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Abstract: Orchard spraying robots must visually obtain citrus tree crown growth information to
meet the variable growth-stage-based spraying requirements. However, the complex environments
and growth characteristics of fruit trees affect the accuracy of crown segmentation. Therefore, we
propose a feature-map-based squeeze-and-excitation UNet++ (MSEU) region-based convolutional
neural network (R-CNN) citrus tree crown segmentation method that intakes red–green–blue-depth
(RGB-D) images that are pixel aligned and visual distance-adjusted to eliminate noise. Our MSEU
R-CNN achieves accurate crown segmentation using squeeze-and-excitation (SE) and UNet++. To
fully fuse the feature map information, the SE block correlates image features and recalibrates their
channel weights, and the UNet++ semantic segmentation branch replaces the original mask structure
to maximize the interconnectivity between feature layers, achieving a near-real time detection speed
of 5 fps. Its bounding box (bbox) and segmentation (seg) AP50 scores are 96.6 and 96.2%, respectively,
and the bbox average recall and F1-score are 73.0 and 69.4%, which are 3.4, 2.4, 4.9, and 3.5% higher
than the original model, respectively. Compared with bbox instant segmentation (BoxInst) and
conditional convolutional frameworks (CondInst), the MSEU R-CNN provides better seg accuracy
and speed than the previous-best Mask R-CNN. These results provide the means to accurately employ
autonomous spraying robots.

Keywords: citrus tree crown segmentation; variable spraying; mask region-based convolutional
neural network; squeeze-and-excitation residual network; UNet++

1. Introduction

Traditionally, fruit trees are sprayed manually, which normally results in low efficiency,
high costs, and pollution. Therefore, it is of great significance to use autonomous mobile
robots for this purpose; hence, agricultural and computer scientists have teamed to make
this happen [1,2]. Notably, a robot of this type must visually obtain citrus tree crown growth
information so that it can apply the variable growth-stage-based spraying needs based on
crown density, volume, leaf area index, and pesticide ratio [3,4].

With the rapid development of modern sensor technology, several methods of measur-
ing tree canopy parameters have emerged. Among these, an ultrasonic sensor is a relatively
cheap and effective tool. Nevertheless, to detect the entire crown, many ultrasonic sen-
sors must be strung together to work. Moreover, bad weather and complex backgrounds
quickly reduce their efficacy [5–7]. Lidar is known to accurately calculate complex physical
geometric characteristics by creating three-dimensional images from the collation of a large
number of single spatial measurements. However, the amount of data required to achieve
a sufficiently dense point cloud is astronomical and uneconomic [8–10]. Infrared sensors
are also cheap and fast, but they cannot identify tree canopy characteristics with sufficient
resolution. Moreover, the slightest light pollution significantly reduces its detection per-
formance [11,12]. Thus, vision sensors are favored due to their modest cost and rich data
acquisition capability. Hočevar et al. [13], Beyaz et al. [14], and Asaei et al. [15] applied
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image analysis software to red–green–blue (RGB) fruit tree pictures to separate targeted
areas using an image segmentation algorithm. Canopies, backgrounds, gaps between
crowns, etc. were used to improve pesticide treatment accuracy. Unfortunately, achieving
“highly accurate” segmentation is terribly difficult in practice as there are seemingly infinite
opportunities for noisy data to infect imagery taken from natural environments. They
showed that highly accurate segmentation was key to meeting this need. Therefore, we
seek to make the next milestone improvement to tree crown image segmentation efficacy
and efficiency. However, we must first review the history of people trying to meet this goal.

Machine-learning image segmentation tools have already been used to measure tree
crown parameters. To enable automatic apple tree canopy shape segmentation, Hočevar
et al. [13] designed a machine vision system that converts RGB images to the hue–saturation–
luminance color space and used a green notch filter to segment the image. An image erosion
technique was then used to refine the canopy features. However, this method is extremely
sensitive to noise and is not robust enough for practical use. Liu et al. [16] used the tradi-
tional watershed method of Gaussian filtering to segment tree crown boundaries, but the
algorithm has high complexity and requires a huge training dataset. Gao et al. [17] used
color differences to segment a variety of tree crown images according to their color charac-
teristics, but the background colors created too much interference. Most of these methods
use RGB cameras to collect two-dimensional data. Thus, they lack the required spatial
information and are restricted to estimating distances based on the pre-calibrated camera
range from the target. Hence, via the lack of triangulation, large spatial measurement errors
are commonplace.

More recent depth camera innovations have led to exciting new studies on a variety
of computer vision tasks because they can directly obtain highly precise distance infor-
mation and have the advantage of secondary development platforms. However, because
this technology is relatively new, it is mostly applied for 3D modeling of objects, virtual
reality, and other fields; few studies have used it for canopy analysis. Xiao et al. [18] used
Microsoft’s Kinect depth camera for crown parameter extraction for the first time. In 2019,
Milella et al. [19] used an off-the-shelf depth camera to effectively estimate grape canopy
volumes and clusters. By 2020, Kim et al. [20] had developed a pear tree detection system
for an orchard by using depth camera data to effectively remove background imagery noise.
These researchers have conducted good work with depth cameras and tree canopies, but
their methods were restricted to crown color, shape, and texture characteristics, which, even
with the best cameras, are easily affected by environmental noise. It is very notable and
quite surprising to some that RGB depth (RGB-D) images contain a great deal of semantic
information that transcends the capabilities offered by the aforementioned banal features.
Table 1 has been given to summarize and compare the use of various types of sensors for
tree crowns in the above research.

Table 1. Advantages and disadvantages of the different types of sensors used for geometrical
characterization of tree crown.

Sensors Advantages Disadvantages

Ultrasonic sensors
• Low price and good robustness
• Easy to implement and good adaptability

• Large ultrasonic beam spread angle
• Limited resolution and accuracy of the measurements

Lidar sensors
• Independent of environmental conditions
• Provide high resolution of tree canopy structure

characteristics

• The price is too high to be widely promoted
• Complex structure

Infrared sensors • Low cost and simple structure • Influenced by light easily

Camera sensors
• Real-time and accuracy of image processing

improved by machine learning significantly
• Depth camera can obtain precise distance

• Highly sensitive to the weather conditions
• Calibration is required, and the accuracy is not as high

as Lidar
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In recent years, deep learning theory has developed rapidly with the emergence of
various convolutional neural networks (CNNs) that provide new and unanticipated seg-
mentation approaches. Compared with traditional segmentation methods, this method
outputs multi-size feature maps based on candidate regions, which greatly improves the
ability to extract object features. In 2021, Anagnostis et al. [21] proposed an approach for
orchard trees segmentation based on a deep learning CNNs, namely the Convolutional Net-
works for Biomedical Image Segmentation (UNet). Jose et al. [22] integrated five advanced
algorithms to achieve semantic tree-crown region segmentation in complex urban scenes.
Shortly afterwards, Seol et al. [23] proposed a semantic pixel-wise segmentation network
(SegNet) intelligent pear-tree spraying system, which achieved the highest accuracy at
the time: 83.79%. Their method is quite robust and distinguishes tree species. It can even
separate the crowns from skies, buildings, and brush. Nevertheless, the continuity mask
generated by the same kind of tree crown makes it impossible to distinguish different trees
of the same type. Therefore, more advanced algorithms are needed; to this end, instance
segmentation algorithms have been applied. Because instance segmentation can detect
and segment object simultaneously, it can solve the drawback of semantic segmentation in
not being able to distinguish between different individuals. In recent years, researchers
have combined the instance segmentation algorithms with the use of depth cameras. For
example, Liu et al. [24] developed a new instance segmentation model called “tiny Mask
R-CNN”, which was used to detect guava fruit and tree branches. Each detected fruit
and tree branch was converted into a 3D point cloud by using the RGB camera, thus
enabling the detection and 3D modeling of the fruit trees. Due to the large data obtained
from the point cloud, a small number of images were collected for training. Recently, Xu
et al. [25] combined depth information and improved mask-type region-based (R)-CNN
(Mask R-CNN) to recognize cherry tomatoes and achieved an accuracy of 93.76% for fruit
recognition, which is 11.53% higher than that obtained using standard Mask R-CNN. The
experimental results of these studies show that the effective fusion of RGB-D helps to im-
prove the feature expression ability of the model. The Mask R-CNN is a relatively advanced
instance segmentation model that has been applied in the field of intelligent agriculture
wildly, such as fruit detection [26], pest detection [27], evaluating ecological patterns [28],
and more. Most relevant to this article is its successful application to challenging forestry
tasks. For example, Safonova et al. [29] used the Mask R-CNN to recognize and segment
olive tree crowns and estimate a single tree’s biological volume. Accuracy of the model
ranged from 77 to 95%. Hao et al. [30] achieved the simultaneous detection of Chinese fir
crowns and tree heights using the method, but the precision of the detection was around
85%. Zhang et al. [31] proposed a coniferous crown segmentation and recognition method
based on their improved Mask R-CNN version. However, the accuracy was improved by
less than 1%. With their boundary segmentation algorithm, several geometric parameters
(e.g., contour, center of gravity, and area) were amazingly extracted. Comparisons were
later made with highly specialized task-specific models, such as UNet [32], which had
made great advances in image-training efficiency for medical decision support, and You
Only Look Once version three (YOLOv3) [33], which had a huge breakthrough in object
detection. For instance, Wang et al. [34] proposed a modified YOLOv3 model to detect
potholes accurately on the pavement surface. Compared with the original YOLOv3 model,
the proposed model was significantly improved [35]. Different versions of YOLO models
were combined with 3D ground-penetrating radar (GPR) images to recognize the internal
defects in asphalt pavement by Liu et al. [36]. The Mask R-CNN astonished everyone by
outperforming those and other high-profile tools in some important metrics and had high
precision and strong robustness. Additionally, Mask R-CNN, an instance segmentation
method, has the function of segmentation and detection. Therefore, it is more suitable for
segmenting individual tree crowns than semantic segmentation methods.
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In summary, current tree crown segmentation methods have the following shortcom-
ings: it is difficult for RGB camera systems to identify specific spraying objects from many
candidates [13–15]; they are not robust enough to achieve good performance when complex
backgrounds are present [18–20]; most of the original Mask R-CNN is used for crown
segmentation; and there is still significant room for improved accuracy [29–31].

Therefore, the goal of this paper is to provide the most precise and accurate citrus
crown segmentation tool available, and we accomplish this. Our key contributions are
as follows:

• For improved object identification, RGB-D images are collected, and the image noise
outside the effective spraying area is removed by aligning pixels and adjusting the
visual distance. Compared to that of RGB images, the bbox AP50 score is improved by
0.3% for RGB-D images.

• To increase robustness in complex backgrounds, the model is trained using citrus
crown images with different backgrounds at different growth stages. The model’s
bbox and seg AP50 indicators are averaged over 95%, indicating a good overall
performance and strong generality.

• To improve the accuracy of tree crown segmentation, an improved instance segmen-
tation method based on the Mask R-CNN framework is proposed. The UNet++ is
a commonly used semantic segmentation network [37]. We employ a feature map-
based SE block (a neural network that can improve the feature extraction ability) with
UNet++ (MSEU) in the R-CNN. The SE block is integrated with the residual network
(ResNet) [38,39] to improve the extractability of tree crown features, and the UNet++
is introduced in the mask branch (a neural network used for segmenting images) to
further improve segmentation quality. Compared with those of the optimal Mask
R-CNN, the bbox and seg AP50 of MSEU R-CNN were improved by 3.4% and 2.4%,
respectively.

The remainder of this paper proceeds as follows. Section 2 explains our methods and
materials in producing the new image dataset and the MSEU R-CNN. Section 3 provides
our analytical construct, model training plan, and findings. Then, interpretations are
provided. Finally, Section 4 provides the conclusion.

2. Methods and Materials
2.1. Image Dataset

The data in this paper were collected from a citrus plantation in the Jiaojiang District of
Taizhou City in the Zhejiang Province of China. The images acquired were taken from 5–8
February 2022, from 9 a.m. to 6 p.m. A total of 766 RGB-D and RGB images of citrus trees in
natural environments were collected using the RealSense d435i depth camera produced by
Intel with resolutions of 1280 × 720 pixels for RGB images and 848 × 480 pixels for RGB-D
images saved in the portable network graphics format. The experimental scene and image
acquisition equipment are shown in Figure 1. To simulate the real working environment
of a citrus spraying robot as realistically as possible, citrus tree images at different light
intensities correlating with morning, noon, and afternoon periods were taken at different
light angles (i.e., backlight and forward light). Various backgrounds, shooting angles (e.g.,
front and side views), and growth periods (e.g., seedling, flourishing, and fruiting) were
collected. Example images are shown in Figure 2.
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(d) seedling stage, (e) flourishing stage, (f) fruiting stage.

2.2. Dataset Production
2.2.1. Generated RGB-D Tree Crown Images

The spraying robots are required to locate citrus crowns in a given planting row. To
simplify the spraying process for this study, only the citrus crowns nearest the sensor on
the planting line were marked as the current spraying target in each frame. According to
the characteristics of orange orchard row planting, when the fruit trees in the back row
are used as the background for image segmentation, they are often misjudged as spraying
areas. Therefore, this paper uses the distance between the points in the tree crown depth
map and the photographing center of the three-dimensional space [25] to process the
depth-obtained image data. According to the distance between the camera and tree crown
in the front and back scenes, the depth image segmentation method is used to eliminate the
redundant image information outside the effective spraying range to block the interference
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of other background trees. The RGB-D image generation process is shown in Figure 3.
The RGB images (1280 × 720 pixels at 69◦ × 42◦) and depth images (848 × 480 pixels at
87◦ × 58◦) differ in terms of resolution and field-of-view. Therefore, in order to obtain
the depth values corresponding to the pixels in the color graph, it is necessary to convert
the image coordinate system of the depth image into that of the RGB image to maintain
pixel-point consistency. The matrix is transformed using Equations (1)–(3) to establish a
correspondence between the RGB image coordinates and depth image coordinates. Second,
redundant and background information are removed by setting the depth threshold as
shown in Equation (4); thus, only the foreground tree crown is retained. For example, when
the camera (on the platform) is 1.2 m away from the tree, and the total depth of the tree
crown (including branches and leaves) is 0.8 m, the areas of depth data exceeding 2 m are
removed and shown in black.

T =

(
R t
0 1

)
(1)

T−1 =

(
R−1 −R−1t

0 1

)
(2)

Td2c = Tw2c T−1
w2d

=

(
Rw2cR−1

w2d tw2c − Rw2cR−1
w2dtw2d

0 1

)
(3)

depth(x, y) =

{
depth(x, y), i f d<depth(x, y) < D
0, otherwise

(4)
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In Equations (1)–(3), T represents the Euclidean transformation matrix; R is the rota-
tion matrix (and also the unit orthogonal matrix); t is the translation amount of the axis;
Tw2d represents the external parameter of the depth camera; Tw2c represents an external
parameter of the RGB camera, and Td2c represents a transfer matrix of the depth camera to
the RGB camera. In Equation (4), depth (x, y) represents the depth value of the pixel (x, y),
and d and D are the two thresholds.

2.2.2. Image Annotation and Data Augmentation

In this paper, the efficient interactive segmentation (EISeg) tool [40] was used to
automatically annotate the citrus crown in the RGB and RGB-D images and generate a
Common-Objects-in-Context-formatted annotation file [41]. Apart from the background
items, the label categories accounted for seedling, flourishing, and fruiting crown stages.
Following the image annotation, to improve model generalizability, the image data were
augmented using random brightness changes, contrast enhancements, and random rota-
tions. These methods are shown in Equations (5)–(8). Therefore, to simulate the effect of
noise from everywhere in the natural environment, Gaussian noise was added to the image
data, as shown in Figure 4.
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Brightness changes: the image contrast adjustment can directly use the following
transformation formula to linearly change the image in RGB space:

g(i, j) = f (i, j) + b (5)

where f (I, j) represents the gray level of the original pixel; the gray level of the converted
pixel is g(I, j). A change in coefficient b affects the brightness of the image. When b is
increased, the image becomes bright, and vice versa.

Contrast enhancements: the equation for calculating the contrast can be written in the
following form [42]:

C = k

√√√√ 1
3rc

r

∑
i=1

c

∑
j=1

3

∑
n=1

(Xi,j,n − X)

2

(6)

where C represents “Contrast.” R × c × 3 denotes the shape of color images. The value of k
is greater than 1.

Rotation: the pixel (x0, y0) is rotated in the original image by angle α, as shown in
Formula (7):

[xy1] = [x0y01]

 cos α − sinα 0
sin α cosα 0

0 0 1

 (7)

where (x, y) is the pixel after rotation.
Gaussian noise: Gaussian noise is a type of noise whose probability density function

obeys the Gaussian distribution (normal distribution). The method for adding Gaussian
noise can be expressed by the following formula:

G(x, y) = f (x, y) + n(x, y) (8)

where G(x,y) is the image with added Gaussian noise; f (x, y) is the original image and n(x,
y) is Gaussian additive noise.

After data augmentation, images were divided into Datasets 1 and 2, which were both
compartmentalized into training, verification, and testing sets at ratios of around 7:2:1.
Dataset 1 contained 2000 RGB images and their annotation data, and Dataset 2 contained
of the 2000 RGB-D type. See Table 2 for quantity distributions.

Table 2. Image distribution of citrus crown after data augmentation.

Dataset 1 Dataset 2

Growth
Period

Training
Set

Verification
Set

Testing
Set

Training
Set

Verification
Set

Testing
Set

Seedling 455 132 65 425 152 68
Flourishing 464 146 66 479 131 67

Fruition 481 122 69 496 107 64
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2.3. MSEU R-CNN Citrus Crown Instance Segmentation Model

The Mask R-CNN instance segmentation model [43] introduced a fully convolutional
network (FCN)-based R-CNN [44,45] to realize pixel-level multi-target detection and seg-
mentation. Based on the Mask R-CNN, this paper proposes the improved MSEU R-CNN
to accurately segment citrus tree crowns at variable growth cycles. The overall structure is
shown in Figure 5. By integrating the SE block with ResNet and combining feature pyramid
networks (FPNs) [46], a backbone is formed to extract the features of the input image and
to output a large number of candidate frames. Hence, the region-of-interest (ROI) in which
the target may exist is filtered through a region proposal network (RPN). The ROI is then
input to the ROIAlign layer and mapped to a fixed dimension feature vector via bilinear
interpolation. The mapped features are then input into three branches; the tree crown
is classified, and the bounding box is regressed through the fully connected layer. The
Unet++ network is then used for semantic segmentation to generate a high-precision tree
crown mask.
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2.3.1. SE-ResNet

Figure 6a shows the ResNet adopted by the Mask R-CNN, which has good feature
extractability. Nevertheless, it only focuses on the spatial information of image features
and neglects the relationship between feature channels, resulting in insufficient utilization
of image-feature information. The SE block provides the attention mechanism structure
proposed by Hu et al. [38]. In that paper, the ResNet was optimized by embedding SE
blocks to construct a new ResNet feature extraction network. Its structure is shown in
Figure 6b. The SE block recalibrates the weights of different feature channels by modeling
the correlations of image features and weighs them based on the previous feature channels
via multiplication to enhance the attention layer to the key channel domain and suppresses
ineffective feature channels. As shown in the dotted box of Figure 6b, the SE block structure
mainly includes squeeze, excitation, and recalibration parts.

During the compression operation, the traditional convolution only extracts feature
information in the local space, making it difficult to obtain sufficient information to char-
acterize the relationships between channels. SE block uses a compression operation to
optimize and compress the global spatial information into one channel using a global
average pooling layer to achieve overall spatial feature extraction in a single channel.
Mathematically, the channel is formed by compressing the feature map with the spatial
dimension. Thus, the element is calculated by the following formula:

Zc =
1

H × W

H

∑
i=1

W

∑
j=1

Xc ,i,j (9)

where X is the input characteristic diagram; H and W are the height and width, respectively,
of the characteristic diagram, and Xc,I,j represents the elements in the channel row and
column characteristic diagram matrix.
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In the excitation operation, the global feature map output of the compression operation
is successively passed through the fully connected layer, rectified linear unit (ReLU) activa-
tion function, and Sigmoid activation function to generate the corresponding weights per
channel without changing the dimensionality of the feature map. The calculation formula
is as follows:

V = σ(W2δ(W1 · Z)) (10)

where V is the channel weight; σ is the Sigmoid function; δ is the ReLU function; W1 and
W2 are the weights learned from the two fully connected layers.

During the recalibration operation, the weight of the output of the excitation operation
is correspondingly weighted to the previous features one-by-one through multiplication.
Thus, we can realize the recalibration of the original features of each channel, thereby
enhancing the attention to the key channel domain. The calculation formula of recalibration
based on the input characteristic map and weight is as follows:

XC = Vc · Xc (11)

where XC is channel feature matrix after recalibration; VC is the corresponding weight of
each channel; XC is the channel feature matrix corresponding to each feature map.

The SE block forces the network to pay more attention to the characteristics of the
citrus crown while generating a feature map. Simultaneously, via the self-attention network,
the semantic information of the crown is enhanced; the complex background information of
the orchard is effectively suppressed, and the problem of poor recognition accuracy when
the crown is densely distributed is solved. Then the feature map output of the SE-ResNet
module is used as the input to the FPN for multiscale feature extraction.

2.3.2. FPN

Because the crown of the seedling stage is much smaller than that of the flourishing
and fruiting stages, to improve the detectability of small targets, the classic method uses the
image pyramid method to enhance the multiscale changes of images during the training
or testing stages, but it greatly increases the calculation effort of the image pyramid [46].
In this paper, the FPN method is adopted to avoid these problems, and it simultaneously
better handles the multiscale change in object detection. The network structure is shown
in Figure 7. The ResNet consists of five stages, convolutional layers taken from 1 to 5,
respectively. Because the first layer of convolution (conv1) occupies a large part of memory,
it is not included in the pyramid. Corresponding to conv2, conv3, conv4, and conv5, one
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feature map with different scales is generated, expressed as C2, C3, C4, and C5 respectively.
Using the feature map of the ResNet output as input to the FPN to establish the feature
pyramid, the new features are output: P2, P3, P4, and P5.
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2.3.3. RPN and ROIAlign

The P2–P5 layer crown feature images obtained via feature extraction through the
ResNet and FPN are input to the RPN, which uses 3 × 3 sliding windows on each feature
map to generate candidate regions of different sizes on the original image according to three
aspect ratio sets: 1:1, 1:2, and 2:1. Simultaneously, each candidate region is output as a 256-
dimensional feature vector for target classification and border regression. The classification
results are either tree crown or non-tree crown. After frame regression, four more accurate
coordinate values are output to determine the position information of the candidate region
in the original image. The candidate regions are then mapped with different input image
sizes using the manually labeled crown information as the real crown region, and the
intersection ratio of all candidate and real crown regions are calculated, and the candidate
regions greater than the intersection ratio threshold are reserved. Finally, the candidate
areas with more crown opportunities are obtained by screening the crown candidate areas
through non-maximum suppression. The generated crown candidate region and its feature
image are input to ROIAlign, and the corresponding ROI is clipped. ROIAlign adopts the
bilinear interpolation method to adjust the above-mentioned ROIs of different sizes to a
uniform size. The fixed-size ROI then passes through the fully connected layer to locate
and classify the tree crown.

2.3.4. Unet++ Replaces the FCN

The mask branch of Mask R-CNN uses an FCN to extract the semantic information
of the image [43], which is sensitive to the local semantic information but neglects the
context information, resulting in the loss of pixel position features of the shallow network
to a certain extent during image feature transmission. To better combine the shallow and
deep features of the image, The MSEU R-CNN model introduces the Unet++ to improve
the model segmentation performance by replacing the original mask branches. As shown
in Figure 8, the Unet++ is composed of convolution blocks, down-sampling units, and
up-sampling modules with skip connections between the convolution blocks. Each node in
the figure represents a convolution module that combines the feature maps of four different
semantic levels and makes full use of the image features of different layers to improve
model generalizability. The Unet++ then redesigns the skip path based on the Unet model
and uses dense skip-layer links to fuse the multiscale features of each convolution layer to
achieve denser and more flexible feature propagations. From the vertical direction, each
node fuses the feature images of different resolutions from the previous node to maximize
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the interconnection between each feature layer. This multiscale feature fusion structure
thus improves the model segmentation accuracy and convergence speed.
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3. Results and Discussion
3.1. Evaluation Index

To evaluate the segmentation performance of the proposed model on the citrus crown,
the bbox average precision (AP50) rule and F1-score are used to evaluate the detection
accuracy of the crown [47,48], in which “50” means that if the intersection over union (IoU)
of the prediction and real frame are >0.5, the prediction frame is considered to be a positive
sample. The bbox average recall (AR) refers to an average after [0.5, 0.95], taking the IoU of
the prediction and real frame of 0.05 as the interval. The seg AP50 and the mean IoU (MioU)
are used to measure the accuracy of the model for crown contour segmentation [49–51].
The seg AP refers to the average AP calculated after the IoU of the predicted and real masks
are equal to 0.05 at an interval of [0.5, 0.95].

3.2. Model Training

All experiments were completed using the Windows 10 operating system. The main
server configuration used a GeForce RTX2060 GPU (6 GB) and an Intel i7 9750h CPU. From
this, we built a deep-learning framework using PyTorch 1.7.1 [52] and the Python 3.6.5
programming language to build the training and testing network. To speed-up model
training, a CUDA graphics card v.10.1 with the cuDNN7.5 deep neural network library
were installed.

The hyper parametric model training setting based on the number of photos (batch_size)
was set to one; the epoch was set to 10; the stochastic gradient descent optimizer was used;
the momentum factor was 0.9; the weight attenuation coefficient was 0.0001, and the initial
optimizer learning rate was 0.004.

3.3. Test Result Analysis
3.3.1. RGB-D Image Validity Analysis

To understand the influence of the tree-crown RGB-D image on model detection
and segmentation performance, the MSEU R-CNN algorithm was trained and tested
using Dataset 1 (RGB) and Dataset 2 (RGB-D). The experimental results are shown in
Table 3 where the Dataset 2 bbox AP, bbox AR, seg AP, and F1-score were 0.5809, 0.6793,
0.5747, and 0.6263, respectively, which are higher than the model performance indices
trained using Dataset 1. The results show that the MSEU R-CNN model trained from
the RGB-D canopy image has better detection and segmentation performance than the
model trained on the RGB canopy image. According to the differential analysis of the
dataset, the orchard background in the natural environment was complex and diverse,
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and most of the fruit trees in the RGB image overlapped, resulting in the model becoming
unsuitable for distinguishing individual tree crowns. This negatively affected the detection
accuracy of the model. However, the RGB-D images included the original RGB images
with color, texture, and shape tree crown and depth image information. By adjusting the
visual distance and related operations, only the citrus tree crown in the foreground was
retained, and most of the invalid background and nontargeted tree crown types that greatly
differed from the positive samples were removed. The negative sample type required by
the binary classifier can be reduced to improve the model detection accuracy. Nevertheless,
the seg AP only increased by 0.1%, indicating that the RGB-D image had little impact on
the model segmentation performance. These experiments confirmed that the RGB-D image
reduces the interference complexity of background and non-target crown information on
the detection of spraying objects.

Table 3. Validity analysis of RGB-D image.

Dataset (Bbox)AP (Bbox)AR (Seg)AP F1-Score

No using RGB-D 0.5792 0.6540 0.5737 0.6143
Using RGB-D 0.5809 0.6793 0.5747 0.6263

Promotion ratio 0.3% 4.0% 0.1% 2.0%

3.3.2. MSEU R-CNN Instance Segmentation Performance Test

To understand the performance of the MSEU R-CNN in the tree-crown segmentation
task in a variety of complex backgrounds, Dataset 1 was used for model training, and
citrus crown images from three growth periods were selected for testing (i.e., 200 images:
65 seedlings, 66 flourishing, and 69 fruiting). The background of each period was complex
and varied. The performance of the model varies greatly in different equipment tests. To
evaluate the trained model accurately, the same hardware configuration used during train-
ing was applied. The main test equipment was a high-performance computer employing a
GeForce RTX2060 GPU (6 GB), an Intel i7 9750h CPU, and an SSD (100G) mainly. The fruit
trees at each stage had different shapes, which differently affected the prediction results of
the instance segmentation model. The MSEU R-CNN model results are shown in Table 4.

Table 4. Instance segmentation performance test results of MSEU R-CNN model.

Evaluating Indicator Seedling Flourishing Fruiting Average Value

(Bbox) AP50 (%) 95.2 99.5 95.1 96.6
(Bbox) AR (%) 66.8 82.0 70.3 73.0
(Seg) AP50 (%) 95.6 99.7 93.1 96.2

F1-score (%) 62.7 80.0 65.2 69.4

It can be seen from Table 4 that the bbox and seg AP50 of the MSEU R-CNN were
99.5 and 99.7%, respectively, which were highest of the three stages. The detection and
segmentation accuracies for the seedling and fruiting stages were no more than 96%.
According to the differential analysis of the crown growth stage, it can be seen that owing
to the large surface areas of the citrus during the flourishing period, sufficient feature
information was obtained during feature extraction, further stabilizing the training effects
and enabling faster convergence. Nevertheless, the surface areas of the seedling citrus
trees were small, and the characteristic information was insufficient. The training loss
was therefore difficult to converge to lower levels, and the final prediction effects were
poor. Although the surface areas were largest during the fruit-bearing period, and the
characteristic quantities were sufficient, the surrounding weeds and other background
growth were dense, causing strong interference. Owing to the great similarity between the
target object and complex background features, model training was constrained, making
it difficult to distinguish between contours. However, from the final test results, the
average bbox AP50 of MSEU R-CNN model detection was 96.6%; that of segmentation
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was 96.2%, and the recall rate was 73.0%, indicating that the overall instance segmentation
performance was excellent. These experiments show that the MSEU R-CNN instance
segmentation model effectively resolves the detection and segmentation problems of citrus
crowns evaluated at different growth stages in unstructured environments.

3.3.3. Effectiveness Analysis of Model Structure Optimization

The proposed MSEU R-CNN model integrates SE blocks in its backbone structure. To
verify its improved feature extractability, ResNet-18, ResNet-50, ResNet-101, and ResNext-
50 [53] methods were combined with various Mask R-CNN models with FPN backbones
for comparison. The structures of different models for segmenting citrus crown are shown
in Table 5. Additionally, a comparison experiment of the model before the mask–branch
improvement was added to verify the segmentation improvement of the Unet++. These
models were trained and verified, by using Dataset 1. The bbox and seg AP50, AR, F1,
MioU50, and reasoning scores are plotted in Table 6. From this, the MSEU R-CNN citrus
crown segmentation model is shown to have an AP50 of 96.6%, which is at least 3.4% better
than other models. The seg’s AP was 96.2%; AR was 73.0%; F1-score was 69.4%, and the
MioU50 was 74.2%, all higher than the other models. Although the inference speed of the
proposed model did not change much (i.e., the average running time was 0.19 s, and the
average frame rate was ~5 fps), the accuracy was significantly improved. Models 5 and 6
represent the conditions before and after the mask–branch improvement. From Table 6, it
can be seen that the optimized seg AP50 and MioU50 of the mask branch reached 96.2%
and 74.2%, which are 2.6% and 1.3% higher than before the improvement, respectively. This
shows that the introduction of the Unet++ semantic segmentation module had a significant
effect in improving the segmentation accuracy. Models 1 and 5 reflect the comparison
before and after the ResNet optimization. From the data of Table 6, it can be seen that
the AP50, AR, and F1-score of the bbox model after feature extraction increased by 0.6,
2.3, and 2.8%, respectively, compared with those before improvement. The ResNet layers
of Models 2, 3, and 4 were deeper than those of Model 5. However, because Model 5 is
embedded in the SE block, the detection accuracy index was the highest, and the feature
extractability was the strongest. The comparisons between models 1–5 showed that the
SE block made the SE-ResNet pay more attention to learning effective features (e.g., citrus
crowns during feature-map generation while readjusting the feature channel weight value
and effectively suppressing the complex background features of orchards through the
network self-attention). Thus, we solved the problem of poor recognition accuracy when
the crown is densely distributed. Model 5 uses a more lightweight ResNet-18 network
than is conducive to improving model efficiency. The detection time of a single image is
0.19 s. Therefore, the MSEU R-CNN model with the SE-ResNet-18-FPN backbone is more
robust in segmenting citrus crowns by comprehensively weighing the average precision
and running speeds.

Table 5. Different model structures on citrus crown segmentation.

Number Model Backbone Mask Branch

Model 1 Mask R-CNN ResNet-18-FPN FCN
Model 2 Mask R-CNN ResNet-50-FPN FCN
Model 3 Mask R-CNN ResNet-101-FPN FCN
Model 4 Mask R-CNN ResNext-50-FPN FCN
Model 5 Mask R-CNN SE-ResNet-18-FPN FCN
Model 6 MSEU R-CNN SE-ResNet-18-FPN Unet++



Appl. Sci. 2023, 13, 164 14 of 20

Table 6. Evaluation results of different model on citrus crown segmentation.

Number (Bbox)AP50
(%)

(Bbox)AR
(%)

(Seg)AP50
(%)

F1-Score
(%)

MioU50
(%)

Run-Time
(s)

Model 1 93.2 70.6 91.3 65.6 64.6 0.17
Model 2 77.9 57.3 76.7 52.0 61.0 0.18
Model 3 80.7 57.8 75.5 54.1 56.6 0.21
Model 4 80.5 61.4 77.4 57.1 71.0 0.23
Model 5 93.8 72.9 93.6 68.4 72.9 0.19
Model 6 96.6 73.0 96.2 69.4 74.2 0.19

Figure 9 compares the segmentation results of the different models at different growth
stages. The differences in model segmentation results can be seen in the blue boxes. In
Figure 9, the masks generated by the crown segmentations of each stage of Models 1–5
are missing or redundant, whereas the segmentation mask, MSEU R-CNN, is closer to
the label diagram, indicating that the model’s segmentation effect is obviously better than
Model 1–5. In this paper, the semantic segmentation Unet++ multi-feature fusion model is
used to replace the original FCN structure, maximize the relationship between each feature
layer, and make full use of the image features of each layer so that the complex edges of
citrus trees can be well-preserved. These experiments confirmed the feasibility of further
improving the quality of crown mask segmentation by using the Unet + + multi feature
fusion strategy.

To better verify the superiority of the segmentation performance of the MSEU R-CNN
model, the changes to various evaluation indices during the training of different models
are drawn as curves, including one for bbox AP50, and seg AP50 (Figure 10). It can be
seen from the change trend of various indicators that the evaluation indicators of the
MSEU R-CNN model are better than others in training, showing faster convergence and
stronger robustness. Because the model proposed in this paper uses the information fusion
method of the SE block to enhance its efficacy, suppress invalid features, and fully fuse the
feature map information, its feature extractability is further improved so that the accuracy
converges satisfactorily. Moreover, precision–recall curves graphs of various Mask R-CNN
models are presented in Figure 11. The area under the curve (AUC) value of the MSEU
R-CNN model is 0.9051, which is the largest value among those of the six models, indicating
that the classifier works best.
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3.3.4. Comparison and Analysis with Other Instance Segmentation Models

To further analyze the superiority of the MSEU R-CNN model, this paper compared
it with three typical instance segmentation models: BlendMask [54], BoxInst [55], and
CondInst [56]. To achieve a fair comparison, the training, verification, and testing sets of
Dataset 1 were used for training and testing for all models. Figure 12 shows the performance
of each model in terms of accuracy and speed. It can be seen from Figure 11 that the bbox
AP50 of the MSEU R-CNN was 7.7 and 25% higher than those of BlendMask, BoxInst, and
CondInst. The bbox AR was 9.2, 19.4, and 18.6%, the seg AP50 was 6.2%, 23.4%, and it
was 26.3% higher. The F1-scores were 20%, 21.7%, and 24.1% higher. The results show
that the proposed model had stronger feature learning ability and higher segmentation
accuracy than the other three models. By analyzing the structure of MSEU R-CNN, it can
be seen that the Unet++ network effectively combined the multiscale characteristics of each
convolution layer and improved the segmentation accuracy to a certain extent. Compared
with ResNet, the SE-ResNet paid more attention to the effective features in the image,
and the feature extractability was improved. The real-time performance of the model was
evaluated using the segmentation time of a single image, as shown in Figure 11. The MSEU
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R-CNN only took ~0.19 s to complete an instance segmentation, and the processing time
was reduced by 38.7 and 41.9%, respectively, compared with BoxInst and CondInst. Because
MSEU R-CNN’s residual network (SE-ResNet-18) had a shallower network layer than theirs
(ResNet-50), fewer training parameters and hardware configuration were needed. Notably,
the MSEU R-CNN model ran relatively fast. Moreover, Figure 13 illustrates the test results
of BlendMask, BoxInst, CondInst, MSEU R-CNN, DeepLab version three (DeepLabv3) [57],
and Unet on the self-defined dataset for a comparison. Because DeepLabv3 and Unet are
semantic segmentation networks, they can achieve pixel-level segmentation but cannot
locate the border box by instance segmentation. Further, when compared with BlendMask,
BoxInst, and CondInst, MSEU R-CNN can achieve a more refined segmentation and
accurate positioning. Thus, in summary, the MSEU R-CNN model proposed in this paper
achieved the best model accuracy and operation efficiency compared with other models.
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4. Conclusions and Future Work

Accurate detection and segmentation of a single citrus crown during its seedling, flour-
ishing, and fruiting stages in a complex environment are crucial for an orchard spraying
robot to achieve variable spraying. Therefore, in this paper, a citrus tree crown RGB-D
segmentation method and an improved Mask R-CNN were proposed. The MSEU R-CNN
is a Mask R-CNN with fused SE blocks and ResNet-15 that replaces the original mask
branch with the UNet++. The main conclusions are as follows:

(1) The detection accuracy of the MSEU R-CNN RGB-D tree-crown image was higher than
that of RGB, indicating that the depth image can effectively reduce the interference of
complex backgrounds and non-targeted tree crowns.

(2) The MSEU R-CNN’s segmentation results at different stages showed that the detection
and segmentation accuracies of tree crowns at the flourishing stage were the highest,
whereas those at the seedling and fruit-bearing stages were lower. However, the
average bbox and seg AP50 measures were more than 95%, indicating that the overall
performance was excellent with strong generalizability.

(3) Compared with the original Mask R-CNN model, the proposed model effectively
improves the recognition and segmentation accuracies of a single citrus crown under
the condition of a small average running time change, and the segmentation quality
of the crown mask is more precise, which helps accurately evaluate crown parameters.
Compared with other models, the experimental results show that the segmentation
performance of the proposed model is obviously better than that of BoxInst and
CondInst models.

In this paper, the citrus tree crown was segmented effectively, but the variety of fruit
trees was narrow. Additionally, the real-time performance of the network model should
be further improved. We plan to collect images of different fruit tree varieties and expand
the canopy dataset to multiple conditions to further simplify the network structure and
improve real-time performance.
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