
����������
�������

Citation: Ozdemir, T.; Taher, F.;

Ayinde, B.O.; Zurada, J.M.; Tuzun

Ozmen, O. Comparison of

Feedforward Perceptron Network

with LSTM for Solar Cell Radiation

Prediction. Appl. Sci. 2022, 12, 4463.

https://doi.org/10.3390/

app12094463

Academic Editor: Luis

Hernández-Callejo

Received: 9 January 2022

Accepted: 21 March 2022

Published: 28 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Comparison of Feedforward Perceptron Network with LSTM
for Solar Cell Radiation Prediction
Tugba Ozdemir 1,2,*, Fatma Taher 3 , Babajide O. Ayinde 2, Jacek M. Zurada 2,4 and Ozge Tuzun Ozmen 1,5

1 Department of Physics, Faculty of Arts and Sciences, Duzce University, Konuralp Yerleskesi,
Duzce 81620, Turkey; ozge.ozmen@bakircay.edu.tr

2 Electrical and Computer Engineering, University of Louisville, Louisville, KY 40292, USA;
babajide.ayinde@echonous.com (B.O.A.); jacek.zurada@louisville.edu (J.M.Z.)

3 Department of Computing & Applied Technology & Assistant Dean for Research and Out Reach in the
College of Technological Innovation, Zayed University, Dubai 19282, United Arab Emirates;
fatma.taher@zu.ac.ae

4 Information Technology Institute, University of Social Science, 90-113 Łódz, Poland
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Abstract: Intermittency of electrical power in developing countries, as well as some European
countries such as Turkey, can be eluded by taking advantage of solar energy. Correct prediction of
solar radiation constitutes a very important step to take advantage of PV solar panels. We propose an
experimental study to predict the amount of solar radiation using a classical artificial neural network
(ANN) and deep learning methods. PV panel and solar radiation data were collected at Duzce
University in Turkey. Moreover, we included meteorological data collected from the Meteorological
Ministry of Turkey in Duzce. Data were collected on a daily basis with a 5-min interval. Data
were cleaned and preprocessed to train long-short-term memory (LSTM) and ANN models to
predict the solar radiation amount of one day ahead. Models were evaluated using coefficient of
determination (R2), mean square error (MSE), root mean squared error (RMSE), mean absolute error
(MAE), and mean biased error (MBE). LSTM outperformed ANN with R2, MSE, RMSE, MAE, and
MBE of 0.93, 0.008, 0.089, 0.17, and 0.09, respectively. Moreover, we compared our results with
two similar studies in the literature. The proposed study paves the way for utilizing renewable
energy by leveraging the usage of PV panels.

Keywords: renewable energy; solar energy; artificial neural network; deep learning; LSTM; radiation
prediction

1. Introduction
1.1. Background

In recent years, the role of energy in the life standard of human beings has been
vitally important [1–3]. As the human population increases, energy demands increase
exponentially [2–5]. Researchers demonstrate that the energy demand is anticipated to be
approximately 1.5–3 times by 2050 [2,6,7]. Given that fact, we can anticipate that fossil fuels
such as petroleum, natural gas, and coal, which are the traditional energy sources, will
be depleted very soon. One more reason to switch to renewable energy is how harmful
the fossil fuels are to the environment [4,8]. It should be emphasized that consumption
of energy from fossil fuels is increasing CO2 (carbon dioxide) and greenhouse gas (GHG)
emissions all over the world [6,9]. Increasing GHGs cause a rising atmospheric temperature
of the Earth’s surface [7–13]. With this concern, renewable energy has come into question
for the last century [2–5,7–13].

Alternatively, solar energy, which is among renewable energy sources, is abundant and
environmentally friendly, and photovoltaic (PV) technology has provided development
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and discovery for both rural and urban choices on a global scale [5,9–17]. The history of
modern PV energy is based on Alexandre Becquerel’s 1839 observation of the photoelectric
effect [13–17]. However, after the 1990s, studies on PV energy rapidly improved [5,18].
In addition, annual PV solar energy exceeded that of wind power for the first time and
reached about 70 GW, and was even 50% higher than in the previous year [18]. The
global solar PV capacity reached at least 303 GW (48% compared to 2015) at the end of
2016 [18,19]. Furthermore, reports from the world’s solar photovoltaic electricity supplies
anticipate that PV technologies will increase to 345 GW and 1081 GW by 2020 and 2030,
respectively [1,5,12,19].

The rapid expansion of PV systems does not only provide economic benefits to the
electrical systems but also contributes to the reduction of global heating problems [19].
Although a solar PV system can operate by itself, a grid-connected system is required
in order to reliably evaluate the electricity generation system [20,21]. Nonetheless, the
instability of weather conditions and solar radiation lead to the instability of the power
produced by PV panels, which causes a lot of problems in the control and operation of
grid-connected PV panels [22–24]. To solve the instability problems, researchers have been
developing methods to predict the output power of PV panels based on historical data
and meteorological data [25,26]. Recently, artificial neural networks (ANNs) have been
used to improve the prediction power of PV panels’ output. ANNs have been utilized to
solve further problems such as estimating radiation amount, solar power, and ambient
temperature parameters [26,27]. ANNs have been applied for the modeling, identification,
optimization, prediction, and control of complex systems. Hence, several studies report
using ANNs in solar radiation modeling and prediction. Most of those studies utilized the
geographical coordinate and meteorological data such as relative humidity, air temperature,
pressure, sunshine duration, etc. as an input to the ANNs for estimating of global solar
radiation [26,27]. In the following subsection, we go through some of the relevant literature
to demonstrate the attempts to predict solar radiation using machine learning.

1.2. Literature Review

Table 1 covers the literature review section of this paper. In the following table, we
mention the authors, cities at which the data was collected, the research aim, date when
the data was acquired, the models utilized for achieving the research aim, and last but not
least, the performance of each model.

Table 1. Literature review.

Authors and Reference Case Study Research Objective Data Models Used Performance of Models

A. Mellit et al. [28] Trieste, Italy

Estimate the amount of solar
radiation for 24h using
grid-connected photovoltaic
plants (GCPV).

From July 1st 2008 to May 23rd 2009 for
solar radiation, from November 23rd 2009
to January 24th 2010 for air
temperature data.

ANN
The correlation coefficient was 98–99%
for sunny days and 94–96% for
cloudy days.

C. Voyant et al. [29]

Mediterranean Sea:
Ajaccio, Bastia,
Montpellier, Marseille,
and Nice

Estimate the global solar
radiation with two models.

Data on an hourly basis from October 2002
to December 2008 and from French
meteorological organization.

• ARMA/ANN hybrid model,
• the numerical weather

prediction model (ALADIN).

• The nRMSE for hybrid model
MLP/ARMA was 14.9%
compared to 26.2% for the naïve
persistence predictor.

A. Sozen et al. [30] 17 different cities
in Turkey

• Estimate the solar
potential based on
geographic coordinates
meteorological data (and
the corresponding month)
as inputs to the network.

The data were collected from 17
meteorological stations between 2000
and 2002.

ANNs

• MAPE (mean absolute
percentage error) was found to
be less than 6.735%.

• R2 was found to be about
99.893% for the testing stations.

A. Mellit et al. [31] In Tahifet, south Algeria

They presented an application of
an RNN-based approach to
estimate the daily electricity
generation of a photovoltaic
power system (PVPS).

The measured weather data and the output
of electrical signals (voltage and current)
were recorded at the PVPS station in
Algeria from 1992 to 1997.

ANN and RNN
• MAPE was lower than 5.5%.
• The correlation coefficient

ranged between 95 and 97%.

J. M. S. de Araujo [32] Gifu, Japan For hourly solar
radiation prediction.

• The dataset from the
NOMADS website.

• Three years’ data of solar radiation
from 1st January 2014 to
31st December 2016 for LSTM.

LSTMWRF (weather research
and forecasting)

• LSTM algorithm was

310 W m−2 higher compared to

210 W m−2 from the WRF model.
• The error of WRF was 19%

lower compared to 28% of
LSTM for the nRMSE
error metric.
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Table 1. Cont.

Authors and Reference Case Study Research Objective Data Models Used Performance of Models

A. Alzahrani et al. [33] Canada Estimate solar irradiance using a
deep neural network.

The data were recorded for four days, from
Canada’s natural sources.

• Deep recurrent neural
networks (LSTM)

• Support vector
regression (SVR)

• Feedforward neural
networks (FNN)

RMSE:

• LSTM = 0.086
• SVR = 0.11
• FNN = 0.16

MBE:

• LSTM = 0.004
• SVR = 0.0042
• FNN = 0.005

A. Rai et al. [34]
Three different
geographical regions in
different climatic zones.

For midterm solar
radiation estimation.

The data came from three different
geographical regions in different climatic
zones between 2014 and 2015 years.

• A convolution neural
network (CNN)

• Bi-direction long-short-term
memory (BiLSTM)-based
hybrid deep learning
(DL) model.

For CNN-BiLSTM

• R2 = 0.924
• MAE = 0.0397

J. H. Yousif et al. [35] Many different locations
around the world.

Some different ANN techniques
to estimate the photovoltaic
thermal (PV/T) energy.

Data were taken from 2008–2017 for
locations with different latitudes
and climates.

Some models:

• Bayesian neural
network (BNN)

• RNN
• Generalized feed-

forward (GFF)
• MLP
• LSTM

They gave error results such as MAPE,

MSE, RMSE, MBE, MPE, and R2.

Y. Jung et al. [36] South Korea To predict the amount of PV
solar power.

The data were obtained from 164 PV plants
for 63 months. RNN-LSTM

• RMSE = 7.416%
• MAPE = 10.805% for the

testing data

M. Mishra et al. [37] Urbana
Champaign, Illinois

To forecast a short-term solar
power using various time
intervals (1 day, 15 days, 30 days,
60 days ahead forecasting).

The datasets from February 2016–
August 2017 and September 2017–
October 2017.

• Wavelet transform
(WT)-based DLM

• LSTM-Dropout
• Linear regression (LR),
• Some other models

They gave error results such as RMSE,

MAE, MAPE, and R2.

S. Ghimire et al. [38] Australia

Propose a convolutional
long-short-term memory
(CLSTM) neural network hybrid
model to predict half-hourly
global solar radiation (GSR).

Data from 1 January 2006 to
31 August 2018.

Some models:

• Convolutional neural
networks (CNN)

• LSTM
• Gated recurrent unit (GRU).

• Relative root mean square error
(≈1.515%)

• Mean absolute percentage error
(≈4.672%)

• Absolute percentage bias
(≈1.233%)

D. Lee et al. [39] Gumi city in
South Korea

Build three different deep
learning models to predict the
solar power output of PV panels.

Data were a PV power output dataset for
39 months (from 1 June 2013 to
31 August 2016) from a PV operator located
in Gumi city in South Korea.

• ANN
• DNN

LSTM

LSTM-based model performs better by
more than 50% compared to the
conventional statistical models in terms
of mean absolute error.

Z. Pang et al. [40] Tuscaloosa, Alabama,
United States

Create two models using a
shallow ANN and an RNN to
estimate the solar radiation.

The data utilized wereonly
meteorologicaldata from a localweather
station in Tuscaloosa, Alabama,
United States

• A shallow ANN

an RNN

They gave error results of RMSE and
NMBE for both models.

1.3. The Proposed Study

Based on the aforementioned literature review, we found that data from PV panels
and/or meteorological data are utilized to predict solar radiations. The highest achievable
results were found by deep learning techniques [28,31,36–44]. Therefore, we designed
our experiment based on shallow and deep learning models. The motivation behind the
proposed study was the irregularity of energy delivery in Duzce city in Turkey, which may
exist in similar cities around the world. We utilized both PV historical data, which was
collected from the city of Duzce in Turkey for the period between 2014 to 2018, as well as
the daily meteorological data for the same period. In the proposed study, we compared
between a deep ANN and an LSTM model in terms of predicting the solar radiation in
the city of Duzce in Turkey on daily basis. We performed hyperparameter optimization
at predefined hyperparameter values for both the networks, ANN and LSTM. Selecting a
deep learning architecture to perform an accurate prediction of the solar radiation amount
is crucial for the system operators to reduce costs and uncertainties [17,41–44]. The main
contributions of the proposed work can be summarized as: (i) conducting a comparison
between the performance of the most common deep learning models in the literature,
(ii) building an LSTM to accurately predict the solar radiation at the city of Duzce in Turkey
with the potential to be generalized to more cities around the world, and (iii) conducting a
comparison between our results in terms of the coefficient of determination (R2), root mean
squared error (RMSE), mean biased error (MBE), and mean absolute error (MAE).
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2. Materials and Methods
2.1. Dataset

The solar data, which were utilized in the current study, were collected from three
different types of grid-connected PV panels. The PV panels were installed on the top roof
of the University of Duzce Scientific and Technological Research and Application Center
(DUBIT) by Duzce University Clean Energy Resources Application and Research Center
(DÜTEM) in 2013 in Turkey. The geographic location of the center panel is 40◦54′14.7′′ N
and 31◦10′56.7′′ E. Figure 1 shows the three different PV solar panels of schemas in DUBIT
in Duzce University in Duzce.
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Figure 1. Three different PV solar panels of schemas in DUBIT in Duzce.

As shown in Figure 1, the first type of panels used (P1) is an amorphous thin film
silicon panel. A single P1 panel has the power of 100 W. In the proposed study, 24 P1 panels
were utilized. The 24 P1 panels were structured in the form of a matrix with two rows
and twelve columns (2 × 12). The total output power generated by the (P1) panels matrix
equals 2400 W. The second type of panel (P2) is a polycrystalline silicon panel. A single
P2 has a solar panel power of 240 W. Eleven P2 panels were utilized in the current study.
The 11 (P2) panels were placed as a single row. That row produces a total power output
of 2400 W. The third type of panel (P3) is a monocrystalline silicon panel. P3 produces a
solar panel power of 235 W. Ten P3 panels were placed in a single row. Those have a total
power output 2350 W. That system of panels (P1, P2, and P3) has been recording data every
5 min since 2013. Output power is recorded for each panel. Average temperature, radiation
amount, and average atmospheric temperature were recorded for all panels.

Table 2 demonstrates an example of the recorded data recorded from P1, P2, and P3.
Therefore, for every day, there are 288 rows of data and 6 columns (3 columns denote
the output power for each panel type (kWh), 1 column denotes average atmospheric
temperature (Â ◦C), 1 column denotes radiation amount (W/m2), and 1 column denotes
panel temperature (Â ◦C). Rows are indexed with the time of acquisition. Moreover,
meteorological data were recorded on daily basis. Thus, for every 288 rows of panels’ data,
there is a corresponding row of meteorological data. Meteorological data acquired were as
follow: daily average relative humidity, daily sunshine time, and daily average cloudiness.
Meteorological data were recorded by the Ministry of Metrology in Turkey. The rationale
behind using the meteorological data is to include any factor that might be affecting the
radiation amount detected by the panels. Some of the meteorological data is presented in
Table 3.
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Table 2. Data from PV panels recorded every five minutes in DUBIT.

Dates
dd.MM.yyyy

HH:mm

P1
Amorphous Thin-Film

Silicon
(kWh)

P2
Polycrystalline

Silicon
(kWh)

P3
Monocrystalline

Silicon
(kWh)

Average
Atmospheric
Temperature

(Â °C)

Radiation
Amounts
(W/m2)

Panels
Temperature

(Â °C)

01.01.2014 11:50 454.81 600.56 613.59 7.40 55.00 7.70
01.01.2014 11:55 454.82 600.57 613.60 7.40 56.00 7.70
01.01.2014 12:00 454.83 600.58 613.61 7.40 56.00 7.70
01.01.2014 12:05 454.84 600.58 613.62 7.40 54.00 7.60
01.01.2014 12:10 454.84 600.59 613.62 7.50 53.00 7.60
01.01.2014 12:15 454.85 600.60 613.63 7.50 53.00 7.70
01.01.2014 12:20 454.86 600.61 613.64 7.50 56.00 7.70
01.01.2014 12:25 454.87 600.62 613.65 7.60 56.00 7.80
01.01.2014 12:30 454.88 600.62 613.65 7.50 56.00 7.80

Table 3. An example of daily average cloudiness from meteorological data in the Turkish State
Meteorological Service (the numbers indicate rate of average cloudiness).

Months

Days Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

1 8.0 7.0 6.4 1.5 4.6 6.2 4.4 2.5 5.0 1.2 7.0 7.7
2 7.0 1.1 6.9 4.4 5.2 5.8 4.1 5.2 3.8 2.9 7.0 7.0
3 7.0 0.0 5.9 4.3 4.2 6.0 5.3 6.8 5.4 5.7 3.7 6.5
4 6.4 3.1 6.7 2.7 6.1 6.0 6.1 5.2 4.7 7.0 0.8 6.3
5 4.6 0.7 4.6 5.7 6.3 7.0 4.0 4.3 6.8 5.5 1.9 7.2
6 5.4 0.9 4.3 5.8 6.8 7.0 0.6 1.9 6.3 6.7 0.8 6.4
7 3.6 0.2 3.8 5.3 5.4 6.3 1.1 6.1 3.8 3.8 0.5 6.2
8 0.0 0.6 7.9 6.8 6.7 6.3 1.6 5.6 5.4 3.0 3.0 6.4
9 7.6 5.7 8.0 0.8 6.8 4.9 0.0 5.8 4.6 6.6 5.4 6.8

10 8.6 6.4 8.0 1.2 6.6 3.0 1.9 2.7 5.0 4.8 5.9 6.8

Table 3 shows an example of 10 days’ data of the meteorological data that were
acquired from the Meteorological Ministry of Turkey in 2014 in Duzce, Turkey. Rows
represents days, columns represent months, and the values in each cell represent the
average cloudiness on that day in that month and recorded average daily cloudiness
for 12 months of the year. Similar tables are given for the other meteorological data.
Meteorological data corresponding to 4 years from 2014 to 2018 were utilized in the current
study [45].

Data were cleaned by removing rows with missing values, then all the data were
aggregated in a single table containing the meteorological data along with the panels’ data.
Python 3.7 and pandas were utilized for data cleaning and manipulation.

2.2. Deep Neural Network Approaches

In this section, we present the shallow ANN and deep ANN architectures used for
forecasting of solar radiation amount as an output, including conventional multi-layer deep
ANN, sequential model, recurrent neural network, and long-short-term memory.

2.2.1. Conventional Deep ANN/Multilayer Perceptron (MLP)

Multilayer perceptron was introduced by Rosenblatt in 1958 as the basic type of neural
network and consists of a number of perceptron [46–59]. There is an input layer to receive
the data and there is an output layer that determines and predicts the output value in
multilayer perceptron. Between the input and output layers, there is a selected number of
hidden layers, which is the main processing engine of MLP [42–46,56–59].

As shown in Figure 2, MLP is a simple neural network. Equation (1) is used to calculate
the output of a single perceptron or neuron [46,59].

output = f
(
∑ inputs

i (xi.wi + bi)
)

, (1)
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where xi is the input of the neuron, wi is the weight on each connection to the neuron, bi is the
bias, and f (.) is the activation function, for instance, the tanh activation function [16,47,59].
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2.2.2. Recurrent Neural Network (RNN)

RNNs are conventional neural networks consisting of one or more feedback loops [47].
RNNs have the ability to utilize their input memory to process entries [48]. In conventional
neural networks, all inputs and outputs are considered to be independent of each other.
This means that the output is not fed back to the network as an input; however, in the case
of RNNs, output can be fed again with the input to be considered in future decisions [47,48].
RNNs’ basic architecture is shown in Figure 3.
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Figure 3. Basic recurrent neural network (RNN).

In Figure 3, the RNN consists of input (xt), hidden state (ht), and outputs (yt). Wx,
Wy, and Wh are weight matrices. The most important part of RNN is the hidden state (ht),
which is a vector that can also have an arbitrary dimension [48].

ht = Fw (ht−1, xt), (2)

ht = tanh
(

Whh(t−1) + Wxxt

)
, (3)

yt = Wyht, (4)
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Figure 3 also shows the relationship between functions in RNN. In the functions,
h(t−1) of previous hidden state contains information from the previous time step; Fw is an
activation function as shown Equation (3) [47,48].

2.2.3. Long-Short-Term Memory (LSTM)

LSTM is based on the RNN architecture. It is a model designed to expand the RNN
memory [45,46]. This memory has the ability to store information over an arbitrary length
of time. There are three gates, which are the input, output, and forget gate, to control
the information flow into and out of the neuron’s memory [48–51]. Those three gates
get the same input as the input neuron. Furthermore, each gate possesses an activation
function [41,48,52].

Figure 4 shows the figuration of LSTM at time t. Mathematically, LSTM can be
described using the following functions [50–58].

ft = g
(

W f xt + U f ht−1 + b f

)
, (5)

it = g (Wi xt + Ui ht−1 + bi), (6)

kt = tanh (Wk xt + Uk ht−1 + bk), (7)

ct = ft ct−1 + it kt, (8)

ot = g (Wo xt + Uo ht−1 + b0), (9)

ht = ot tanh (ct), (10)

where xt is the input vector at time t and g is an activation function (sigmoid, tanh, or
ReLU). W and U are weight matrices, and b is the bias vector. ht and ct are output and cell
state vector at time t. ft has been used for remembering old information and it has been
used for getting new information [38,49,50,52].
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2.3. Activation Functions

Activation functions are used to add the non-linearity behavior of the ANN [53–56].
Without the activation function, the output of each layer of the ANN would just be the
output of a linear model with number of parameters equal to the number of the neurons in
each layer [54,55]. Consequently, activation functions increase the overall performance of
the ANN and add a nonlinear behavior to it, depending on the behavior of the activation
function itself. Thus, if activation functions are not applied on the ANN, the ANN usually
has limited performance and acts as a linear regression model [54,55,57,59].

Figure 5 shows the basic structure of the activation function, where x = inputs,
w = weights, f (Σ) = activation functions, and y = outputs [54,55].
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The most common activation functions are hyperbolic tangent function, sigmoid func-
tion, linear function, ReLU (rectified linear unit) function, leaky-ReLU function, softmax
function, and swish (a self-gated) function [55,58,59].

In this work, we use the hyperbolic tangent function (tanh) as the activation function
for our proposed ANN and DNN models. The tanh function is used for the input and
hidden layers.

In hyperbolic tangent function (−1, 1)

f (x) = tanh(x) =
(ex − e−x )

(ex + e−x )
, (11)

However, the rectified linear unit (ReLU) activation function is utilized in the output
layer to provide a non-negative solar radiation predictive value [54–59].

ReLU (rectified linear unit) function [0, ∞)

f (x) =
{

0 f or x < 0
x f or x ≥ 0

, (12)

3. Experimental Design
3.1. Dataset Description

Panels data and meteorological data of the full dataset were used in this study as de-
tailed in the methodology. Panels log their power reading during the daytime, i.e., sunrise
to sunset. From the sunset to sunrise, the panel does not provide any information about
their output power; however, we still have data about their average temperature. Therefore,
to maximize the information in our data, we filtered out the period between sunset to
sunrise which varies between winter and summer. We added the meteorological data,
which consisted of cloudiness, relative humidity, and sun time, to the panels’ data. Meteo-
rological data were recorded as one sample per day while panels’ data were recorded every
5 min. Therefore, we created three new columns for every panel’s data file and assigned to
those columns the meteorological values for that day by repeating it n times where n is the
number of rows/entries in that panel’s data file. In this way, we have built a connection
between solar data and meteorological data. We used the same epochs numbers and batch
size for two models owing to the comparison.

Deep ANN and LSTM were utilized in this study to predict the daily solar radiation.
Inputs were amorphous silicon PV panel in kWh, mono silicon PV panel in kWh, poly sili-
con PV panel in kWh, average atmospheric temperature in ◦C, average panel temperature
in ◦C, daily average cloudiness, daily average relative humidity (%), and daily sunshine
time in hours, and the output was the predicted radiation amount (W/m2).

Four years’ worth of data were utilized in the proposed study. The data were split into
3 years for training and 1 year for testing. Results in terms of mean square error (MSE) were
computed for each model. The training set was split further into a training and validation
set for both models. Eventually, the two trained models were evaluated using the testing
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set. The assumption was that the trained model which has been trained on the 3 years of
data can then be used to perform the prediction throughout the 4th year with the same
range of error. For both models, we concatenated the daily meteorological data to the data
acquired from the PV panels. In order to preserve the data acquired by the panel, each daily
metrological value was repeated in the rows corresponding to that day. We trained both
models using the aggregated data by averaging every 12 rows (=60 min) and predicting
the following 48 row’s solar radiation (=predicting the solar radiation after 48 h). The
data were then normalized between 0 and 1, and the normalized data were used for the
learning process.

3.2. Description of the ANN Model

As shown in Figure 6, we created an ANN model for prediction of radiation amounts.
Deep ANN was utilized with a structure of 1 input layer of size 8, 2 hidden layers each of
size 50, and a single output layer with size 1. Therefore, we utilized only one row to predict
the following 48th row.
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Figure 6. ANN model.

For the model in Figure 6, the tanh function was used as the activation function for the
proposed model. Hyperparameter optimization using random grid search was performed
on the batch size and the learning rate. Stochastic gradient descent (SGD) was utilized as
the optimizing parameter for the deep ANN. The hyperparameters’ ranges are specified in
the following Table 4.

Table 4. Hyperparameters of the ANN model.

Epochs 500

Batch size 16, 32, 64, 128, 256, 512, 1024

Learning Rate (LR) [0.0005, 0.05] with step 0.005

Table 4 demonstrates the hyperparameters of the ANN model.

3.3. Description of the LSTM Model

LSTM is an advanced RNN used to specify which feature should be memorized or
forgotten when the network is being trained. Therefore, given a sufficient history of features
and solar radiation, the LSTM can determine the required history for each feature to provide
an accurate solar radiation estimation.
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In the proposed LSTM/DNN model, we allowed the LSTM to access up to 30 h in the
past in order to predict the solar radiation after 48 h. Hyperparameters optimization via
grid search was performed on the hyperparameters shown in Table 5.

Table 5. Hyper parameters of the LSTM model.

Epochs 500

Batch size 16, 32, 64, 128, 256, 512, 1024

n 1, 2, 5, 10, 15, 20, 30 h

The loss function of LSTM was the mean squared error (MSE) and the model was
implemented by Keras.

3.4. Error Measures

The performance of the reference methods and the different approaches were evaluated
with five different error measures for ANNs. The equation shows the mean-square error
(MSE) [50,59].

MSE
(
x′, x

)
=

1
N ∑ N

n=1(x′n − xn)
2 , (13)

In the equations, x is the measured power time series, x2′ is the predicted power time
series, and N denotes the number of samples of the time series [47,48,59].

4. Results and Discussion

The training and texting process is shown in Figure 7. Loss function with 500 epochs,
batch size of 256 was used for this ANN model.
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As shown in Figure 7, the minimum training MSE and minimum testing MSE were
0.0762 and 0.0775, respectively, for the ANN model. The optimum parameters selected for
the ANN model were batch size 256 and learning rate 0.01.

Figure 8 shows the graph of training and texting of data with the LSTM model for
500 epochs.
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As demonstrated in Figure 8 for the LSTM model, the minimum training MSE and
minimum testing MSE were 0.0049 and 0.0080, respectively. The optimum parameters
selected for the ANN model were batch size 256 and past days of 15 h.

Table 6 compares the results obtained by using the ANN model and the LSTM model.
Using MSE to calculate the error/loss of the two models, it was found that LSTM improves
the results about 18 times in case of training, and about 9 times in case of testing. Since
LSTM successfully outperformed ANN by utilizing the data from the previous 15 h, LSTM
was the chosen model to test on the 4th year testing data.

Table 6. Error comparison of models after 500 epochs.

Method MSE

ANN Model
Minimum training loss 0.0762

Minimum testing loss 0.0775

LSTM (Deep Learning)
Minimum training loss 0.0049

Minimum testing loss 0.0080

Figure 9 shows a sample of the prediction performed using the LSTM trained model
on 175 days of the 4th year assigned for testing the trained model. Number of days are
shown on the horizontal axis versus the normalized solar radiation on the vertical axis. We
calculated the coefficient of determination, R2, along with the MSE for the testing results.
R2 was found to be 0.9365 and MSE was 0.01. In order to demonstrate the significance
of our results, we compared our results to similar work in the literature by M. Mishra
et al. [37] and U. Agbulut et al. [60]. Moreover, U. Agbulut et al. [60] predicted the solar
radiation by using deep learning models for four different cities in Turkey. We averaged
the values of their metric scores over the four cities to compare with ours. On the other
hand, M. Mishra et al. [37] utilized wavelet transformation on the historical PV solar output
at the University of Illinois in Urbana Champaign along with the meteorological data to
train LSTM model to perform daily predictions. The authors compared the performance
of different ML models to LSTM. Similar to our findings, LSTM outperformed the other
models. They trained the models using 18 months of data and tested with one month. It is
worth noting that they were performing hourly predictions for 1 day ahead.
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Table 7 demonstrates the performance of our model with respect to other similar
models in the literature. Although we outperformed the other models in terms of R2, M.
Mishra et al. [37] achieved better results in terms of RMSE and MAE. We claim that this
higher performance is due to the fact that they performed hourly prediction of the one day
ahead and not the whole day. Moreover, we tested on a whole year of data and not only
one month.

Table 7. Comparison for ANN.

Metric [38] [58] Proposed Method

R2 0.426 0.916 0.93

RMSE 0.011 2.138 0.089

MBE NA 0.3874 0.009

MAE 0.074 1.781 0.17

5. Conclusions and Limitations

In this study, we collected data from three different types of solar panels for the city of
Duzce in Turkey and trained an ANN and an LSTM to accurately predict the solar radiation
using PV historical data as well as meteorological data. Data were collected for the years
between 2014 and 2018 on a daily basis with a 5-min interval. The first model was an ANN
model which is frequently used for solar prediction according to the literature. The second
model was LSTM which is based on RNNs and is getting more utilization in time series
forecasting studies. In the proposed study, we demonstrate the feasibility of accurately
predicting solar radiation after 24 h if 15 h of PV historical data along with one previous
day of meteorological data are provided to the LSTM. The ability of the LSTM to utilize the
historical values of the features allows it to outperform other deep learning models in time
series applications. Moreover, we conducted a comparison between our results and similar
work in the literature in terms of many error metrics.

Two main limitations of the proposed study would be training the models on data
collected solely from the city of Duzce in Turkey. For future work, we plan to collect data
from different places in Turkey, or around the globe if possible, to study the generalizability
of a trained LSTM model to be used as a prediction tool for solar radiation in different
locations. We are aware of the fact that the weather in Duzce is stable most of the time and
it perhaps assisted in creating a very accurate model; thus, we are planning to acquire data
from places where the weather is more turbulent.
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