution 1 nm: (a) obtained main stiffness coefficients in x
and y directions; (b) obtained main damping coefficients in x and y directions.
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Figure A3. Identified bearing coefficients changing with frequency of g1.4 based on algorithm I
considering adjustment point and sensor resolution 1 um: (a) obtained main stiffness coefficients in x
and y directions; (b) obtained main damping coefficients in x and y directions.
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Figure A4. Statistical results of the amount of the frequencies, at which the related error is less than
10%: (a) #1 bearing; (b) #2 bearing.
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(2) Simulation of g1.1.
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Figure A5. Identified bearing coefficients changing with frequency of g1.1 based on algorithm I
considering adjustment point and sensor resolution 1 am: (a) obtained main stiffness coefficients in x
and y directions; (b) obtained main damping coefficients in x and y directions.
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Figure A6. Identified bearing coefficients changing with frequency of g1.1 based on algorithm I
considering adjustment point and sensor resolution 1 nm: (a) obtained main stiffness coefficients in x
and y directions; (b) obtained main damping coefficients in x and y directions.
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Figure A7. Identified bearing coefficients changing with frequency of g1.1 based on algorithm I
considering adjustment point and sensor resolution 1 um: (a) obtained main stiffness coefficients in x
and y directions; (b) obtained main damping coefficients in x and y directions.

Appl. Sci. 2022, 12, 4251 41 of 44 
 

  
(a) (b) 

Figure A7. Identified bearing coefficients changing with frequency of g1.1 based on algorithm I con-
sidering adjustment point and sensor resolution 1 um: (a) obtained main stiffness coefficients in x 
and y directions; (b) obtained main damping coefficients in x and y directions. 

  
(a) (b) 

Figure A8. Statistical results of the amount of the frequencies, at which the related error is less than 
10%: (a) #1 bearing; (b) #2 bearing. 

  

0 20 40 60 80 1000 2000
0.0
2.8
5.6
8.4

21,000
42,000
63,000

0.0
2.8
5.6
8.4

21,000
42,000
63,000

0.0
2.8
5.6
8.4

21,000
42,000
63,000

0.0
2.8
5.6
8.4

21,000
42,000
63,000

0 20 40 60 80 1000 2000

10

10

10

k1
.x

x

frequency
90

10

k2
.x

x
k1

.y
y

k2
.y

y

0 50 100 150 1000 2000
0.0
2.8
5.6
8.4

21,000
42,000
63,000

0.0
2.8
5.6
8.4

21,000
42,000
63,000

0.0
2.8
5.6
8.4

21,000
42,000
63,000

0.0
2.8
5.6
8.4

21,000
42,000
63,000

0 50 100 150 1000 2000

c1
.x

x

frequency
200

c2
.x

x
c1

.y
y

10

10

10

10

c2
.y

y

1000 999
942927 927 907

1000 999
940910 910 896

0.1nm 1nm 1um
0

200

400

600

800

1000

am
ou

nt

snesor resolution

 k1.xx
 c1.xx
 k1.yy
 c1.yy

1001 1000 966965 965 954
1001 1000 969

955 955 953

0.1nm 1nm 1um
0

200

400

600

800

1000

am
ou

nt

sensor resolution

 k2.xx
 c2.xx
 k2.yy
 c2.yy

Figure A8. Statistical results of the amount of the frequencies, at which the related error is less than
10%: (a) #1 bearing; (b) #2 bearing.
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Appendix B

(1) Simulation of g1.4.

Appl. Sci. 2022, 12, 4251 42 of 44 
 

Appendix B 
(1) Simulation of g1.4. 

  
(a) (b) 

Figure A9. Statistical results of the amount of the frequencies, at which the related error is less than 
10% and the absolute value is less than 10: (a) #1 bearing; (b) #2 bearing. 

(2) Simulation of g1.1. 

  
(a) (b) 

Figure A10. Statistical results of the amount of the frequencies, at which the related error is less than 
10% and the absolute value is less than 10: (a) #1 bearing; (b) #2 bearing. 

  

967 965

241

11 11 11

956 954

315

24 24 11

0 0 0

55 63
9

2
1

0

91 91
11

0.1nm 1nm 1um
0

2

4

200

400

600

800

1000

am
ou

nt

sensor resolution

 k1.xx
 c1.xx
 k1.yy
 c1.yy
 k1.xy
 c1.xy
 k1.yx
 c1.yx

972 969

303

30 30 24

974 972

278

39 39 21

0 0
1

300 273

19

1 1
0

265
212

16

0.1nm 1nm 1um
0
1
2
3
4

200

400

600

800

1000

am
ou

nt
sensor resolution

 k2.xx
 c2.xx
 k2.yy
 c2.yy
 k2.xy
 c2.xy
 k2.yx
 c2.yx

983 982

237

30 31 30

984 983

228

24 26 20

2
1

0

574

362

18

3
2

0

490

317

14

0.1nm 1nm 1um
0

2

4

200

400

600

800

1000

am
ou

nt

sensor resolution

 k1.xx
 c1.xx
 k1.yy
 c1.yy
 k1.xy
 c1.xy
 k1.yx
 c1.yx

978 976

497

44 42 35

982 981

457

43 45 36

3 3

0

689
601

33

2
3

0

699
608

31

0.1nm 1nm 1um
0
1
2
3
4

200

400

600

800

1000

am
ou

nt

sensor resolution

 k2.xx
 c2.xx
 k2.yy
 c2.yy
 k2.xy
 c2.xy
 k2.yx
 c2.yx

Figure A9. Statistical results of the amount of the frequencies, at which the related error is less than
10% and the absolute value is less than 10: (a) #1 bearing; (b) #2 bearing.

(2) Simulation of g1.1.
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Figure A10. Statistical results of the amount of the frequencies, at which the related error is less than
10% and the absolute value is less than 10: (a) #1 bearing; (b) #2 bearing.
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Appendix C

(1) Simulation of h1.4.
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Figure A11. Statistical results of the amount of the frequencies, at which the related error is less than
10% and the absolute value is less than 10: (a) #1 bearing; (b) #2 bearing.
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Figure A12. Statistical results of the amount of the frequencies, at which the related error is less than
10% and the absolute value is less than 10: (a) #1 bearing; (b) #2 bearing.
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