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Abstract: Public transportation systems are an effective way to reduce traffic congestion, air pollution,
and energy consumption. Today, smartcard technology is used to shorten the time spent board-
ing/exiting buses and other types of public transportation; however, this does not alleviate all traffic
congestion problems. Accurate forecasting of passenger flow can prevent serious bus congestion
and improve the service quality of the transportation system. To the best of the current authors’
knowledge, fewer studies have used smartcard data to forecast bus passenger flow than on other
types of public transportation, and few studies have used time-series lag periods as forecast variables.
Therefore, this study used smartcard data from the bus system to identify important variables that
affect passenger flow. These data were combined with other influential variables to establish an
integrated-weight time-series forecast model. For different time data, we applied four intelligent
forecast methods and different lag periods to analyze the forecasting ability of different daily data
series. To enhance the forecast ability, we used the forecast data from the top three of the 80 combined
forecast models and adapted their weights to improve the forecast results. After experiments and
comparisons, the results show that the proposed model can improve passenger flow forecasting based
on three bus routes with three different series of time data in terms of root-mean-square error (RMSE)
and mean absolute percentage error (MAPE). In addition, the lag period was found to significantly
affect the forecast results, and our results show that the proposed model is more effective than other
individual intelligent forecast models.

Keywords: passenger flow; integrated-weight time-series model; public transportation systems; long
short-term memory network

1. Introduction

Public transportation is considered to be an effective solution to traffic congestion
and environmental pollution. The Federal Transit Administration (FTA) also believes that
public transportation is an effective way to reduce traffic congestion, air pollution, energy
consumption, and private vehicle use [1]. The use rate of buses accounted for 46% of all
public transportation use in 2016 by people aged over 15 years according to the Taiwan
Ministry of Transportation survey [2].

Taiwan’s EasyCard Company promoted the smartcard system in 2002 based on the
idea of “one card in hand, unimpeded travel”. It was the first card to be issued for
Taipei mass rapid transit and was then expanded to the Taiwan railway, Taiwan high-
speed railway, and various other types of public transportation. Smartcards can collect
information about vehicle routes, schedules, and real-time driving conditions through
the automatic fare collection (AFC) system for vehicle monitoring, which can greatly
improve public transportation efficiency and safety. The AFC system, when referring to
the transportation system [3], is also called the smartcard system. The smartcard system is
regarded as a dynamic and real-time data source for the public transportation system. It

Appl. Sci. 2022, 12, 4763. https://doi.org/10.3390/app12094763 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12094763
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5509-6965
https://orcid.org/0000-0002-0560-7819
https://doi.org/10.3390/app12094763
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12094763?type=check_update&version=1


Appl. Sci. 2022, 12, 4763 2 of 19

has attracted a significant amount of attention from researchers, and many studies have
used smartcard data [3,4].

Although the smartcard system helps passengers greatly reduce their transaction time
and shortens the time taken to board/exit buses, it also helps the bus industry collect large
amounts of data to improve their service quality. Despite the utilization of the bus system,
serious traffic congestion still occurs. Traffic flow describes the number of vehicles passing
through a specific road section within a predetermined time interval [5]. It is different
from traffic congestion, which is caused by excessive travel demand by people, resulting
in abnormal traffic flow. There have been many studies on passenger flow predictions. In
addition, smartcard systems can increase the convenience of users and help bus operators
formulate practical route planning and reform timetables and related policies; however, this
all depends on the use of smartcard system data to accurately forecast bus passenger flow.
Accurately forecasting passenger flow can help cities implement transportation policies,
strengthen local construction, reduce excessive energy consumption and carbon emissions,
and improve urban ecosystems to achieve sustainable development.

The accessibility of the urban bus system is greater than for other modes of public
transport, as this system utilizes the road network; however, passenger demands are
affected by a number of factors such as crowding and different weather conditions. Tang
et al. [6] confirmed prediction models would be better if the weather conditions were
considered. The number of bus rides varies depending on the time of day, but there are still
expected peak periods. For example, there will be many passengers during peak hours on
weekdays and working days and at times when leisure activities are taking place during
the holidays. We must consider passengers’ needs, but external factors are also important.

In the past ten years, many successful traffic flow forecast methods have been proposed,
especially deep learning methods. Li et al. [7] proposed a dynamic radial basis function
neural network to predict short-term passenger flow through the Beijing subway. Ke
et al. [8] proposed a fusion convolution long-term short-term memory network to forecast
short-term passenger demand for ride services. Xu et al. [9] used a combined seasonal
autoregressive integrated moving average with a support vector regression model to
forecast the demand for the aviation industry. Deep learning methods have led to great
progress in transportation research, but there have been few studies on forecasting buses’
passenger flow compared with other types of public transportation. In our study, we
collected data from the smartcard system for the bus industry and considered other external
factors that affected the ride. In this article, we propose an integrated-weight time-series
model to forecast passenger flow and detail our comparison with the listing methods. In
summary, the goals of this study are as follows:

(1) To identify the important attributes that affect passenger flow from a total of 42
attributes in the smartcard system;

(2) To add other variables that affect passenger flow, such as climate, time, space, and lag
period, to establish a prediction model;

(3) To apply multilayer perceptron (MLP), support vector regression (SVR), radial ba-
sis function (RBF) neural network, and long short-term memory network (LSTM)
methods to forecast passenger flow with different types of time data series (weeks,
weekdays, and holidays);

(4) To propose an integrated-weight time-series forecast model that uses forecast data
from the top three of the 80 intelligent forecast models as the adaptive factors;

(5) To provide results that can be used as a reference by the government, industry, and
related personnel.

The remaining sections are organized as follows: Section 2 is a literature review. In
Section 3, we describe the research model and discuss the research design and methodology.
Section 4 shows the results and findings. Finally, Section 5 presents the implications,
limitations, and future work.
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2. Literature Review

This section introduces related work on forecasting passenger flow using smartcard
data, time series forecasting, and intelligent forecast methods.

2.1. Forecasting Passenger Flow by Smartcard Data

The smartcard is popular and convenient and can store a large amount of transaction
data. Therefore, in the past decade, researchers have paid more and more attention to
smartcard data. Ma et al. [10] used one-month data from smart bus cards to analyze the
patterns of commuters in the area and the spatial distribution of movement. Eom et al. [11]
applied the smartcard data from a five-day working week to learn about various social
roles, such as the distribution of students and office workers in Seoul. Tao et al. [12] used
smartcard data to visually compare the spatial-temporal trajectories of bus rapid transit
trips and other bus trips.

To investigate factors relevant to forecasting passenger flow, Briand et al. [13] applied
a Gaussian mixture model based on weather, time, and space to regroup passengers
according to their public transportation habits in terms of time. Arana et al. [14] analyzed
the impact of weather conditions on the number of public bus trips taken for shopping
and personal business. Tang and Thakuriah [15] used the unemployment rate, gasoline
prices, weather conditions, transportation services, and socioeconomic factors to implement
a quasi-experimental design to examine changes in the monthly average number of bus
passengers on weekdays.

The literature on passenger flow forecasting in bus services can be divided into long-
term and short-term forecasts. Traditional long-term passenger flow forecasting usually
involves the use of regression techniques to estimate future travel demand [16]. The re-
gression model is used to establish the relationship between the number of passengers
and influencing factors, which includes demographic, economic, and land use informa-
tion [17,18]. For short-term passenger flow forecasting, models based on statistics and
computational intelligence have been studied extensively [19,20].

There has been much research on passenger flow forecasting, but most has not included
bus passenger flow forecasting. We present some of the research techniques and methods
that have been used in previous studies. Sun et al. [21] proposed a hybrid model based
on wavelet analysis and the support vector machine to evaluate the historical passenger
flow through the Beijing subway. Xie et al. [22] applied seasonal decomposition and a least
squares support vector to find the best hybrid method for the short-term prediction of
airline passengers. Liu and Chen [23] proposed a passenger flow prediction model using
deep learning where an autoencoder deeply and abstractly extracts the nonlinear features
in many hidden layers and a back-propagation algorithm is applied to train the model.

2.2. Time Series Forecasting

Forecasting passenger flow is a time-series research field because bus data points
(including smartcard and meteorology data) are indexed in time order and are therefore
time-series data. A time series is a sequence of discrete time data, and the use of a time series
model can help organizations understand the underlying causes of trends and systemic
patterns over time. As such, the following section briefly introduces relevant knowledge
about time series. Time series are data arranged in time order, and the first time series model
to be developed was the linear autoregressive moving average model (ARIMA), which was
proposed by Box and Jenkins in 1970. The ARIMA model [24] consists of three components,
and each component helps model different types of patterns. The autoregressive (AR)
component attempts to explain the patterns between any time period and previous lag
periods; the moving average (MA) component can adapt the new forecasts to previous
forecast errors (error feedback term); and the integrated (I) component indicates trends or
other integrative processes in the data.

Traffic flow data are time series of periodic and irregular fluctuations, and many
studies have used time-series methods to predict traffic flow. Hou et al. [25] combined
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ARIMA with a wavelet neural network to overcome the limitations of using ARIMA for
short-term forecasting of traffic flow. Xu et al. [9] used seasonal differences to eliminate
nonstationary seasonal ARIMA and combined these data with support vector regression to
predict the demand of the aviation industry. Wang et al. [26] used wavelet analysis to detect
abnormal passenger flow to estimate the sudden traffic peak and then used a multiple
regression model to estimate the peak time. Finally, they used seasonal ARIMA to estimate
passenger flow.

In terms of an intelligent time-series model, AR neural network (ARNN) is a classic in-
telligent time-series model that uses a neural network to learn AR coefficients [27]. Further,
we can collect many influential variables and lag periods of the dependent variable, and
then we use MLP, SVR, RBF neural network, and LSTM network to train their parameters
for building intelligent time series models. From the practical viewpoint, it is critical to
properly handle weights in time series, and weighted time-series models include weight-
ing on recent observations, important variables, and the better forecasting methods. For
example, Hajirahimi and Khashei [28] proposed a weighted sequential hybrid model to
calculate each model weight to construct a final hybrid output for time series forecasting;
Tsai et al. [29] proposed a multifactor fuzzy time-series fitting model to weight the three
significant variables; Jiang et al. [30] presented a weighted time-series forecasting model to
weight recent observations.

2.3. Intelligent Forecast Methods

This section introduces four intelligent forecast methods, and they are applied to
forecast the collected data in this study: multilayer perceptron, support vector regression,
radial basis function neural network, and long short-term memory network.

(1) Support vector regression (SVR)

The support vector machine (SVM) is a supervised learning algorithm for data classifi-
cation and regression analysis that was developed by Vapnik and colleagues [31]. The SVM
is used for classification problems, known as support vector classification (SVC) problems,
and regression problems, known as support vector regression (SVR) problems. The main
purpose of SVR is to find the best separation hyperplane to separate clustered data to solve
nonlinear problems. SVR is quite good when dealing with small samples and can handle
high-dimensional attributes without relying on all available data for classification, but
its disadvantage is that its efficiency is very low for a large number of forecast samples.
In addition, the SVM needs to find a suitable kernel function, such as linear, polynomial,
sigmoid, or radial basis functions, and it is sensitive to missing data. The SVM can be
used to solve problems in many fields, such as text classification, image classification, and
time-series prediction.

In forecasting traffic passenger flow, SVR is suitable for nonlinear and complex models.
Castro-Neto et al. [32] considered that SVR cannot be fully trained with real-time data. To
address this, they developed online SVR models. To reduce the computational complexity
of the SVM, Xie et al. [22] proposed the combined seasonal decomposition and least
squares support vector to get the best hybrid method for short-term forecasting of airline
passengers.

(2) Multilayer perceptron neural network (MLP)

Perceptron is a type of artificial neural network invented by Rosenblatt [33]. It can
be regarded as the simplest form of feedforward neural network, and it is a binary linear
classifier. An MLP consists of at least three layers of nodes (input layer, hidden layer, and
output layer). Except for the input nodes, each node is a neuron that uses a nonlinear
activation function. The MLP uses supervised backpropagation learning, and its multilayer
structure and nonlinear activation function distinguish it from linear perception. The MLP
is a nonlinear learning model that can be processed in parallel and has good fault tolerance.
It can be used as a real-time online learning model with associative memory, adaptivity,
and self-learning ability. To make the output of the MLP as close to the actual target value
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as possible, a set of optimal weight values must be found in the training model, and one
would need to determine the number of neurons used in each hidden layer.

Past studies have used MLP models to forecast multifactor problems. Ma et al. [34]
used the MLP to forecast the network-wide co-movement patterns of all traffic flows, and
they used ARIMA to postprocess the residual of the MLP. Tsai et al. [35] proposed a multiple
temporal unit MLP to forecast short-term passenger demand.

(3) Radial basis function (RBF) network

The radial basis function (RBF) network proposed by Broomhead and Lowe has an
input layer, a hidden layer, and an output layer [36]. In an RBF network, the nonlinear
transformation is from the input layer to the hidden layer, and then the linear transfor-
mation is from the hidden layer to the output layer. This can achieve mapping from the
input layer space to the output layer space, approximate any nonlinear function, and deal
with difficult problems. The RBF network is conceptually similar to the k-nearest neighbor
(k-NN) algorithm. In the self-organizing learning stage, basis function centers can be
obtained; in the supervised learning stage, the weight between the hidden layer and the
output layer is obtained, and each parameter can be learned quickly, thus overcoming the
local minima problem.

To solve the central problem of the RBF function and the number of neurons in the
hidden layer, Li et al. [7] proposed a new dynamic radial basis function (RBF) network to
predict outbound passenger traffic. Li et al. [37] proposed a multiscale radial basis function
(MSRBF) network to address the issue of when the number of input vectors is large, there
may be a large number of candidates in the initial model. The MSRBF network can be
applied to forecast irregular fluctuations in subway passenger flow.

(4) Long Short-Term Memory (LSTM)

LSTM is a time recurrent neural network (RNN) that was first proposed by Hochreiter
and Schmidhuber [38]. Due to its unique design structure, an LSTM is suitable for process-
ing and predicting important events with exceedingly long intervals and delays in time
series. An LSTM network is a special type of regression neural network that uses a forget
gate, an input gate, and an output gate to control the storage units. LSTM overcomes the
problems of a RNN through gradient disappearance and gradient explosion. LSTM ap-
plications include time-series forecasting, language modeling, machine translation, image
captions, and handwriting recognition.

In forecasting passenger flow, Ke et al. [8] proposed a fusion convolutional long
short-term memory network (FCL-Net) for forecasting short-term passenger demand. Xu
et al. [39] developed a long short-term memory network to forecast bike-sharing trip
production and attractions at different time intervals.

3. Proposed Model

Passenger flow forecasting is a nonlinear, nonstationary time series problem, and a
good forecast result mainly depends on having a large amount of high-quality data and
a large number of methods. Nowadays, there are many passenger flow forecast models;
however, some issues can be improved to enhance performance, such as:

1. Passenger flow forecasting is a periodic pattern, and many forecast models have been
proposed to address this pattern. Previous studies have shown that datasets of no
more than one month can be used to predict passenger flow at intervals of 5 or 15 min,
and some studies use longer time datasets to predict passenger flow, such as daily or
weekly intervals. To avoid the impact of extreme passenger flow, some studies do not
consider the data collected on national holidays or weekends, and some studies treat
special data as another forecast model for separate training. There is some room for
improvement to obtain satisfactory results.

2. To solve the shortcomings of the model, more and more studies are taking advantage
of different methods that complement each other and proposing hybrid models to
forecast passenger flow. These hybrid models mainly combine traditional algorithms
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and neural networks, but their nature still has limitations. Hence, hybrid models can
be further strengthened to obtain the dynamics and forecasts of passenger flow.

3. Most research in this area has focused on passenger flow forecasting for railways, high-
speed railways, and subways. Compared with other public transportation systems,
there have been fewer studies forecasting bus passenger flow based on smartcard
data, and few studies have considered time-series lag periods as forecast variables.

4. Previous research on the spatio–temporal nature of smartcard data has been widely
conducted, and different attributes have been used in these studies; however, these
studies have rarely discussed why these attributes have been selected and which
attributes should be used in these methods. The selection and combination of input
attributes is an important bridge between methods and forecast results.

Based on the discussion above, current forecast models of bus passenger flow still have
limitations in terms of attribute selection, methods, and public transportation models. To
process these limitations, we propose an integrated-weight time-series model for forecasting
bus passengers using smartcards. First, the proposed model considers the attributes of time,
space, and the lag period and uses four intelligent forecast models (multilayer perceptron,
support vector regression, RBF network, and LSTM network) to forecast passenger flow for
different time series (weeks, weekdays, and holidays). Second, the forecast data from the
top three of the 80 combined forecast models (8 lag periods × 10 algorithms) were used as
adaptive factors in the proposed model to enhance the forecast results.

The proposed time series forecasting model was revised from adaptive expectations
theory [40,41]. Adaptive expectations theory is an economic theory that gives importance
to past events when predicting future outcomes—a hypothetical process through which
people can form expectations of what will happen in the future based on what has happened
in the past. In a more complex and adaptive expectation model, different weights can be
assigned to past values, and we can look at how different the fluctuations are from the
predicted fluctuations.

To quickly understand the proposed model, Figure 1 shows a detailed explanation
of the procedure to clarify the research process and computational steps involved. The
proposed procedure, from top to bottom, includes data collection, data preprocessing, lag
period testing, building a time-series forecast model, and evaluation and comparison.

Computational steps

The proposed procedure has five steps (see Figure 1). A detailed breakdown of the
five steps is provided in the following sections.

Step 1: Data collection

In this step, two types of data were collected:

(1) One type was smartcard data from a bus industry in Kaohsiung City, Taiwan; the data
were collected over a total of 669 days, including 2,865,763 records from January 2018
to October 2019, 17 bus lines (routes), and 137 bus stations. There were 42 attributes
in the collected data (see Table 1), covering 15 administrative districts of Kaohsiung
City in Taiwan. Regarding data location, the longitude range is 22.58706 to 22.792377,
and the latitude range is 120.32016 to 120.29944.

(2) The other data type was meteorological data because the number of passengers
boarding is often affected by many external factors, especially weather, which has
always affected the travel behavior of passengers. Many researchers have presented
the impact of weather conditions on passenger flow [13–15]. We collected weather
data from the Kaohsiung Meteorological Bureau.
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Table 1. Original 42 data attributes.

Bus schedule number Trading time for boarding Card payment amount for exiting
Station number Types of trading Benefit points discount for exiting
Station name Voice code for boarding Free
Driver number Boarding station code Cash
Driver name Boarding station name Penalty fine
Bus number Transferring discount amount Making up the fare difference
Route number Onboard card payment amount Company subsidy amount
Route name Boarding by benefit points discount Transaction file name for boarding
Card number Trading date for exiting Transaction file name for exiting
Service type Trading time for exiting Outbound/return
Trade tickets Types of trading for exiting Counting status
Fare Voice code for exiting Counting date
Smartcard payment amount Station code for exiting Transferring group code
Trading date for boarding Station name for exiting Smartcard company

Step 2: Data preprocessing

We calculated the total number of bus passengers (22 months) for each route based on
smartcard data. Figure 2 shows the total number of passengers for each route. Among the
17 routes, Route 1, Route 7, and Route 52 had the top three numbers of passengers: 508,997,
545,915, and 272,968, respectively.
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Step 2.1: Extraction of attributes from smartcard data

This step involved the extraction of different time attributes from smartcard data as
follows:

From the selected top three routes, the data from the three popular routes were divided
into seven days (weeks), weekdays, and holidays. Weekdays were Monday to Friday
(455 days), and holidays were Saturdays and Sundays (214 days). The total number of
days was 669 (455 weekdays + 214 holidays), and a different day was used as an additional
attribute. We extracted seven attributes from the smartcard data, including months, days,
weeks, bus lines, bus stations, station passengers, and the number of passengers. Table 2
lists all the attributes used in this study in detail.

To check whether the number of rides was periodic, we plotted three figures to show
the changes in the number of passengers for the top three routes based on the number of
passengers per day on different days, as shown in Figures 3–5.

Figure 3 shows the number of passengers on three routes per day by week, which
shows that the number of rides was periodic. Only Route 1 showed peak ride times, January
1 (New Year Day) and December 31 (New Year Eve), which are both national holidays.
These long holidays are suitable times for going home or traveling, and as such, there is
large-scale passenger flow. Route 7 has many bus stations, and the first half of the route
is the same as Route 1; therefore, the number of passengers was found to have a similar
periodicity to Route 1. For Route 52, because the bus station is different from the other two
routes, the number of rides was found to be less similar to the other two routes, but it still
showed periodicity.

Figure 4 shows the changes in the number of passengers per day for the three routes on
weekdays. For a few days in the weekday period, peak passenger numbers occur, such as
after 1 January (New Year’s Day) and before the national holiday on 28 February, as people
go home early before the holidays. In addition, 25 December (Christmas) is a religious
holiday and a time when various industries launch marketing activities. As a result, people
celebrating the festive season go out to purchase discounted goods.

Figure 5 shows the changes in the number of passengers on the three routes during the
holidays. Compared with Figure 3, the weekly data show that 1 January (New Year’s Day)
and 31 December (New Year’s Eve) are days with many passengers, and those two days
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are also holidays; therefore, the trend for the numbers of passengers on the three routes
showed a similar periodicity for holiday data.
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Figure 3. The number of passengers per day for the top three routes by week.
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Figure 4. The number of passengers per day for the top three routes on weekdays.
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Step 2.2: Addition of external meteorological attributes

Previous studies [13–15] presented the impacts of weather factors on passenger flow.
This study collected six types of meteorological data, including temperature, humidity,
wind speed, rainfall, sunshine, and ultraviolet radiation. From the practical application of
bus passenger flow forecasting, we collected data on 15 meteorological attributes, described
in the meteorological type of Table 2.

Step 3: Test lag periods

In a time series, the autoregressive model is the output variable that is linearly depen-
dent on its own previous value and random term. In order to test whether passenger flow
has a time lag, this study used a partial autocorrelation function (PACF) to test how many
passenger flows are significant at the 0.05 significance level, as the PACF is most useful
for identifying the amount of lag in an autoregressive model. Further, lag-n is defined as
follows: from the original data, the series values are moved forward n periods [42]. For
example, lag 1 is moved forward 1 period; lag 10 is moved forward 10 periods. The test
results are listed in Table 3 to show the lag periods for the number of passengers travelling
on the top three routes based on the number of passengers per day for different daily data
series (seven days, weekdays, and holidays). Table 3 shows that the largest lag period was
seven for seven-day data; the largest lag period for the weekend data was six, and the
holiday data had two lag periods.
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Table 2. Attributes used in this study.

Type Attribute Description

Smartcard

Month “1” denotes Jan, “2” means Feb, . . . , “12” represents Dec

Day “1” denotes the first day for each month, “2” means the second day for
each month, . . . , “31” denotes the last day for each month.

Week “1” denotes Monday, “2” means Tuesday, . . . , “7” represents Sunday.

Bus line The attribute was applied to visualize the heat map.

Bus station The attribute was applied to visualize the heat map.

Station passengers
The attribute represents the passengers boarding at each bus station,
which was applied to calculate the number of passengers at all stations
for each day

Passengers Number of passengers on the bus line for each day

Meteorology

Temp Average temperature, degrees Celsius, ◦C

Tmax Maximum temperature, degrees Celsius, ◦C

Tmin Minimum temperature, degrees Celsius, ◦C

RH Relative humidity, percent %

RH_min Minimum relative humidity, percent %

WS The wind speed was taken as the average value 10 min before the
observation point, meters per second (m/s).

WS_max
The maximum wind speed was taken as the maximum instantaneous
wind speed within 1 h before the observation point, meters per second
(m/s).

Precp The precipitation was taken as the total rainfall in a day, milliliters per
day.

Precp_hr Total number of rainy hours in a day, number of hours

Precp_10max Maximum precipitation within ten minutes of the day, milliliters per
ten minutes.

Precp_hrmax Maximum precipitation within an hour of the day, milliliters per hour.

SunS Sunshine hours, number of hours

SunS_rate The sunshine rate is a percentage ratio of the recorded bright sunshine
duration and daylight duration in a day, percent %.

GloblRad
Global radiation refers to a value used to measure the solar radiation
energy for a given time and area, megajoules per square meter and per
day, MJ/m2.

UVImax

The maximum ultraviolet index refers to the international
measurement standard for the solar ultraviolet (UV) radiation intensity
at a certain place on a certain day; the index value from 0 to 11+ is
divided into five levels.

Lag period

Lag 1 A Lag 1 autocorrelation is the correlation between values that are one
time period apart.

Lag 2

a Lag k autocorrelation is a correlation between values that are k time
periods apart, where k = 2, 3, 4, 5, 6, 7.

Lag 3
Lag 4
Lag 5
Lag 6
Lag 7
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Table 3. Number of lag periods for each route in different time data.

Week (Seven Days) Weekday Holiday

Route 1 Lag: 1, 2, 4, 6, 7 Lag:1, 2, 4, 5 Lag:1
Route 7 Lag: 1, 2, 3, 4, 7 Lag:1, 3, 4, 5, 6 Lag:1, 2
Route 52 Lag: 1, 2, 3, 4, 6, 7 Lag:1, 2, 3, 4, 5 Lag:1, 2

Step 4: Establishment of an integrated-weight time-series forecasting model

After extracting/adding the attributes of Steps 2 and 3, all attributes are listed in
Table 2. This study proposed an integrated-weight time-series forecasting model to improve
forecasting performance. That is, this step applied the four intelligent forecast methods to
train these parameters of multi-variables and lag periods based on different data series and
forecast passenger numbers. Further, we input the collected data with time order to train
their parameters by SVR, MLP, RBF network, and LSTM; hence, these models are called
intelligent time-series models. In addition, the four intelligent forecast methods (MLP, SVR,
RBF network, and LSTM) were separated into 10 models according to the hidden layer,
activation function, and kernel functions, as shown in Table 4.

Table 4. Abbreviation of ten intelligent forecast models.

Model Abbreviation Full Name

MLP_1_ lin MLP with 1 hidden layer and linear activation function
MLP_1_ log MLP with 1 hidden layer and logistic activation function
MLP_2_ lin MLP with 2 hidden layer and linear activation function
MLP_2_log MLP with 2 hidden layer and logistic activation function
SVM_lin SVR with linear kernel function
SVM_pol SVR with polynomial kernel function
SVM_rbf SVR with RBF kernel function
SVM_sig SVR with sigmoid kernel function
RBF net Radial basis function network
LSTM Long short-term memory

The proposed model is based on the concept of adaptive expectation theory [40,41] to
adapt the forecast data of the top three of the 80 combined forecast models (10 intelligent
forecast models with 8 different lag periods, as shown in Table 5). The equation used in the
proposed model is as follows.

F(t) = α × first(t) + β × second(t) + γ × third(t) + T(t − 1) (1)

where

F(t) is the forecast of the number of passengers at time t,
T(t − 1) denotes the actual number of passengers at time (t − 1),
first(t) represents the forecast of the best model for the number of passengers at time t,
second(t) is the forecast of the second-best model for the number of passengers at time t,
third(t) denotes the forecast of the third-best model for the number of passengers at time t,
α is the parameter of first(t),
β represents the parameter of second(t),
γ denotes the parameter of third(t), and the range of α, β, and γ is from −1 to 1 (−1 means
a negative correlation, and 1 represents a positive correlation).
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Table 5. Results of 80 combined models for Route 1 on week data.

Algorithm No lag Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7

LSTM
RMSE 346.983 323.136 314.640 313.599 311.582 270.137 246.327 235.838
MAPE 55.297 51.271 54.108 53.805 46.663 42.201 30.713 29.091

MLP_1_lin
RMSE 419.087 457.096 440.914 464.523 487.629 465.230 444.713 441.920
MAPE 50.414 40.028 42.689 39.118 38.048 39.447 42.019 42.427

MLP_1_log RMSE 413.770 422.451 437.535 442.538 454.443 413.121 425.137 473.599
MAPE 53.621 48.826 43.573 42.355 40.548 54.963 46.756 38.588

MLP_2_lin
RMSE 417.011 436.597 606.395 496.521 520.526 451.678 455.457 481.922
MAPE 51.544 43.844 58.925 38.235 39.951 41.111 40.371 38.435

MLP_2_log RMSE 423.232 456.767 463.386 427.124 433.571 448.466 435.913 466.868
MAPE 48.477 40.148 39.307 46.883 44.817 41.475 43.736 38.926

RBF net
RMSE 407.477 406.968 436.204 416.700 413.988 406.394 405.928 400.344
MAPE 67.738 65.773 44.045 51.765 54.012 65.769 64.782 65.439

SVR_lin
RMSE 415.328 438.604 444.973 460.935 440.719 434.932 435.827 435.218
MAPE 52.564 43.338 41.875 39.496 43.074 45.093 43.985 43.888

SVR_pol RMSE 428.524 413.265 424.142 434.607 419.408 417.863 422.436 423.037
MAPE 46.397 54.061 41.223 44.322 50.989 52.713 49.107 48.805

SVR_rbf
RMSE 437.040 414.256 422.609 415.376 419.644 421.224 420.811 423.770
MAPE 43.773 53.330 48.703 52.607 50.366 50.886 50.222 48.335

SVR_sig RMSE 416.775 445.232 448.546 446.987 500.864 441.484 406.373 410.386
MAPE 51.681 41.895 41.223 41.478 38.510 43.311 62.067 54.371

Model abbreviations are shown in Table 4, and the bold print denotes the top three of the 80 combined models in
terms of the RMSE and MAPE.

To optimize the parameters for α, β, and γ, the top three forecasted data points were
used to adapt these parameters based on the minimum root mean square error (RMSE) and
average absolute percentage error (MAPE) by using Equation (1). First, we set a feasible
step iteration (step = 0.001) to produce the best parameters for α, β, and γ. Because the
right-hand side of equation (1) has the actual number of passengers at the previous time
t − 1, the parameters of the first three forecast data points would fall between plus and
minus one.

Step 5: Evaluation and comparison

In order to evaluate the proposed model and compare it with the listed models, in this
step, the minimum RMSE and MAPE criteria were used for the evaluation and comparison.
In terms of data, the data from three routes with three different types of days were compared
experimentally based on an 8:2 ratio of training and testing data with time order. The
data collected for each route were as follows: weekly data 669 = 535 training data + 134
testing data; weekday data 455 = 364 training data + 91 testing data; weekend data 214 =
171 training data + 23 testing data. The performance indicators used were the root mean
square error (RMSE) and average absolute percentage error (MAPE). The equations are
shown as Equations (2) and (3).

RMSE =

√
∑n

t=1|F( t )− T( t )|2

n
(2)

MAPE =
100%

n

n

∑
t=1

∣∣∣∣ F( t )− T( t )
T( t )

∣∣∣∣ (3)

where T(t) is the actual number of passengers at time t, F(t) is the forecasted number of
passengers at time t, and n is the number of data points.

4. Experimental Comparison

From the procedure proposed in Section 3, the initial data analysis and acquisition of
necessary attributes were selected. This section describes the experiments implemented to
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compare the proposed model with the listed models based on the minimum RMSE and
MAPE criteria and then gives some findings.

4.1. Experimental Results

The experiments involved nine data series based on three routes with three different
day types; each data series was partitioned into 80% training data and 20% testing data
by time sequence. Based on Steps 4 and 5, which were presented in Section 3, this section
presents the experimental results.

(1) Route 1

The results of 80 combined models for Route 1 for weekly data are shown in Table 5.
In terms of RMSE, the top three best results were LSTM with lag 7, LSTM with lag 6, and
LSTM with lag 5. For MAPE, the top three best results were LSTM with lag 7, LSTM with
lag 6, and MLP_1_lin with lag 4 for the MAPE. We used Equation (1) to adapt the forecast
data of the top three best forecast models to the minimal RMSE and MAPE. Similarly, the
other two data series for Route 1 were experimented with based on Steps 4 and 5. Finally,
the forecast data for the top three forecast models under the minimal RMSE were collected,
and the results for Route 1 are shown in Table 6. The results show that the proposed model
performed better than the listed models for Route 1, and the top three models were LSTM
intelligent forecast methods.

(2) Route 7

As with the Route 1 experiment, we applied the proposed model to adapt the forecast
data from the top three best forecast models for three data series of Route 7 using the
minimal RMSE. The results are shown in Table 7. Table 7 shows that the proposed model
was better than the listed models for Route 7 in terms of RMSE and MAPE.

Table 6. Results of proposed model for Route 1 based on minimal RMSE.

Week Weekday Holiday

LSTM
lag 7

RMSE 235.838 LSTM
lag 4

RMSE 175.697 LSTM
lag 4

RMSE 255.503
MAPE 29.091 MAPE 34.973 MAPE 21.913

LSTM
lag 6

RMSE 246.327 LSTM
lag 1

RMSE 177.303 LSTM
lag 5

RMSE 255.907
MAPE 30.713 MAPE 34.003 MAPE 21.469

LSTM
lag 5

RMSE 270.137 LSTM
lag 2

RMSE 177.751 LSTM
lag 7

RMSE 259.302
MAPE 42.201 MAPE 36.563 MAPE 21.085

Proposed RMSE 199.882 Proposed
method

RMSE 115.963 Proposed
method

RMSE 171.627
MAPE 54.534 MAPE 33.068 MAPE 20.426

Model abbreviations are shown in Table 4, and the bold digits denote the optimal results among the four models
for RMSE and MAPE.

Table 7. Results of proposed model for Route 7 based on minimal RMSE.

Week Weekday Holiday

LSTM
(no lag)

RMSE 142.964 RBF net
lag 4

RMSE 131.499 LSTM
(no lag)

RMSE 148.165
MAPE 27.182 MAPE 15.400 MAPE 36.102

LSTM
lag 5

RMSE 143.360 MLP_2_log
lag 1

RMSE 131.794 LSTM
lag 2

RMSE 157.255
MAPE 27.397 MAPE 15.607 MAPE 37.800

LSTM
lag 4

RMSE 144.51 MLP_2_log
lag 5

RMSE 133.274 LSTM
lag 1

RMSE 164.564
MAPE 27.964 MAPE 15.657 MAPE 40.155

Proposed RMSE 93.682 Proposed
method

RMSE 82.124 Proposed
method

RMSE 110.650
MAPE 26.728 MAPE 15.295 MAPE 35.097

Model abbreviation is shown in Table 4, and the bold digits denote the optimal results among the four models for
RMSE and MAPE.
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(3) Route 52

Similarly, we only list the results for three data series of Route 52 in terms of the
minimal RMSE, as shown in Table 8. The results show that the proposed model performs
better than the listed models for Route 7 in terms of RMSE and MAPE.

Table 8. Results of proposed model for Route 52 based on minimal RMSE.

Week Weekday Holiday

LSTM
lag 7

RMSE 117.833 LSTM
lag 1

RMSE 107.196 LSTM
lag 4

RMSE 121.741
MAPE 37.901 MAPE 29.631 MAPE 52.935

LSTM
lag 6

RMSE 119.873 LSTM
lag 7

RMSE 109.904 LSTM
lag 6

RMSE 121.767
MAPE 38.999 MAPE 28.371 MAPE 53.773

LSTM
lag 5

RMSE 131.381 LSTM
lag 2

RMSE 110.222 LSTM
lag 5

RMSE 121.943
MAPE 48.909 MAPE 29.768 MAPE 52.555

Proposed RMSE 79.963 Proposed RMSE 78.179 Proposed RMSE 60.968
MAPE 38.126 MAPE 26.025 MAPE 41.958

Model abbreviation is shown in Table 4, and the bold digits denote the optimal results among the four models for
RMSE and MAPE.

4.2. Findings and Discussion

The experimental results show that the proposed model is better than the listed models
based on the minimum RMSE and MAPE criteria. However, there are some other findings
to be discussed, as follows.

(1) Key attributes

In the forecast experiments, this study used the forecast data from the top three forecast
models to adapt the optimal forecast. Simultaneously, we obtained the attributes of the
top three forecast models. Additionally, we used the top three forecast models to rank the
smartcard, lag periods, and meteorological attributes based on their impacts on passenger
numbers. Then, we took the common attributes (at least two of the same attributes of the
top three models) as the key attributes. The ordering of the key attributes of bus routes
for different time series are shown in Table 9. Based on the ordering of key attributes, we
identified the following features:

Routes 1 and 7: The three different time series for Route 1 have the same top three
key attributes: Precp_10max, Precp, and Precp_hrmax. The top three key attributes in the
weekly data for Route 7 are the same as for Route 1. This means that rainfall is an important
factor for passenger flow on Route 1 and in the weekly data for Route 7. The top two key
attributes in the weekday and holiday data for Route 7 are lag 1 and week, which shows
that the passenger flow through Route 7 on weekdays and holidays is dependent on the
week (Monday, Tuesday, . . . , Sunday) and the passenger flow in the previous period.

Because the bus stations on Routes 1 and 7 are close to the university, high-speed rail,
theme park, and tourist attractions, the collected data reveal that most passengers on these
routes are students and tourists. Passengers want to go to schools and theme parks, and
most of them will take the two routes. In addition, Route 7 has a highway transit station
and Buddha memorial station. These two stations are important transportation and tourist
attractions; hence, climate attributes (such as SunS, SunS_rate, and Tmin) influence the
activity of tourists on Route 7 for the holiday data series.

Route 52: The bus stations on Route 52 are close to the university, high-speed rail, hos-
pital, and detention center. These bus stations are used by students, patients, government
employees, and their families, and the students, patients, and government employees are
off duty on holiday; hence, the passenger flow is influenced by climate attributes (such as
Precp_10max, Precp_hrmax, and Precp_hr) on the weekdays.

Three Routes: From Table 9, it can be seen that the three attributes (smartcard, meteo-
rology, and lag period) affect the passenger flow, but, in different data series, the different
attributes have different degrees of influence. Overall, the passenger flow through Route 1
and the weekly data for Route 7 have more attributes in common than other data.
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Table 9. Key attributes of bus routes for different time data.

Route Dataset Ordering of Attribute Importance

Route 1 week Precp_10max > Precp > Precp_hrmax > lag 7 > lag 1 > Precp_hr > week > lag 5 > lag 2 > RH >
month > lag 6 > Tmax > UVImax

weekday Precp_10max > Precp > Precp_hrmax > Precp_hr > lag 1 > week > Temp > WS > Tmax
holiday Precp_hrmax > Precp > Precp_10max > lag 1 > Precp_hr > week > month > SunS_rate > Tmax

Route 7 week Precp > Precp_hrmax > Precp_10max > Precp_hr > lag 1 > GloblRad > WS > RH_min > Temp >
Tmin > RH > SunS_rate > UVImax

weekday lag 1 > week > month > Temp > Tmin > GloblRad > Precp_hr > RH_min > Precp > Precp_10max
holiday lag 1 > week > SunS > SunS_rate > Tmin > month > GloblRad > Precp_hr > RH_min > WS > lag 2

Route 52 week lag 1 > week > lag 2 > SunS_rate > Tmax > GloblRad > WS_max > UVImax > Month > Precp
> SunS

weekday Precp > lag 1 > Precp_10max > Precp_hrmax > Precp_hr > RH > Tmin > WS_max > Day > lag 5
holiday lag 1 > SunS_rate > lag 2 > SunS > Precp > Precp_10max > GloblRad > Tmax > Precp_hr

(2) Lag period

From the lag period test results shown in Table 3, it can be seen that the number of
lag periods is consistent with the different time-series data. We can see that the lag period
is seven for the weekly data (a week has seven days); the holiday data are organized by
Saturdays and Sundays and have a lag period of two; the lag period for the weekday
data is five. We checked whether the lag period is consistent with the number of lags for
the top three models; if the same lag periods exist, then the data have seasonal variation
(seasonality). Seasonality means that the time series data have periodic, repetitive, and
predictable patterns [43]. We summarized the data from Tables 6–8, and the lag period
results for the top three models for each route for different time series are shown in Table 10.

Based on Table 10, it can be seen that the weekly data for Routes 1 and 52 are consistent
with the number of days in a week, as the number of lags is seven. This means that the
weekly time-series data for Routes 1 and 52 have a weekly seasonal variation (seasonality),
as shown in 6. Thus, it is necessary to add the passenger flow lag periods to forecast the
number of passengers.

Table 10. Lag period of top three models for each route in different time data.

Week (Seven Days) Weekday Holiday

Criteria RMSE RMSE RMSE

Route 1
LSTM lag 7 LSTM lag 4 LSTM lag 4
LSTM lag 6 LSTM lag 1 LSTM lag 5
LSTM lag 5 LSTM lag 2 LSTM lag 7

Route 7
LSTM (no lag) RBF net lag 4 LSTM (no lag)
LSTM lag 5 MLP_2_log lag 1 LSTM lag 2
LSTM lag 4 MLP_2_log lag 5 LSTM lag 1

Route 52
LSTM lag 7 LSTM lag 1 LSTM lag 4
LSTM lag 6 LSTM lag 7 LSTM lag 6
LSTM lag 5 LSTM lag 2 LSTM lag 5

Bold text denotes that the lag period of the top three models is consistent with the number of days in a week.

(3) Model performance

From Table 10, we can see that most of the top three models used LSTM, because LSTM
is suitable for processing and predicting important events with very long intervals and
delays in the time series [44]. Furthermore, the proposed model was found to be better than
the listed models for each route for different time series, as shown in Tables 6–8. Therefore,
the proposed model has some advantages: (1) The proposed model incorporates the
smartcard, meteorology, and lag period attributes; (2) To enhance the forecast performance,
this study proposed an integrated-weight time-series model to adapt the data from the
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top three of the 80 combined forecast models; (3) Bus data (including smartcard and
meteorology data) are time series data, and the time series model helps organizations to
understand the underlying causes of trends and systemic patterns over time. Therefore, we
propose the use of an intelligent time series model to forecast passenger numbers.

(4) Sensitivity analysis

A sensitivity analysis can determine the associations between attributes. It facilitates
more accurate forecasting and is the process of adjusting only one input and studying how
it affects the overall model [45]. Based on sensitivity analysis involving the removal of
attributes, we removed the meteorology attributes, the first key attribute, and the second
key attribute to show the forecasting ability and robustness of the proposed model. This
study was based on the ordering of key attributes for the three routes, as shown in Table 9,
and we used the weekly datasets of the three routes to conduct the sensitivity analysis.
The results show that the proposed model without meteorological data has a larger RMSE
than the model with data from all attributes for the three routes, as shown in Table 11.
Further, removing the first key attribute generates a larger error, and removing the second
key attribute also increases the error. Based on the sensitivity analysis, we can confirm that
the meteorological data are important when building the proposed model, and the first and
second key attributes affect the proposed model.

Table 11. Results of sensitivity analysis based on RMSE.

Route 1 Route 7 Route 52

Full attributes 199.882 93.682 79.963
Removal of meteorology attributes 231.714 144.949 113.959
Removal of first key attribute 228.594 136.121 121.006
Removal of second key attribute 228.066 140.402 116.717

5. Conclusions

Since 2000, Taiwan has been implementing the AFC system, also called the smartcard
system, in the transportation system. The widespread use of smartcards helps passengers
greatly reduce their transaction time and helps companies collect a large amount of infor-
mation. Although there is a smartcard system, serious traffic jams still occur. Therefore, a
good passenger flow forecast could be used to reduce traffic congestion, increase passenger
convenience, and assist enterprises with formulating route planning, resetting timetables,
and constructing other policies. In addition, a good passenger flow forecast can help cities
reduce excessive energy consumption and carbon emissions and improve urban ecosystems
to achieve sustainable development.

In order to achieve better prediction performance, we carried out the following steps:

(1) We proposed an integrated-weight time-series forecast model to forecast passenger
flow. We used real smartcard data to verify that the proposed model has good
predictive capabilities, rather than using simulated data to show the research results.
The experiments showed that the proposed model performed better than the listed
models for each route for different time series, as shown in Tables 6–8.

(2) In terms of the verification data, we focused on the top three routes with the most
passengers out of the 17 routes—Route 1, which showed the largest fluctuations;
Route 7, which has the largest number of passengers; and Route 52, which has the
least number of passengers of the top three routes—as shown in Figure 2.

(3) In terms of attribute screening, this study used smartcard data and time attributes as
well as 15 external weather attributes. In addition, as the number of passengers varies
with time, this is a time-series forecasting problem; hence, seasonal trends had to be
considered. Therefore, we added the number of lags to the forecast of passenger flow.

(4) As shown in Tables 6–8, we found that the data for each route could be partitioned by
time (weeks, weekdays, and holidays) to improve the forecast result. Based on the
key attributes shown in Table 9 and the lag periods of the top three models shown in
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Table 10, the number of lags affected forecast results. Furthermore, most of the top
three models are in the LSTM family, which presents a better forecast.

In terms of future work, we have two suggestions to further enhance this topic by
making the results less conservative and improving the forecasting performance: (1) other
attributes could be used in these forecast models, and (2) other methods (such as deep
learning algorithms) could be applied to this topic.
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