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Abstract: Variational Mode Decomposition (VMD) provides a robust and feasible scheme for the
analysis of mechanical non-stationary signals based on the variational principle, but this method still
has no adaptability, which greatly limits the application of this method in bearing fault diagnosis.
To solve this problem effectively, this paper proposes a novel fluctuation entropy (FE) guided-VMD
method based on the essential characteristics of fault impulse signals. The FE reported in this paper
not only considers the order of amplitude values but also considers the variation of amplitude, and
hence it can comprehensively characterize the transient and fluctuation characteristics of rolling
bearing fault impulse signal. On the basis of establishing FE, the FE-based fitness functions are then
conducted, after which the mode number and balance parameter can be adaptively determined.
Meanwhile, an adaptive neighborhood statistical model is developed to further reduce the noise of
the mode component containing fault information so as to highlight the periodic impulse component
more significantly and improve the diagnostic accuracy. Simulation and case analysis show that this
research is effective and quite accurate in fault mode separation and fault feature enhancement. Com-
pared with the traditional VMD method and the current common diagnosis methods, the proposed
method has obvious advantages in the comprehensive utilization of fault impulse information and
enhanced diagnosis.

Keywords: variational mode decomposition; fluctuation entropy; neighborhood statistical model;
rolling bearing; fault diagnosis

1. Introduction

Rolling bearings are the foundation and key components of mechanical equipment;
their performance is directly related to the health status of the whole equipment, and their
operation failure often leads to disasters and accidents [1,2]. Because of the operating
conditions’ variability, the interference of multiple vibration sources and the weak impulse
characteristics in the fault initiation stage, it is difficult to directly diagnose early faults in
many situations, which requires in-depth research on modern diagnostic technology [3–6].
Machine learning is a reasoning process that simulates human thinking. By effectively
obtaining, transmitting and processing diagnostic information, it can simulate human
experts and make intelligent judgments and decisions on the operation status and faults
of monitored objects with flexible diagnostic strategies. Intelligent diagnosis plays an
important role in the field of mechanical fault diagnosis because of its learning function and
the ability to automatically obtain diagnostic information for real-time fault diagnosis [7–9].
In addition, some potentially valuable modern signal processing technologies have been
used in rolling bearing monitoring and diagnosis, and a series of practical theoretical and
engineering applications have been achieved, effectively improving the service status and
predictive maintenance of equipment. Variational mode decomposition (VMD), proposed
by Dragomiretskiy K and Zosso D [10], is a unique, innovative mathematical tool that
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can characterize the input signal as an intrinsic mode component with specific equivalent
filtering and sparsity characteristics according to the input settings. However, the most
important limitation of the VMD is the required explicit selection of the mode number and
balancing parameter in the decomposition, like in EWT but as opposed to EMD [11]. To
address the aforementioned shortcomings, scholars have carried out some very valuable
research. In the past few years, these studies mainly focused on the independence of
mode components and the selection of optimization indicators, among which kurtosis
and correlation coefficient are the most widely used in parameter optimization [12–15]. A
representative study is to construct the objective function by considering the kurtosis and
correlation coefficient of the envelope power spectrum [16].

The energy criterion was also widely used in parameter selection. The transient state
corresponds to the state of energy distribution deviating from the system, which means
that the pulse-like frequency characteristics can be measured by energy changes. The
varying features of the center frequency of extracted modes are thereby investigated [17,18],
with initial center frequencies, in which the converging U-shape phenomenon is found. In
the same direction, an energy-driven VMD method based on spectrum division and the
Gini index is proposed for the adaptive decomposition of rolling bearing fault signals [19].
Sparsity is a very useful concept that has become a research hotspot in the field of me-
chanical signal processing in recent years. Due to the introduction of compressed sensing,
sparse diagnosis has aroused the great interest of scholars. Since it can be assumed that
this corresponds to mechanical failure rather than normal behavior, the sparsity feature
can also be used to find and optimize VMD parameters [20]. However, it is still difficult to
characterize the fault attribute only by sparsity since the impulse behavior induced by local
damage of bearing is periodic fluctuation and attenuation oscillation. In view of this, some
research work has explored the strategy of multiple index fusion [21–23]. A permutation
entropy and orthogonality-based mode number adjusting procedure was conducted by [24].
Ref. [25] presented a parameter extraction method based on the characteristics of the in-
trinsic mode function. This method quantifies VMD results based on the comprehensive
consideration of permutation entropy, frequency domain extremum, kurtosis criterion
and energy loss coefficient. Recently, scholars suggested that the initial center frequency
and balancing parameter of reconstructed specific subcomponents could be determined
adaptively according to the dominant frequency of the remaining signals decomposed
by the previous iteration, making VMD an adaptive signal decomposition algorithm [26].
Although the above methods improve the VMD performance to some extent, they still
have shortcomings in maximizing the periodic pulse information because the bearing fault
impact signal consists of transient and fluctuation, and the existing research work only
focuses on the transient characteristics. Another important research topic of VMD for
bearing fault diagnosis is high-frequency mode noise elimination. This is different from
the general idea of noise elimination because the signal is in the high-frequency band, and
the waveform shows certain oscillations, while the noise component is attached to the
oscillation waveform, showing overall sparsity and smoothness. Therefore, after deeply
discussing the FE guided-VMD, we propose a neighborhood statistical de-noising (NSD)
method based on the second-generation wavelet transform (SGWT) and FE, which not only
considers the neighborhood statistical property but also makes full use of the oscillation
attenuation and tight support of the SGWT.

The contributions of this paper are mainly reflected in: (1) a new measure of fault
information called fluctuation entropy is constructed. This measure comprehensively
considers the transient and fluctuation attributes of fault impulse signals, which can lead
to a more reasonable decomposition of VMD. (2) We deduce a new NSD method based on
SGWT and FE, thereby highlighting the periodic impulses. Compared with the traditional
wavelet threshold method, the NSD algorithm using FE characteristics of the signal to
estimate non-Gaussian components makes comprehensive use of coefficient correlation
and impulse fluctuation statistics and has good universality and applicability, which can
better improve the detection performance of periodic impulses. (3) An enhanced bearing
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fault detection approach based on FE-guided VMD and NSD is proposed and compared
with related methods.

This paper is organized into the following sections: Section 2 presents the FE guided-
VMD method, including theoretical background, FE establishment using phase space and
fitness function construction. Section 3 describes the neighborhood statistical de-noising
method based on SGWT. Next, the method is validated on simulated signals in Section 4
and experimental data of bearing fault data set in Section 5. Finally, concluding remarks
are given in Section 6.

2. FE Guided-VMD

The VMD algorithm first assumes that each mode component uk has a different
center frequency and limited bandwidth and then uses the alternating direction multiplier
method to continuously update each mode and its center frequency to minimize the sum
of the estimated bandwidth of each component. Finally, each mode is demodulated to
the corresponding fundamental frequency band step by step so that the signal can be
effectively separated from low frequency to high frequency. The construction process of
the corresponding variational problem is as follows [10]:

min

{
∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

}
s·t·∑

k
uk = f (1)

Reconstruction constraints can be resolved in different ways. It is suggested to intro-
duce quadratic penalty function term and Lagrange operator for constraint. The augmented
Lagrange function is described as follows:

L(uk, ωk, λ) = α∑
k

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2
+

∥∥∥∥∥ f −∑
k

uk

∥∥∥∥∥
2

2

+

〈
λ, f −∑

k
uk

〉
(2)

The center frequency ωk does not appear in the reconstruction term but only in the
previous bandwidth. The relevant problem thus writes in the Fourier domain:

ωn+1
k = argmin

ωk

{∫ ∞

0
(ω−ωk)

2|ûk(ω)|2dω

}
(3)

Performing numerical calculations, the decomposition mode number k, balance pa-
rameter α and Lagrange multiplier λ̂ are specified in advance, and other original conditions
are initialized to zero. Subsequently, the mode ûn+1

k and center frequency ω̂n+1
k are updated

iteratively by Equations (4) and (5), respectively.

ûn+1
k ←

f̂ −∑i<k ûn+1
i −∑i>k ûn

i +
λ̂n

2

1 + 2α
(
ω−ωn

k
)2 (4)

ωn+1
k ←

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(5)

Dual ascent for all ω ≥ 0:

λ̂n+1 ← λ̂n + τ
(

f̂ − ûn+1
k

)
(6)

Until convergence:

∑k

∥∥∥ûn+1
k − ûn

k

∥∥∥2

2
/‖ûn

k ‖
2
2 < ε (7)

It can be seen from the above description that VMD needs to specify two important
parameters in advance: mode number k and balance parameter α. In fact, these two
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parameters have a great influence on vibration signal decomposition. For rolling bearings,
this requires that the parameters can well match the transient and fluctuating attributes of
the impact signal synchronously so as to obtain the mode component containing the most
fault information.

2.1. Fluctuation Entropy

Takens has proved that if m ≥ 2D + 1 is satisfied, where D is the dimension of
the manifold of the attractor, the phase space reconstruction can ensure that the internal
geometric structure of the prime mover corresponding to the time sequence remains
unchanged [27]. We know that the local attenuation fluctuation of impulse signals is
different from that of harmonic signals or white noise. The greater the fault degree is, the
stronger the fluctuation is. The number of data points deviating from the mean value in the
phase space is the specific standard of attenuation fluctuation. In view of this, we construct
FE to quantitatively evaluate the decomposed modes. The calculation process of FE is
briefly introduced as follows.

For any arbitrary time series {x(n), n = 1, 2, . . . N}, according to the phase space
reconstruction theorem, m-dimensional embedding matrix setting J = N − (m− 1)ς with
time delay ς is defined as:

X =


x(1) x(1 + ς) . . . x(1 + (m− 1)ς)
x(2) x(2 + ς) . . . x(2 + (m− 1)ς)
x(j) x(j + ς) . . . x(j + (m− 1)ς)

...
...

...
x(J) x(J + ς) . . . x(J + (m− 1)ς)

 (8)

Then, for each subsequence
{

x(j) x(j + ς) . . . x(j + (m− 1)ς)
}

of the reconstruc-
tion matrix, the mean values meanx(j) are calculated corresponding to each row in the
matrix X.

meanx(j) = mean
[
x(j) x(j + ς) . . . x(j + (m− 1)ς)

]
, j = 1, 2, . . . J (9)

We perform the following binary operations on the elements of each row, and the
binary digits are determined as:

SJ,h =

{
1, x(j) > meanx(j)
0, x(j) ≤ meanx(j)

(10)

Thus, the original phase space X is transformed into binary phase space X. After
binarization, we sum elements of each row in X and perform histogram processing to
enhance the distribution by the following expression:

Ph = hist(sum(SJ,h)) (11)

Consequently, the FE of a time series can be defined according to Shannon’s entropy
as follows:

HP,h = −∑ Ph ln(Ph) (12)

Meanwhile, if x(j) < meanx(j), we naturally get the following results:

SJ,l =

{
1, x(j) < meanx(j)
0, x(j) ≥ meanx(j)

(13)

and
HP,l = −∑ Pl ln(Pl) (14)
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For the sake of accuracy, the average form is usually used as follows:

HP = (HP,h + HP,l)/2 (15)

It can be seen from the above calculation process that m and ς are the two parameters
that need to be set for FE. According to the vibration character of rolling bearing with local
fault, we suggest that the value of m should be within the range of 6–9 so as to acquire
better robustness. Actually, FE not only considers the number of amplitude deviations
from the mean value but also incorporates the data distribution characteristics, so it can
effectively evaluate the impulse fluctuation and fault information. Compared with the
permutation entropy (PE), PE considers only the order of the amplitude values and hence
some information regarding the amplitudes may be discarded [28]. The case proof will be
provided in Section 5.1.

2.2. Fitness Function

The mean value of FE emphasizes the contribution of each mode component; the
resulting maximum mean value has properties of maximizing fault information in the time
and frequency domain. Therefore, the novel proposed FE is chosen as the basis of the
fitness function, which can be expressed as:

koptimal = argmax
k∈{2,...8}

{
∑k[1/FE(uk)]/k

}
(16)

It is not difficult to see from the above formula that when FE is smaller, the fault
information contained in the decomposition mode is more concentrated, thus effectively
avoiding the feature loss caused by the dispersion of fault information in multiple frequency
bands. The standard deviation reflects the dispersion degree between individuals in the
data set. The larger the standard deviation, the greater the difference between individuals,
that is, the more prominent the information characteristics of each mode component and
the better the decomposition effect of VMD. Therefore, we employ the standard deviation
of FE to find the optimal balancing parameter, as shown in the following formula:

αoptimal = argmax
α∈[100 4000]

√
∑k [FE(uk)−mean(FE(uk))]

2/k (17)

Furthermore, if the balance parameter is too large, the signal may lose the edge feature
or produce pulse omission; if the balance parameter is too small, the noise will be too large.
Using standard deviation as a measure can better juggle the impulse characteristics. After
achieving the optimal decomposition, considering both FE and kurtosis would provide a
more reliable mode selection process. The best mode component can then be found by:

ubest = { k|max[Ka(uk)/(FE(uk)− 1)]} (18)

where Ka is the kurtosis value, and ubest is the selected best mode. It can be seen that
the mode component selected by Equation (18) contains the signal property closest to the
impulse generated by the bearing fault. Therefore, this selection method can reduce the
interference of noise and aliasing signals.

2.3. Method Procedure

The specific implementation steps of the novel FE-guided VMD are as follows:
Step 1: Initialization of the input parameters. Without loss of generality, the balancing

parameter α is initialized as the mean value of 2000. The search scope of k is determined as
k ∈ {2, . . . 8}.

Step 2: Decompose the signal in sequence using the VMD method. Calculate FE
corresponding to each k value, respectively.
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Step 3: Determine the optimal decomposition number k according to Equation (16).
Step 4: Under the optimal k, run VMD with the input parameters α ∈ [100 : 100 : 4000]

to obtain the decomposed mode.
Step 5: Search the optimal α according to Equation (17). A pair will be chosen as the

final optimal k and α. Then extract the best decomposition mode through Equation (18),
and the FE guided-VMD will be used for further analysis.

3. Neighborhood Statistical De-Noising Method

Although the high-frequency modes extracted by the optimal VMD can well eliminate
the deterministic interference components, the random and uncertain noises still exist
and are generally sparse, oscillatory and smooth. Therefore, the subsequent de-noising
strategies must be thoroughly studied to enhance the fault characteristics.

Different from the classical wavelet transform, the SGWT is implemented based on
the lifting scheme according to data content [29,30], which is very suitable for mechanical
fault diagnosis. Ref. [31] proposed the following threshold scheme for wavelet de-noising.
If D2

j,n = d2
j,n−1 + d2

j,n + d2
j,n+1 is less than or equal to λ2, then the wavelet coefficient dj,n is

set to zero. Otherwise, it is set to

dj,n = dj,n

(
1− λ2

D2
j,n

)
(19)

Since the reconstruction of thresholded wavelet coefficients will be based on the true
nature of the impulses and local fluctuation details for signals with low SNR, it is necessary
to carefully determine λ from the perspective of statistical data modeling. In reality, many
problems in engineering diagnosis can be successfully solved by mathematical statistics.
The actual test signal inevitably contains noise, and we hope to recover the useful signal as
accurately as possible according to some criteria. The problem can be formulated as:

y = ω + n (20)

where y, ω and n represent noisy data, true data and noise, respectively.
In Bayesian statistical theory, maximum a posteriori (MAP) estimation is a classical

method. MAP estimation is to find the ω that maximizes the posterior probability density
under the condition of given observation data y:

_
ω(y) = argmax

ω

[
py|ω(y|ω ) · pω(ω)

]
= argmax

ω
[pn(y−ω) · pω(ω)]

(21)

When the noise is additive and independent, as in (20), the MAP estimator is given by:

_
ω(y) = argmax

ω
[log(pn(y−ω)) + log(pω(ω))] (22)

Let f (ω) = log(pω(ω)), when the noise is Gaussian distribution, the above formula
can be expressed as:

y−_
ω

σ2
n

+ f
′(_

ω
)
= 0 (23)

where σn denotes the standard deviation of the noise, which can be approximated using the
mean absolute deviation of the values in y. It is worth stating that pω(ω) should meet the
joint characteristics of sparsity, oscillation and spikes so as to effectively serve the purpose
of noise removal and fault-signal preservation. Next, we use the FE to write a new adaptive
Laplacian PDF to describe the structure of the fault signal, which can concurrently quantify
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the noise morphology and extract the periodic sparse components. The PDF of the best
failure mode is given by:

pω(ω) =
1

FE · σ exp
(
− FE · |ω|

σ

)
(24)

Here, FE stand for the fluctuation entropy of the input signal and σ denotes the
standard deviation of true data. Since the data is independent of noise, the estimate of the

noiseless data standard deviation is σ =
√

σ2
y − σ2

n . In addition, when the square root is
imaginary, σ is set to zero.

Consequently, f (ω) = − log(FE · σ)− FE · |ω|/σ and the threshold λ will be:

λ = FE · σ2
n/σ (25)

4. Simulation Experiment

The flow chart of the proposed method is illustrated in Figure 1. In this section, the
proposed method will be applied to simulation data, including periodic impulse component,
mixed AM-FM component and random noise. The simulated signal can be expressed as:

x(t) = H(t) + s(t) + n(t)
H(t) = ∑

k
Akh(t− 1/ f − λi)

h(t) = e−40t sin(2π500t)
s(t) = (1 + sin(2 π 15t)) cos(2 π 35t) + sin(2 π750t + sin(2 π 15t))
n(t) = 0.6 · rand(n)

(26)

where f = 10 Hz is the impulse interval frequency. Ak and λi, respectively, represent the
amplitude and phase of the impulse signal, and the sampling frequency is set to 2000 Hz.

As the massive implantation of noise interference, the sparseness and characteristic
frequency of signal impulse are gradually submerged in the noise and are becoming less
observable in Figure 2. After the optimal VMD processing with k = 3 and α = 500, it retains
a large amount of signal amplitude and highlights the periodic impulse waveform, which
makes it easier to identify the real impulse in the time domain and frequency domain, as
displayed in Figure 3a,b. Although the deterministic interference component is eliminated,
the impulse characteristics are still ambiguous due to the serious noise pollution, and the
high-order harmonic frequency of the envelope spectrum is partially lost. We further use
the NSD method to extract useful signals, and the results are shown in Figure 3c,d. It can be
seen that only a few distinguishable fake impulses remain in the de-noising results, and the
higher harmonic frequencies of the envelope spectrum are significantly enhanced, which is
very valuable for practical engineering diagnosis. For comparison, the same simulation
signal is analyzed by Minimum Entropy Deconvolution (MED) methods [32]. The results
of MED are shown in Figure 4. Due to the interference of AM-FM and random noise,
the periodicity can hardly be observed in the MED-filtered signal, and the characteristic
impulse frequencies of the envelope spectrum are also extremely weak.

The above results preliminarily prove the reliability of the proposed method, which
also shows that it is feasible to measure fault information from the perspective of impulse
fluctuation. From the results, the integrity of the time-domain periodic impulse and
envelope spectrum is well reflected. Especially, large noise is added in the simulation
experiment, and the impulse is very weak.



Appl. Sci. 2023, 13, 192 8 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 19 
 

{ }2000, 2, 8kα = ∈ 

optimalk
1k k= +

[ ]100 :100 : 4000α ∈

2 /nFEλ σ σ= ⋅
FE

2

, , 2
,

1j n j n
j n

d d
D
λ 

= −  
 

 
Figure 1. Flow chart of the proposed method. Figure 1. Flow chart of the proposed method.



Appl. Sci. 2023, 13, 192 9 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 19 
 

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

20 40 60 80 100
0

5

10

x 10
-3

0 0.5 1 1.5 2
-4

-2

0

2

4

50 100 150 200
0

0.01

0.02

0.03

0.04

 

Figure 2. Simulation signal. (a) Impulse component. (b) Envelope spectrum of impulse component. 

(c) Synthetic signal. (d) Envelope spectrum of the synthetic signal. 

0 0.5 1 1.5 2
-2

-1

0

1

2

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100
0

2

4

6

8
x 10

-3

A
m

pl
it

u
de

(g
)

Time(s)

Frequency(Hz)

(a) (b)

(c) (d)

A
m

pl
it

ud
e(

g
)

A
m

pl
it

ud
e(

g)
A

m
pl

it
ud

e(
g)

Frequency(Hz)

Time(s)  

Figure 3. (a) Extracted feature signal by optimal VMD. (b) Envelope spectrum of extracted feature 

signal. (c) De-noising signal. (d) Envelope spectrum of the de-noising signal. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-5

0

5

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

X: 15.01

Y: 0.03636
X: 30.06

Y: 0.01199

 

Figure 4. Filtering results of MED. (a) Time domain signal. (b) Envelope spectrum. 

  

Figure 2. Simulation signal. (a) Impulse component. (b) Envelope spectrum of impulse component.
(c) Synthetic signal. (d) Envelope spectrum of the synthetic signal.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 19 
 

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

20 40 60 80 100
0

5

10

x 10
-3

0 0.5 1 1.5 2
-4

-2

0

2

4

50 100 150 200
0

0.01

0.02

0.03

0.04

 

Figure 2. Simulation signal. (a) Impulse component. (b) Envelope spectrum of impulse component. 

(c) Synthetic signal. (d) Envelope spectrum of the synthetic signal. 

0 0.5 1 1.5 2
-2

-1

0

1

2

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100
0

2

4

6

8
x 10

-3

A
m

pl
it

u
de

(g
)

Time(s)

Frequency(Hz)

(a) (b)

(c) (d)

A
m

pl
it

ud
e(

g
)

A
m

pl
it

ud
e(

g)
A

m
pl

it
ud

e(
g)

Frequency(Hz)

Time(s)  

Figure 3. (a) Extracted feature signal by optimal VMD. (b) Envelope spectrum of extracted feature 

signal. (c) De-noising signal. (d) Envelope spectrum of the de-noising signal. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-5

0

5

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

X: 15.01

Y: 0.03636
X: 30.06

Y: 0.01199

 

Figure 4. Filtering results of MED. (a) Time domain signal. (b) Envelope spectrum. 

  

Figure 3. (a) Extracted feature signal by optimal VMD. (b) Envelope spectrum of extracted feature
signal. (c) De-noising signal. (d) Envelope spectrum of the de-noising signal.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 19 
 

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

20 40 60 80 100
0

5

10

x 10
-3

0 0.5 1 1.5 2
-4

-2

0

2

4

50 100 150 200
0

0.01

0.02

0.03

0.04

 

Figure 2. Simulation signal. (a) Impulse component. (b) Envelope spectrum of impulse component. 

(c) Synthetic signal. (d) Envelope spectrum of the synthetic signal. 

0 0.5 1 1.5 2
-2

-1

0

1

2

0 20 40 60 80 100
0

0.002

0.004

0.006

0.008

0.01

0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

0 20 40 60 80 100
0

2

4

6

8
x 10

-3

A
m

pl
it

u
de

(g
)

Time(s)

Frequency(Hz)

(a) (b)

(c) (d)

A
m

pl
it

ud
e(

g
)

A
m

pl
it

ud
e(

g)
A

m
pl

it
ud

e(
g)

Frequency(Hz)

Time(s)  

Figure 3. (a) Extracted feature signal by optimal VMD. (b) Envelope spectrum of extracted feature 

signal. (c) De-noising signal. (d) Envelope spectrum of the de-noising signal. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-5

0

5

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

X: 15.01

Y: 0.03636
X: 30.06

Y: 0.01199

 

Figure 4. Filtering results of MED. (a) Time domain signal. (b) Envelope spectrum. 

  

Figure 4. Filtering results of MED. (a) Time domain signal. (b) Envelope spectrum.



Appl. Sci. 2023, 13, 192 10 of 18

5. Bearing Fault Diagnosis
5.1. Case Study

The test signal used in this case comes from the rolling bearing fault test bench
(Figure 5) in the intelligent maintenance system (IMS) center [33]. The test bearings were
Rexnord za-2115 double-row bearings, and the shaft speed was fixed at 2000 rpm. The
radial load applied to the bearing was 26.7 kN. The sampling frequency was 20 KHZ. At
the end of the experiment, local defects were found on the outer race of bearing 1, and the
characteristic fault frequency of the outer race is fo = 236 Hz.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 19 
 

5. Bearing Fault Diagnosis 

5.1. Case Study 

The test signal used in this case comes from the rolling bearing fault test bench 

(Figure 5) in the intelligent maintenance system (IMS) center [33]. The test bearings were 

Rexnord za-2115 double-row bearings, and the shaft speed was fixed at 2000 rpm. The 

radial load applied to the bearing was 26.7 kN. The sampling frequency was 20 KHZ. At 

the end of the experiment, local defects were found on the outer race of bearing 1, and the 

characteristic fault frequency of the outer race is fo = 236 Hz. 

According to the research results on health monitoring and degradation assessment 

for the IMS bearing dataset in the literature [34,35], we give the measure values under 

four different fault conditions in Table 1. These four fault conditions occur at the time 

points around 5310 min, 6000 min, 6500 min and 7000 min, respectively, representing 

four increasing fault degrees. It is not difficult to see that FE increases in turn with the 

increase of fault degree, showing good monotonicity, while PE has poor monotonicity. 

This clearly proves that FE is very effective in measuring fault information. 

 

Figure 5. Rolling bearing experimental setup at IMS. 

Table 1. Measures under different fault conditions. 

Condition 1 2 3 4 

FE 1.9049 1.8867 1.7810 1.6414 

PE 6.2004 6.1112 6.1134 5.8567 

For early fault indication, Figure 6 provides the decomposition result of the original 

signal using the VMD method for optimal parameters with k  = 3,   = 800. As can be 

seen, the proposed VMD method successfully extracts the mode components, and the 

high-frequency mode component (u3) reveals a certain periodic impulse. Applying the 

NSD-based filtering, the result shown in Figure 7a clearly lets us notice the presence of 

the fault period (T = 1/236 s) and the significant noise reduction. In contrast, for this kind 

of sparse smooth signal, the Donoho threshold is very unsatisfactory, as shown in Figure 

7b. This is because the Donoho threshold [36–38] is often too large in engineering appli-

cations and lacks the morphology and statistical rules of bearing fault signals. 

Figure 5. Rolling bearing experimental setup at IMS.

According to the research results on health monitoring and degradation assessment
for the IMS bearing dataset in the literature [34,35], we give the measure values under
four different fault conditions in Table 1. These four fault conditions occur at the time
points around 5310 min, 6000 min, 6500 min and 7000 min, respectively, representing four
increasing fault degrees. It is not difficult to see that FE increases in turn with the increase
of fault degree, showing good monotonicity, while PE has poor monotonicity. This clearly
proves that FE is very effective in measuring fault information.

Table 1. Measures under different fault conditions.

Condition 1 2 3 4

FE 1.9049 1.8867 1.7810 1.6414
PE 6.2004 6.1112 6.1134 5.8567

For early fault indication, Figure 6 provides the decomposition result of the original
signal using the VMD method for optimal parameters with k = 3, α = 800. As can be
seen, the proposed VMD method successfully extracts the mode components, and the
high-frequency mode component (u3) reveals a certain periodic impulse. Applying the
NSD-based filtering, the result shown in Figure 7a clearly lets us notice the presence of the
fault period (T = 1/236 s) and the significant noise reduction. In contrast, for this kind of
sparse smooth signal, the Donoho threshold is very unsatisfactory, as shown in Figure 7b.
This is because the Donoho threshold [36–38] is often too large in engineering applications
and lacks the morphology and statistical rules of bearing fault signals.
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In addition, we make a comparative study to specially evaluate the advantages of
the optimal VMD method. In the conventional VMD method, the determination of mode
number and balance parameter is not considered to maximize the fault information. In this
case, the mode number is specified as k = 5, and the balance parameter adopts the arbitrary
value α = 800. Figure 8 shows the corresponding envelope spectrum of traditional VMD
decomposition. The first-order fault frequency can be identified through the spectrum,
but the amplitude of the fault frequency is smaller than that in Figure 7, and the higher
harmonic frequency cannot be clearly observed. Figure 9 shows the analysis results using
the fast spectral correlation (FSC) [39]. Although the first-order fault frequency can be
observed through the envelope spectrum of the filtered signal, a large number of interfer-
ence components around the cyclic frequency band make the peak value of the frequency
spectrum and the higher harmonics frequency very fuzzy. Therefore, the proposed method
exhibit promising superiority for fault information extraction and feature enhancement.
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5.2. Engineering Example

The test bench is ABLT-1A bearing fatigue testing machine used by bearing enterprises
to ensure product quality, as shown in Figure 10. ABLT-1B can test four bearings at a time,
and all four test bearings are 6309 type. The rotating speed of the shaft is 3000 r/min. The
acceleration sensor directly contacts the bearing outer race, and the sampling frequency
is 48 KHZ. The main parameters of bearing 6309 are a pitch diameter of 72.5 mm, a ball
diameter of 17.462 mm and a ball number of eight. According to the structural parameters,
the fault frequencies of the inner and outer races can be calculated as: fi = 248.171 HZ and
fo = 151.829 HZ.
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Figure 10. ABLT-1A test rig.

We typically analyze early fault signals during fatigue testing. Due to the vibration
superposition effect of multiple bearings and the strong interference generated by a testing
machine, it is basically difficult to obtain effective fault information at the early stage of
the fault. Then, the proposed method is employed to better the detection result. Figure 11
shows the decomposition results using the parameters with k = 6, α = 200. The mode u3
calculated by Equation (18) is selected as the sensitive mode to extract fault features. The
de-noising signal by NSD and local envelope spectrum is displayed in Figure 12. It can
be seen that the de-noising signal is considerably sparse and has a periodic structure in
which the fault cycle period of the inner race and modulation components induced by the
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rotation period is clearly visible on the waveform. It should be pointed out that since the
bearing inner race rotates with the shaft, when the inner race fails, the fault frequency fi will
be modulated by the rotation frequency fr, and obvious modulation will naturally occur
in the envelope spectrum. As shown in Figure 12, this modulation phenomenon is well
reflected in the time and frequency domains, thus verifying the reliability and accuracy of
the diagnosis results.
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Figure 13 shows the results of envelope spectrum analysis and MED processing.
It is not difficult to see that the traditional envelope spectrum struggles to display the
fault frequency doubling and modulation components. Similarly, MED is also difficult to
enhance the fault modulation component, and the frequency amplitude at the frequency
multiplication is relatively weak, which is not conducive to fault diagnosis compared with
the method proposed in this paper.
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To further verify the engineering practicability, subsequently, the proposed method
is applied to analyze another phase of the fatigue test. The optimal VMD decomposition
results with k = 5, α = 300 are displayed in Figure 14. The de-noising mode by the NSD
method and its local envelope spectrum is shown in Figure 15. We found the clear periodic
impulse signals in Figure 15a with regular intervals, which agree with the theoretical value
of the outer race fault. As expected, the fault frequency fo and its harmonic components
2fo, 3fo, 4fo, 5fo, etc., are also clearly displayed in the envelope spectrum, as shown in
Figure 15b. Therefore, it can be concluded that there is a local fault in the outer race, which
is very consistent with reality. In summary, the above analysis results objectively verify
the effectiveness of the proposed method to analyze vibration signals for fault feature
extraction and have good engineering application value.
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Figure 14. Test signal and decomposition results by FE-guided VMD.
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Figure 15. (a) De-noising signal by NSD. (b) Local envelope spectrum.

6. Conclusions

The impulsive signal induced by bearing failure always includes transient and fluc-
tuation features. However, the existing work on fluctuation research and application is
insufficient. Therefore, this paper reports FE to represent the coexistence of transient
and fluctuation inside faulty impulsive signatures and further proposes FE guided-VMD
method. Compared with the traditional method, it overcomes the dependence on prior
knowledge, such as frequency structure and the disadvantages of existing parameter se-
lection methods, while maximizing the fault information more effectively. Moreover, we
also study the noise elimination of the optimal mode and propose a new neighborhood
statistical de-noising (NSD) method based on the SGWT. Simulation and practical verifi-
cation show that this method can be well applied to this kind of sparse oscillation signal
de-noising problem.
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