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Abstract: In the current industry, steel–concrete composite beams are used in large-span bridges and
super-high-rise building structures due to their excellent overall performance. Concrete’s creep and
slip effects in the combined structure can adversely affect the structure, thus affecting the safe use of
bridges and buildings. It is necessary to study the mechanical properties of the combined structure
considering creep and slip. In order to further study the mechanical properties of steel–concrete
composite beams under creep–sliding coupling, in this study, based on the energy variational method
principle, the energy equation of a composite beam considering creep and slip coupling is established.
The second-order differential equation of the axial force of steel–concrete composite beams is derived
by introducing basic assumptions. The calculation formulas for the axial force, deflection, and slip
of simply-supported composite beams under different loads are obtained using different boundary
conditions. Then, the creep effect of composite beams is simulated using the creep criterion in the
ANSYS finite element software when the concrete material parameters change with time. The results
show that a simply-supported composite beam considering both slip and creep will have a significant
effect on the structure; the more strongly the studs constrain the concrete slab, the greater the adverse
effect of concrete creep on the combined beam. The formula derived in this paper is consistent with
the numerical simulation solution and is suitable for different creep and slip conditions. The research
results can provide a theoretical basis for the calculation of the axial force, deflection, and slip of
combined beams under uniform and concentrated loads in practical engineering considering slip
and creep.

Keywords: steel–concrete composite beam; axial force; deflection; interfacial slip; creep; variational
methods

1. Introduction

Concrete and steel are the two primary materials of modern bridge engineering struc-
tures. Concrete has the characteristics of being a locally available raw material and having a
lower cost and mature construction technology. It has been widely used in the construction
of highway bridges for a long time. Steel structures have the advantages of uniformity,
stability, light weight, industrialized production and assemblage, and recyclability. It is
also a material utilized in bridges around the world. Steel and concrete composite beam
structures can give full play to the performance of concrete and steel. Compared with con-
crete bridges, steel–concrete composite structure bridges are recyclable bridge structures.
Ordinary steel–concrete composite beam bridges include composite beam bridges, compos-
ite truss bridges, composite steel frame bridges, composite arch bridges, and composite
cable-stayed bridges [1].

The earliest research on the slip of composite beams originated in 1951. Newmark et al. [2]
assumed that concrete slabs and steel beams were elastic materials, and the load–slip curves
of shear connectors were linear. Based on this, the shear differential control equation at the
interface of composite beams was established, and the analytical equation of the deflection curve
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ignoring the lifting effect was obtained. Then, in 1974, Adekola et al. [3] established the series
solution of the deflection and in-plane stress equation of a concrete flange considering
partial interaction in the constitutive interface equation and proved that the deflection was
not affected by the interface interaction to a limited extent. In 1993, Girhammar et al. [4]
presented an approximate expression for the deflection of composite beam structures under
dynamic loading with partial interaction. In 1995, Oehlers et al. [5] discussed the influence
of partial interaction on the shear connection strength of composite beams and the strain
of steel beams. In 1999, Fabbrocino et al. [6] carried out a nonlinear numerical analysis of
the structural behavior of a composite beam structure considering interface slip under a
large bending moment by introducing the generalized relationship between the bending
moment and curvature of the section.

Research on the creep of composite beams began in 1990. Italian scholars Tarantino et al.
[7] studied the creep effect of composite beams with flexible shear connectors and proposed a
viscoelastic analysis method for steel–concrete composite beams with flexible shear connectors. In
1993, Dezi et al. [8,9] also proposed the viscoelastic analysis method of steel–concrete continuous
composite beams with flexible shear connectors and the variation in the redundant constraint
response with time, caused by the creep shrinkage of concrete members. In 1995, Gilbert et al. [10]
studied the time-dependent deformation of continuous beams under long-term loading due to the
cracking of negative moment concrete slabs and the creep and shrinkage of concrete and proposed
an analytical model. Finally, the measured results of full-scale experiments were in agreement
with the calculations. In 1995, Dezi et al. [11] established a relationship equation reflecting
the cooperative work between steel beams and concrete based on the viscoelastic analysis of
prestressed composite beams and considering the shrinkage and creep of concrete. Then, in 1996,
Dezi et al. [12] proposed a simplified time-varying analysis method for continuous composite
beams with flexible shear connectors subjected to static loads, supporting the settlement, shrinkage,
and prestress of concrete slabs. In 1997, Amadio et al. [13] proposed a simplified method for
calculating the influence of shrinkage and creep in steel–concrete composite beams with rigid or
flexible shear connections based on the age-adjusted effective modulus method. In 1997, Professor
Nie et al. [14] from Tsinghua University studied and analyzed the steel–concrete composite beam,
deduced the calculation formula of the long-term stress stiffness of concrete, and analyzed the
influence of concrete shrinkage deformation on the steel beam section. In 2001, Dezi et al. [15]
developed an analytical model for the shear-lag effect of composite beams with flexible shear
connections, considering concrete’s long-term performance, which was established using the
virtual work principle. In 2001, Zhou et al. [16] analyzed and deduced the calculation formula
for internal force redistribution and double constraints in steel–concrete composite beams under
the action of concrete shrinkage and creep. The concrete cracking in the negative moment zone
of a steel–concrete composite continuous girder bridge was analyzed and discussed through an
example. In 2003, Sheng et al. [17] established a formula for calculating the stress redistribution
of prestressed steel–concrete composite beams under creep and selected a T-beam example for
analysis. In 2003, Nie et al. [18] studied the degree of stiffness reduction in composite beams under
specific constraints considering the slip effect.

In 2003, Jiang et al. [19] defined the constitutive interface relation by the Goodman
elastic interlayer hypothesis and established the theoretical calculation equation of deflec-
tion and slip considering slip and shear effects according to the principle of minimum
potential energy and the variational method. In 2004, Wang et al. [20] analyzed and mea-
sured steel–concrete composite beams considering the shrinkage and creep effect and
the change in load structure in the construction process by using the effective modulus
method adjusted by age and the finite element analysis method, and they proposed a new
method to calculate the stress redistribution of steel–concrete composite beams under the
action of shrinkage and creep. In 2004, Qiu et al. [21] established a particular element to
consider the slip effect and a finite element analysis model of steel–concrete composite
beams under shrinkage and creep effects using the age-adjusted effective modulus method.
The long-term stress, deflection, and slip of steel–concrete composite beams were analyzed
and calculated. The calculation results were reliable and consistent with the actual values.
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The creep effects, and the structural stress and strain, were numerically calculated and
analyzed. In 2009, Fan et al. [22,23] studied the composite structure under shrinkage, creep,
and cracking. In 2010 and 2016, Nguyen et al. [24,25] analyzed composite beams’ linear and
nonlinear time correlation considering the creep and shrinkage effects of concrete flanges.
They gave accurate spatial and temporal discrete deflection solutions considering the slip
effect. In 2011, Miao et al. [26] considered the principle of minimum potential energy
and the Goodman elastic interlayer hypothesis, and the analytic equation for the stress,
deformation, and deflection of composite beam sections considering interlayer slip was
derived. In 2019, Ji et al. [27] studied the deflection calculation method of steel–concrete
composite beams. The research showed that when the stiffness of the shear connectors
was less than 1200 MPa, the additional deflection caused by the interlayer slip effect was
more extensive, and the influence on the total deflection was also more significant. The
influence of the slip effect on the deflection of composite beams should be considered, and
the smaller the shear stiffness, the greater the effect of interfacial slip on the deflection, so it
is necessary to consider the combined effects of both concrete creep and interfacial slip on
the combined beam.

There are many types of research on the finite element analysis of ordinary reinforced
concrete beams, but there are few types of research on steel–concrete composite beams.
The main reason is that many element forms exist in steel–concrete composite beams.
Therefore, different elements should be selected to simulate various element components
in steel–concrete structures, such as concrete, connectors, and steel beams. At the same
time, the slip between concrete and steel beams and the concrete cracking in the negative
moment zone of continuous composite beams should be considered. Therefore, most of
the tests focus less on theoretical analysis for the study of steel–concrete composite beams.
In 1997, Oven et al. [28] proposed a two-dimensional nonlinear finite element differential
method based on the principle of virtual work to simulate simply-supported beams and
continuous composite beams. In 1998, Salari et al. [29] proposed a new finite element
method for composite beam elements with an unknown force. The Hermitian interpolation
polynomial was used to cause the curvature to be linearly distributed, which reduced
the solution’s accuracy to a certain extent. Therefore, the force-based model was more
accurate than the displacement-based model. In 1999, Gattesco et al. [30] further proposed
a four-node element in which each node has three degrees of freedom in the composite
beam element. This assumption is different from other models in that the shear connector
transfer is considered to be discontinuous and to fit the actual engineering state better. In
2000, Ayoub et al. [31] established an inelastic element based on the hybrid method. They
analyzed the action of partially shear-connected composite beams under monotonic and
cyclic loads. The model assumes that the spring is located at the element’s end, and the
connection force is assumed to be linearly distributed within the element. In 2003, Qiu
et al. [32] adopted the double-layer beam element analysis method, which regards the
shear connector as a particular beam element. The two ends are rigidly connected with the
steel beam and concrete to ensure that the two are bent together. Fang et al. [33] used the
shear connector of the cantilever beam element to artificially increase the cross-sectional
area of the connector to avoid excessive vertical deformation between the steel beam and
the concrete slab. Wei [34] and others began to use spring elements to simulate shear
connectors. Concrete and steel beams use three-dimensional solid elements to analyze
composite beams’ deformation and elastic bearing capacity. In Miranda et al.’s work [35],
the viscoelastic response of four steel concrete composite beams affected by changing
environmental conditions was studied using a finite element model. The simulation results
were basically consistent with the current formula, proving the applicability of the finite
element model. In Sarfarazi et al. [36], the effects of crack separation and the bridge area
on the tensile behavior of concrete were studied experimentally and numerically through
the Brazilian tensile test. The visually observed failure process gained through numerical
Brazilian tests was found to be very similar to that obtained through the experimental tests.
Wang et al. [37] established a finite element model (FEM) of simply-supported composite
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slabs while considering the impacts of non-uniform shrinkage, cracking in the concrete,
and the creep of the concrete; then, the reliability of the FEM was verified against the
experimental data in the literature.

In summary, there are many experimental and theoretical studies on the slip problem
of composite beams and the creep problem of concrete, proving that the study of slip
and creep in the study of composite beams is very important. However, there are few
studies on coupled creep and slip effects in composite beams. Most of the articles that
have studied the creep of composite beams assume that the shear stiffness tends to infinity
and ignore the effect of slip, but the results calculated in this way are subject to error.
There is no formula for composite beams’ internal force and deformation considering the
coupling calculation. Therefore, based on reasonable assumptions, this paper establishes
and solves the second-order equilibrium differential equation of composite beams by using
the variational energy method and minimum potential energy principle and obtains the
calculation formulas for the axial force, deflection, and slip of composite beams under
different load conditions. Then, we use large-scale finite element ANSYS software to
perform slip and creep composite beam modeling analysis. The applicability of the formula
derived in this paper is proven by comparing the numerical simulation solution with the
analytical solution. This can provide a theoretical basis for the calculation of the axial
forces, deflections, and slips of combined beams under uniform and concentrated loads
considering slips and creep in practical engineering.

2. Coupling Analysis Considering the Slip and Creep Effect

The essence of the age-adjusted effective modulus method [13] is to use the integral
mean value theorem to transform the integral Equation (1) of creep calculation into an
algebraic equation that is convenient for calculation and to simplify the calculation while
ensuring the calculation accuracy by introducing the aging coefficient.

ε(t) =
σ(τ0)

E
[1 + φ(t, τ0)] +

1
E

∫ t

τ0

dσ(τ)

dτ
[1 + φ(t, τ0)]dτ (1)

where ε(t) is the strain at time t;
σ(τ0) is the instantaneous stress of concrete at time τ0;
φ(t, τ0) is the calculation of the concrete creep coefficient at loading age τ0 considering

age t;
σ(t) is the instantaneous stress of concrete at time t.
Because integral calculation is very inconvenient, the integral mean value theorem

is used to transform the more complex integral operation into an algebraic solution. The
accuracy of the calculation results depends on the division of the integral interval. The
two results will be infinitely close when the interval is divided into infinite hours.

It can be obtained from the integral mean value theorem that

ε(t) =
σ(τ0)

E
[1 + φ(t, τ0)] +

σ(t)− σ(τ0)

E
[
1 + φ

(
t, tξ

)]
(2)

In the formula, τ0 ≤ tξ ≤ t.

φ
(
t, tξ

)
=

∫ t
τ0

dσ(τ)
dτ φ(t, τ0)dτ

σ(t)− σ(τ0)
(3)

The introduction of the aging coefficient ρ(t, τ0) shows

φ
(
t, tξ

)
= ρ(t, τ0)φ(t, τ0) (4)

ρ(t, τ0) =

∫ t
τ0

dσ(τ)
dτ φ(t, τ0)dτ

[σ(t)− σ(τ0)]φ(t, τ0)
(5)
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ε(t) =
σ(τ0)

E
[1 + φ(t, τ0)] +

σ(t)− σ(τ0)

E
[1 + ρ(t, τ0)φ(t, τ0)] (6)

It can also be written as

ε(t) =
σ(t0)

E
[1 + φ(t, τ0)] +

σ(t)− σ(t0)

Eφ(t, τ0)
(7)

Eφ(t, τ0) =
E

1 + ρ(t, τ0)φ(t, τ0)
(8)

Here, Eφ(t, τ0) is the age-adjusted effective modulus.
Basic assumptions considering creep and slip in steel-concrete composite beams [38]

are as follows:

1. The concrete bridge deck and steel beam cross-sections are in accordance with the
plane section assumption, and the shear connectors are equivalent to uniform contin-
uous elastic media.

2. The stress–strain relationship between the steel beam and concrete in the whole stress
stage is linear, and the concrete is not cracked and spalls in the whole stress stage.

3. We ignore the steel–concrete composite beam lift phenomenon. Without considering
the transverse deformation, the curvatures of the concrete bridge deck and steel beam
are equal.

4. The influence of the shear-lag effect of the bridge deck on the deflection of the steel-
concrete composite beam is ignored.

Establishment and Solution of the Control Differential Equation
The definition of the creep coefficient in China’s Code for Design of Highway Re-

inforced Concrete and Prestressed Concrete Bridges and Culverts’ (JTG 3362-2018) [39]
is adopted.

φ(t, t0) = φ0 · βc(t0 − t) (9)

φ0 = φRH · β( fcm) · β(t0) (10)

φRH = 1 +
1− RH/RH0

0.46(h/h0)
1/3 (11)

β(fcm) =
5.3

( fcm/ fcm0)
0.5 (12)

β(t0) =
1

0.1 + (t0/t1)
0.2 (13)

βc(t− t0) =

[
(t− t0)/t1

βH + (t− t0)/t1

]0.3
(14)

βH = 150

[
1 +

(
1.2

RH
RH0

)18
]

h
h0

+ 250 ≤ 1500 (15)

where t0 is the concrete age at loading (d); t is the calculation of the concrete age at the time
of consideration (d);

φ(t, t0) is the loading age t0 used to calculate the concrete creep coefficient considering
age t;

φ0 is the nominal creep coefficient;
βc is the coefficient of creep development with time after loading;
fcm is the average cylinder compressive strength (MPa) of strength grade C25~C50

concrete at 28 d age, fcm = 0.8 fcu,k + 8MPa;
fcu,k is the age of 28 d, with a 95% guarantee rate of the concrete cube compressive

strength standard value (MPa);
βRH is the coefficient related to annual average relative humidity;
RH is the annual average relative humidity of the environment (%);
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h is the build’s theoretical thickness (mm), h = 2A/u, A is the build’s cross-sectional
area, and the u is build’s perimeter length in contact with the atmosphere.

RH0 = 100%;
h0 = 100 mm;
t1 = 1 d;
fcm0 = 10 MPa.
Then, the age-adjusted effective modulus method is used to consider the influence of

concrete creep, and the creep factor is introduced.

Eφ(t, t0) =
Ec(t0)

1 + ψtφ(t, t0)
(16)

In the formula, Eφ(t, t0) is the effective elastic modulus of concrete changing with time
at loading age t0; Ec(t0) is the elastic modulus of concrete at loading age t0; ψt is the creep
factor—namely, the simplified calculation of the aging factor ρ(t, τ0) according to China’s
Code for Design of Highway Steel Bridges under a permanent load to take 1.1; φ(t, t0)
is the creep coefficient of concrete when the loading age is t0, and the value of the creep
coefficient refers to the provisions of the Code for Design of Highway Reinforced Concrete
and Prestressed Concrete Bridges and Culverts.

Figures 1 and 2 provide a general sense of the steel–concrete composite beam in the
form of a transverse and longitudinal section diagram. Figure 3 shows an equivalent
illustration of the stud connection between the interfaces of the combined beams, where ks
is the stud stiffness.
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From Figures 1 and 2, the axial displacement of the bottom surface of the concrete slab
can be expressed as

.
uc = uc − (hc/2)θ (17)

The axial displacement of the top surface of the steel beam can be expressed as

.
us = us − (hs/2)θ (18)

The slip between the interfaces of composite beams can be written as

s =
.
uc −

.
us = uc − us + θd (19)

In Equation (19), d = (hc + hs)/2.
The strain energy equation of the composite beam is established:
Strain energy of steel beam:

Πs =
1
2

∫ l

0
(Es Asµs

′2 + Es Isw′′ 2)dx (20)

Strain energy of the concrete slab:

Πc =
1
2

∫ l

0
(Eφ Acµc

′2 + Eφ Icw′′ 2)dx (21)

Elastic interlayer slip’s strain energy as in Figure 3:

Πsc =
1
2

∫ l

0
ks[(µs − µc) + d · w′]2dx (22)

External load potential energy:

Πp =
∫ l

0
M(x)w′′ dx (23)

where Es is the elastic modulus of the steel beam; hs is the height of the I-shaped steel
beam; µs is the axial horizontal displacement of the steel beam; As is the section area of the
steel beam; Ec is the elastic modulus of concrete; hc is the height of the concrete slab; µc is
the axial horizontal displacement of concrete; Ac is the cross-sectional area of concrete; w
is the deflection of the composite beam; w′ is the corner θ; ks is the unit beam length slip
stiffness, ks = K/e, K is the single shear connector connection stiffness, and e is the shear
connector spacing.

Structural total potential energy equation:

Π = Πs + Πc + Πsc + Πp (24)
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Substitute Equations (20)–(23) into Equation (24) to obtain

Π = 1
2

∫ l
0 (Es Asµs

′2 + Es Isw′′ 2 + Ec Acµc
′2 + Eφ Icw′′ 2

+ks[(µs − µc) + d · w′]2)dx +
∫ l

0 M(x)w′′ dx
(25)

According to the principle of minimum potential energy, let δΠ = 0:

δΠ =
∫ l

0 (Es Asµs
′δµs

′ + Es Isw′′ δw′′ + Eφ Acµc
′δµc

′ + Eφ Icw′′ δw′′+
ks[(µs − µc) + d · w′]δ[(µs − µc) + d · w′] + M(x)δw′′ )dx = 0

(26)

The governing differential equations and boundary conditions can be obtained by
integral by parts for Equation (26):

EIw′′′ + M′(x)− ksd[(µs − µc) + d · w′] = 0
Es Asµs ′′ − ks[(µs − µc) + d · w′] = 0
Eφ Acµc ′′ + ks[(µs − µc) + d · w′] = 0

[EIw′′ + M(x)]δw′
∣∣∣∣ l

0
= 0

Es Asµs
′δµs

∣∣∣∣ l
0

= 0

Eφ Acµc
′δµc

∣∣∣∣ l
0

= 0

(27)

In Equation (27), EI = Es Is + Eφ Ic.
The second and third derivatives in Equation (27) can be obtained:

Es Asµs
′′′ − ks[(µs

′ − µc
′) + d · w′′ ] = 0 (28)

Eφ Acµc
′′′ + ks[(µs

′ − µc
′) + d · w′′ ] = 0 (29)

It can be known from the axial force balance condition that

N = Ns = −Nc = Es Asµs
′ = −Eφ Acµc

′ (30)

Substituting Equation (30) into Equation (28), we can obtain

N′′ − ks(
1

EA
)N − ksdw′′ = 0 (31)

In the formula, 1
EA = 1

Es As
+ 1

Eφ Ac
.

According to the relationship between the bending moment and curvature,

EIw′′ − Nd = M (32)

Substituting Equation (32) into Equation (31), we can obtain

N′′ − ks(
1

EA
+

d2

EI
)N = ks

d
EI

M (33)

This can be simplified to obtain

N′′ − ks

EA
(1 +

EAd2

EI
)N = ks

d
EI

M (34)

Simplifying Equation (34) by α2 = ks(1+β)
EA , β = EAd2

EI , γ = β
d(1+β)

, the governing
differential equation with axial force N as an unknown function can be obtained:

N′′ − α2N = α2γM (35)
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2.1. Analytical Solution of Axial Force

Axial force equation under uniform load:
Figure 4 shows the uniformly distributed load diagram established with the left

support as the origin and along the length of the beam in the X direction.
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Figure 4 shows that the bending moment equation of the simply-supported beam is

M(x) =
q
2

x(l − x), 0 ≤ x ≤ l (36)

By the boundary conditions x = 0, N = 0, when x = l, N = 0, the axial force equation
under a uniform load can be obtained by substituting Equation (36) into Equation (35) and
integrating them twice:

N(x) = γM(x) +
qγ

α2

{
cosh(α(L/2− x))

cosh(αL/2)
− 1
}

(37)

Axial force equation under concentrated load:
Figure 5 shows the concentrated load diagram established with the left support as the

origin and along the length of the beam in the X direction.
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Figure 5 shows that the bending moment equation of the simply-supported beam is

M(x) =

{
M1 = Px

2 , 0 ≤ x ≤ l/2
M2 = P(l−x)

2 , l/2 ≤ x ≤ l
(38)

By the boundary conditions x = 0, N = 0, when x = l, N = 0, substituting
Equations (39) and (40) into Equation (35) and integrating them twice, the equation of axial
force N under a uniform load can be obtained:

N1(x) = γM1 −
1
2

γPsinh(αx)
α cosh(αL/2)

(39)

N2(x) = γM2 −
1
2

γPsinh(α(L− x))
α cosh(αL/2)

(40)

2.2. Analytical Solution of Deflection

Deflection equation under uniform load:
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In the case of a known structural form and load, the deflection equation of (41) can be
obtained by twice the integral of the boundary conditions.

f (x) =
x M(x) + N(x)d

EI
dxdx (41)

The bending moment equation of the simply-supported beam can be seen in Figure 4.

M(x) =
q
2

x(l − x) , 0 ≤ x ≤ l (42)

By the boundary conditions x = 0, f = 0, when x = l, f = 0, and using Equations
(42), (41), and (35), the deflection f equation of the simply-supported beam under a uniform
load can be obtained as follows:

f = q
24EI(1+β)

(
x4 − 2lx3 + l3x

)
+

qγd
α4EI

(
cosh(α(l/2−x))

cosh(αl/2) − 1
)
+ qγd

2α2EI

(
lx− x2) (43)

Deflection equation under concentrated load:
The bending moment equation of the simply-supported beam can be seen in Figure 5:

M(x) =

{
M1 = Px

2 , 0 ≤ x ≤ l/2
M2 = P(l−x)

2 , l/2 ≤ x ≤ l
(44)

By the boundary conditions x = 0, f = 0, when x = l, f = 0, and using Equations (44),
(41), and (35), the deflection f equation of the simply-supported beam under a uniform
load can be obtained as follows:

f1 =
P
(
− 1

12 x3 + 1
16 l2x

)
EI(1 + β)

+
1
2

γdPx
α2EI

− 1
2

γdPsinh(αx)

α3 cosh
(

1
2 αL

)
EI

(45)

f2 =
P
(

1
12 x3 − 1

4 lx2 + 3
16 l2x− 1

48 l3
)

EI(1 + β)
+

1
2

Pγd(l − x)
α2EI

− 1
2

Pγdsinh(α(l − x))

α3EI cosh
(

1
2 αl
) (46)

2.3. Analytical Solution of Slip

According to the second item of (27),

Es Asµs
′′ − ks[(µs − µc) + d · w′] = 0 (47)

From Equations (19) and (30), S = us − uc + d · w′ and N′ = Es Asµs ′′ are substituted
into Equation (47):

S =
N′

ks
(48)

Slip equation under uniform load:
Substituting Equation (37) into Equation (48), the equation solution of slip under a

uniform load can be obtained:

S(x) =
γq
ksα

[
sinh(α(L/2− x))

cosh(αL/2)
− α(L/2− x)

]
(49)

Slip equation under concentrated load:
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Substituting Equations (39) and (40) into Equation (48), the equation solution of slip
under a concentrated load can be obtained:

S1(x) =
γP
ks

[
sinh(αL/2)

sinh(αL)
cosh(αx)− 1

2

]
(50)

S2(x) =
γP
ks

[
1
2
− sinh(αL/2)

sinh(αL)
cosh(α(L− x))

]
(51)

3. ANSYS Finite Element Software Modeling Analysis
3.1. Selection of Modeling Unit

In the ANSYS finite element software, the studs considering slip between composite
beam interfaces are simulated by the Combin39 spring element. The concrete slab and the
steel beam flange are simulated by solid elements Solid65 and Solid45, respectively, and
the steel beam web is simulated by plate element Plane42 (Figure 6) [40].
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3.2. Implicit Creep Method

The implicit creep analysis method supports the following elements: Plane42, Solide45,
Beam188, and Beam189.

In the implicit creep method, ANSYS uses the TBOPT command to select its own
equations in the software, such as the following.

(1) TBOPT = 1 Initial creep equation

εcr = C1σC2 εcr
C3 e−C4/T (52)

(2) TBOPT = 6 Initial creep equation

εcr = C1σC2 εcr
C3+1e−C4/T/(C3 + 1) (53)

(3) TBOPT = 11 Initial creep equation + second-order creep equation

εcr = C1σC2 tC3+1e−C4/T/(C3 + 1) + C5σC6 te−C7/T (54)

According to the 11th calculation formula of the implicit creep equation, when
TBOPT = 11,

εcr = C1σC2 tC3+1e−C4/T/(C3 + 1) + C5σC6 te−C7/T (55)

where εcr is the equivalent creep strain and σ is the equivalent stress.
It can be seen from the Dischinger algorithm that

dε(t,t0)

dt
=

1
Ec(t0)

·
dσ(t0)

dt
+

σ(t0)

Ec(t0)
·
dφ(t,t0)

dt
(56)
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For structures under a constant load dσ(t0)
= 0, Equation (56) can be changed to

dε(t,t0)
dt =

σ(t0)
Ec(t0)
·

dφ(t,t0)
dt .

That is,
.
εcr =

σ0

Ec
·
dφ(t0)

dt
(57)

Derivation of Equation (55):

.
εcr = C1·σC2 ·tC3 ·e−C4/T + C5σC6 e−C1/T (58)

Let C2 = 1, C3 = 0, C4 = 0, C5 = 0, and the constant load σ = σ0; then, Equation (58) can
be expressed as follows:

.
εcr = C1σ0 (59)

From Equations (57) and (59),{
C11 = φ1

t1
1

EC

C1i =
φi−φi−1
ti−ti−1

1
EC

, i ≥ 2
(60)

In the formula, φi is the creep coefficient at time i.
In comparison, the implicit method is more convenient and accurate, so this paper

adopts the implicit method to simulate shrinkage and creep.

4. Analysis of the Result
4.1. Example Model

The specific section size and parameters of the composite beam are shown in Figure 6
below. The span of the simply-supported beam is 10 m; the concrete slab is C30 concrete,
the elastic modulus Ec = 30 GPa, and Poisson’s ratio µ = 0.2. The steel is HPB300, elastic
modulus Es = 210 GPa; the average ambient humidity PH = 30%, concrete loading age
t0 = 7 d, every 20 d to calculate the concrete creep coefficient at dt = 20 d, a total of 407
d. The calculated stiffness of a 19-mm-diameter stud commonly used in engineering is
52,396 N/mm, as calculated by the Chinese Structural Steel Design Code. For ease of
calculation, this paper selects the calculated stiffness of stud connectors K = 5 × 104 N/mm,
stud spacing e = 100 mm, as shown in Figure 7.
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Figure 7. Section size and parameters of composite beam.

Figure 8 shows a schematic diagram of the composite beam under uniform and
concentrated loads. The span of the simply-supported composite beam is 10 m, the uniform
load is 50 kN/m, and the concentrated load is 500 kN.
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Figure 9 shows the time-varying creep coefficient obtained by using the calculation
method of the creep coefficient in China’s Code for Design of Highway Reinforced Concrete
and Prestressed Concrete Bridges and Culverts.
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Figure 10 is the modeling graph obtained in the ANSYS software. Due to the symmetry
of the structural load, a 1/2 structure is adopted to reduce the calculation amount. In the
ANSYS output results, the deflection and slip are equivalent to the original structure, and
the axial force needs to be multiplied by two times the coefficient.

Figures 11 and 12 are the stress nephograms of the simply-supported composite beam
on the 0th day and 407th day under a uniform load, respectively. It can be clearly seen
from the diagram that the stress at the mid-span of the simply-supported composite beam
is the largest. The maximum stress in the mid-span on the 0th day is 255.551 MPa, and the
maximum stress on the 407th day increases to 301.041 MPa, an increase of 17.8%.

Figures 13 and 14 are the stress nephograms of the simply-supported composite beam
on the 0th day and 407th day under a concentrated load, respectively. It can be clearly seen
from the diagram that the stress at the mid-span of the simply-supported composite beam
is the largest. The maximum stress in the mid-span on the 0th day is 510.813 MPa, and the
maximum stress on the 407th day increases to 603.365 MPa, an increase of 18.1%.

4.2. Comparison of Axial Force under Different Load Situations

The comparative analysis of axial force mainly analyzes the axial force of the concrete
slab and steel beam. We take the axial force at the mid-span section for the comparative
analysis. Due to the structural balance, it can be seen that the axial forces of the concrete
slab and steel beam are equal but opposite.

In Table 1, the axial forces in the span of the combined beam with time for different
load forms and different calculation methods are listed.
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Table 1. Comparison of axial forces under different loads (kN).

Time/d
Simulated Calculation Value Values Calculated

Error 1 Error 2Uniformly
Distributed Load Point Load Uniformly

Distributed Load Point Load

7 1189.13 2045.54 1189.85 2045.45 0.06% 0.00%
27 1139.33 1953.53 1146.99 1988.02 0.67% 2.09%
47 1126.02 1929.50 1130.03 1960.89 0.35% 1.89%
67 1116.20 1911.73 1118.80 1942.76 0.23% 1.83%
87 1108.33 1897.53 1110.37 1929.11 0.18% 1.82%
107 1101.76 1885.73 1103.64 1918.20 0.17% 1.85%
127 1096.15 1875.69 1098.09 1909.15 0.18% 1.88%
147 1091.27 1866.97 1093.37 1901.47 0.19% 1.92%
167 1086.96 1859.32 1089.30 1894.83 0.21% 1.97%
187 1083.13 1852.68 1085.73 1889.01 0.24% 2.01%
207 1079.69 1846.55 1082.58 1883.85 0.27% 2.05%
227 1076.57 1841.03 1079.75 1879.23 0.29% 2.10%
247 1073.74 1836.01 1077.21 1875.06 0.32% 2.14%
267 1071.15 1831.42 1074.90 1871.29 0.35% 2.17%
287 1068.77 1827.22 1072.80 1867.84 0.38% 2.21%
307 1066.57 1823.34 1070.87 1864.68 0.40% 2.25%
327 1064.53 1819.75 1069.09 1861.77 0.43% 2.27%
347 1062.72 1816.42 1067.45 1859.08 0.44% 2.31%
367 1060.96 1813.33 1065.93 1856.59 0.47% 2.34%
387 1059.30 1810.43 1064.51 1854.27 0.49% 2.37%
407 1057.76 1807.72 1063.19 1852.10 0.51% 2.40%

Note: Error 1 is under uniform load; Error 2 is under concentrated load.

From the comparison of the axial forces in Table 1, we can clearly see that with increas-
ing time, the axial force of the concrete slab (steel beam) decreases gradually due to the
creep effect under both a uniform load and a concentrated load. Comparing the calculated
value of the analysis formula with the ANSYS finite element simulation calculation value,
we can see that the error between the two increases with time, but the maximum error is
only 2.4%.

Figure 15 shows the variation curves of the axial force in the concrete slab of the
mid-span section of the composite beam calculated by the ANSYS finite element software,
considering the change in creep with time. It can be seen that when the loading age is 7 d
under a uniform load, the axial force in the concrete slab (steel beam) is 1189.13 kN, and
the axial force is reduced to 1057.76 kN at 407 d, which is reduced by approximately 11 %.
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When the loading age is 7 d under a concentrated load, the axial force in the concrete slab
(steel beam) is 2045.54 kN, and the axial force is reduced to 1807.72 kN at 407 d, which is
reduced by approximately 11.6%.
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Figure 16. (a) Mid-span axial diagram under uniform loads in MATLAB. (b) Mid-span axial diagram 
under point loads in MATLAB. 

Figure 17 compares the axial force curves in the concrete slab under the two methods. 
From the diagram, the trend of the curves calculated by the two methods is the same, and 
the curves of the two methods coincide in the case of a uniform load. In the case of a 
concentrated load, the curve’s trend is the same, but there are some minor errors. The 
error range is within 2.4% from the above table. 

Figure 15. (a) Mid-span axial force diagram under uniform loads in ANSYS. (b) Mid-span axial force
diagram under point loads in ANSYS.

Figure 16 shows the curves of the axial force in the concrete slab of the composite
beam’s mid-span section, considering the change in creep with time, calculated using the
formula derived by the MATLAB software. It can be seen that when the loading age is 7 d
under a uniform load, the axial force in the concrete slab (steel beam) is 1189.85 kN, and
the axial force is reduced to 1063.19 kN at 407 d, which is reduced by approximately 10.6 %.
When the loading age is 7 d under a concentrated load, the axial force in the concrete slab
(steel beam) is 2045.45 kN, and the axial force is reduced to 1852.10 kN at 407 d, which is
reduced by approximately 9.45%.
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Figure 16. (a) Mid-span axial diagram under uniform loads in MATLAB. (b) Mid-span axial diagram 
under point loads in MATLAB. 

Figure 17 compares the axial force curves in the concrete slab under the two methods. 
From the diagram, the trend of the curves calculated by the two methods is the same, and 
the curves of the two methods coincide in the case of a uniform load. In the case of a 
concentrated load, the curve’s trend is the same, but there are some minor errors. The 
error range is within 2.4% from the above table. 

Figure 16. (a) Mid-span axial diagram under uniform loads in MATLAB. (b) Mid-span axial diagram
under point loads in MATLAB.

Figure 17 compares the axial force curves in the concrete slab under the two methods.
From the diagram, the trend of the curves calculated by the two methods is the same, and
the curves of the two methods coincide in the case of a uniform load. In the case of a
concentrated load, the curve’s trend is the same, but there are some minor errors. The error
range is within 2.4% from the above table.
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Figure 17. (a) Comparison diagram of mid-span axial force under uniform loads. (b) Comparison 
diagram of mid-span axial force under point loads. 

It can be seen that the formula for calculating the internal axial force of composite 
beams considering creep and slip coupling derived in this paper is basically consistent 
with the results obtained by the ANSYS finite element software simulation, which proves 
the correctness of the derivation results and finite element simulation. 
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Figure 17. (a) Comparison diagram of mid-span axial force under uniform loads. (b) Comparison
diagram of mid-span axial force under point loads.

It can be seen that the formula for calculating the internal axial force of composite
beams considering creep and slip coupling derived in this paper is basically consistent with
the results obtained by the ANSYS finite element software simulation, which proves the
correctness of the derivation results and finite element simulation.

4.3. Comparison of Deflection under Different Load Situations

Due to the simply-supported beam that we selected, for the comparative deflection
analysis, we selected the maximum deflection—that is, the mid-span analysis—and could
observe the influence of slip and creep on the deflection.

In Table 2, the spanwise deflections of the combined beams with time for different
load forms and different calculation methods are listed.

Table 2. Comparison of deflection under different loads (mm).

Time/d
Simulated Calculation Value Values Calculated

Error 1 Error 2Uniformly
Distributed Load Point Load Uniformly

Distributed Load Point Load

7 31.5 50.86 31.11 50.38 1.24% 0.95%
27 38.62 61.86 37.50 60.62 2.98% 2.05%
47 39.95 63.96 38.55 62.28 3.64% 2.70%
67 40.78 65.27 39.20 63.31 4.04% 3.10%
87 41.38 66.22 39.67 64.06 4.31% 3.37%
107 41.84 66.96 40.04 64.65 4.50% 3.58%
127 42.22 67.56 40.34 65.12 4.66% 3.74%
147 42.54 68.06 40.59 65.52 4.80% 3.87%
167 42.81 68.49 40.81 65.87 4.90% 3.98%
187 43.05 68.86 41.00 66.17 5.01% 4.07%
207 43.26 69.19 41.16 66.43 5.10% 4.16%
227 43.44 69.48 41.31 66.66 5.16% 4.23%
247 43.61 69.75 41.44 66.87 5.24% 4.31%
267 43.76 69.98 41.56 67.06 5.30% 4.36%
287 43.89 70.2 41.67 67.23 5.33% 4.42%
307 44.02 70.39 41.77 67.39 5.40% 4.46%
327 44.13 70.57 41.86 67.53 5.43% 4.50%
347 44.23 70.73 41.94 67.66 5.46% 4.53%
367 44.33 70.89 42.02 67.79 5.50% 4.58%
387 44.42 71.03 42.09 67.90 5.54% 4.61%
407 44.51 71.16 42.16 68.01 5.58% 4.64%

Note: Error 1 is under uniform load; Error 2 is under concentrated load.

From Table 2, we can see that with increasing time, considering the change in the slip
effect with time, the deflection of the mid-span section of the composite beam gradually
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increases. The difference between the results calculated by the two methods under uniform
and concentrated loads is 5.58%.

Figure 18 shows the deflection curves of the mid-span section of the composite beam
considering the creep change with time calculated in the ANSYS finite element software. It
can be seen that when the loading age is 7 d under a uniform load, the mid-span deflection
of the composite beam is 31.5 mm, and the deflection increases to 44.51 mm at 407 d, an
increase of approximately 41.3%. When the loading age is 7 d under a concentrated load,
the mid-span deflection of the composite beam is 50.86 mm, and the deflection increases to
71.16 mm at 407 d, an increase of approximately 39.91%.
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Figure 18. (a) Mid-span deflection under uniform loads in ANSYS. (b) Mid-span deflection under 
point loads in ANSYS. 

Figure 19 shows the deflection curves of the mid-span section of the composite beam 
considering the change in creep with time calculated by the formula derived by the 
MATLAB software. It can be seen that when the loading age is 7 d under a uniform load, 
the deflection of the composite beam is 31.11 mm, and the deflection increases to 42.16 
mm at 407 d, an increase of approximately 35.5 %. When the loading age is 7 d under a 
concentrated load, the deflection of the composite beam is 50.38 mm, and the deflection 
increases to 68.01 mm at 407 d, an increase of approximately 34.99 %. 

Figure 18. (a) Mid-span deflection under uniform loads in ANSYS. (b) Mid-span deflection under
point loads in ANSYS.

Figure 19 shows the deflection curves of the mid-span section of the composite
beam considering the change in creep with time calculated by the formula derived by
the MATLAB software. It can be seen that when the loading age is 7 d under a uniform
load, the deflection of the composite beam is 31.11 mm, and the deflection increases to
42.16 mm at 407 d, an increase of approximately 35.5 %. When the loading age is 7 d under
a concentrated load, the deflection of the composite beam is 50.38 mm, and the deflection
increases to 68.01 mm at 407 d, an increase of approximately 34.99 %.
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Figure 19. (a) Mid-span deflection under uniform loads in MATLAB. (b) Mid-span deflection under 
point loads in MATLAB. 

Figure 20 shows the comparison of the deflection curves of the mid-span section of 
the composite beam under the two methods. It can be clearly seen from the figure that the 
trends of the curves calculated by the two methods under a uniform load and concen-
trated load are the same, but there are some minor errors. The error range is within 5.58% 
from the above table. 
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Figure 20. (a) Comparison diagram of mid-span deflection under uniform loads. (b) Comparison 
diagram of mid-span deflection under point loads. 

It can be seen that the formula for calculating the deflection of composite beams con-
sidering creep and slip coupling is also basically consistent with the results obtained by 
the ANSYS finite element software simulation. 

4.4. Comparison of Slip under Different Load Situations 
Since the slip at the end of the support is the largest among the simply-supported 

composite beams, we compare the slip at the end of the composite beam with the time. 
In Table 3, the beam end slips of the combined beam with time for different load 

forms and different calculation methods are listed. 

Table 3. Comparison of slip under different loads (mm). 

Time/d Simulated Calculation Value Simulated Calculation Value Error 1 Error 2 

Figure 19. (a) Mid-span deflection under uniform loads in MATLAB. (b) Mid-span deflection under
point loads in MATLAB.

Figure 20 shows the comparison of the deflection curves of the mid-span section of
the composite beam under the two methods. It can be clearly seen from the figure that the
trends of the curves calculated by the two methods under a uniform load and concentrated
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load are the same, but there are some minor errors. The error range is within 5.58% from
the above table.
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Figure 19. (a) Mid-span deflection under uniform loads in MATLAB. (b) Mid-span deflection under 
point loads in MATLAB. 
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Figure 20. (a) Comparison diagram of mid-span deflection under uniform loads. (b) Comparison 
diagram of mid-span deflection under point loads. 

It can be seen that the formula for calculating the deflection of composite beams con-
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Figure 20. (a) Comparison diagram of mid-span deflection under uniform loads. (b) Comparison
diagram of mid-span deflection under point loads.

It can be seen that the formula for calculating the deflection of composite beams
considering creep and slip coupling is also basically consistent with the results obtained by
the ANSYS finite element software simulation.

4.4. Comparison of Slip under Different Load Situations

Since the slip at the end of the support is the largest among the simply-supported
composite beams, we compare the slip at the end of the composite beam with the time.

In Table 3, the beam end slips of the combined beam with time for different load forms
and different calculation methods are listed.

Table 3. Comparison of slip under different loads (mm).

Time/d
Simulated Calculation Value Simulated Calculation Value

Error 1 Error 2Uniformly
Distributed Load Point Load Uniformly

Distributed Load Point Load

7 0.7800 0.9901 0.8182 1.0323 4.67% 4.09%
27 0.7696 0.9450 0.7952 0.9853 3.22% 4.09%
47 0.7622 0.9324 0.7844 0.9695 2.82% 3.82%
67 0.7567 0.9236 0.7771 0.9591 2.63% 3.70%
87 0.7522 0.9167 0.7716 0.9513 2.52% 3.63%
107 0.7484 0.9110 0.7673 0.9451 2.46% 3.61%
127 0.7452 0.9062 0.7637 0.9400 2.42% 3.59%
147 0.7424 0.9021 0.7606 0.9356 2.39% 3.58%
167 0.7399 0.8985 0.7579 0.9319 2.38% 3.58%
187 0.7376 0.8953 0.7556 0.9286 2.38% 3.59%
207 0.7356 0.8925 0.7535 0.9258 2.38% 3.59%
227 0.7338 0.8899 0.7517 0.9232 2.38% 3.60%
247 0.7322 0.8876 0.7500 0.9208 2.38% 3.61%
267 0.7307 0.8855 0.7485 0.9187 2.38% 3.62%
287 0.7293 0.8835 0.7471 0.9168 2.39% 3.63%
307 0.7280 0.8817 0.7459 0.9151 2.40% 3.65%
327 0.7269 0.8802 0.7447 0.9134 2.39% 3.64%
347 0.7258 0.8786 0.7436 0.9120 2.40% 3.66%
367 0.7248 0.8772 0.7426 0.9106 2.40% 3.66%
387 0.7238 0.8759 0.7417 0.9093 2.41% 3.67%
407 0.7229 0.8746 0.7408 0.9081 2.42% 3.69%

Note: Error 1 is under uniform load; Error 2 is under concentrated load.

Table 3 shows that the slip at the end of the composite beam decreases with time,
whether under a uniform or concentrated load. The maximum error between the calculated
value of the formula and the simulated value is 4.67%.
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Figure 21 shows the curves of the slip size of the composite beam end calculated in
the ANSYS finite element software, considering the creep change with time. It can be
seen that when the loading age is 7 d under a uniform load, the end slip of the composite
beam is 0.7800 mm, and the slip is reduced to 0.7229 mm at 407 d, which is reduced by
approximately 7.32%. When the loading age is 7 d under a concentrated load, the end slip
of the composite beam is 0.9901 mm, and the slip is reduced to 0.8746 mm at 407 d, which
is reduced by approximately 11.67%.
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Figure 21. (a) Beam end slip under uniform loads in ANSYS. (b) Beam end slip under different loads 
in ANSYS. Figure 21. (a) Beam end slip under uniform loads in ANSYS. (b) Beam end slip under different loads
in ANSYS.

Figure 22 shows the curves of the slip size of the composite beam end considering the
change in creep with time calculated by the formula derived by the MATLAB software. It
can be seen that when the loading age is 7 d under a uniform load, the slip of the composite
beam end is 0.8182 mm, and the slip decreases to 0.7408 mm at 407 d, which is reduced by
approximately 9.46%. When the loading age is 7 d under a concentrated load, the slip of
the composite beam end is 1.0323 mm, and the slip decreases to 0.9081 mm at 407 d, which
is reduced by approximately 12.03%.
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Figure 22. (a) Beam end slip under uniform loads in MATLAB. (b) Beam end slip under point loads
in MATLAB.

Figure 23 shows the comparison of the slip curves of the composite beam end under the
two methods. From the diagram, we can clearly see that the trend of the curves calculated
by the two methods is the same, whether under a uniform load or concentrated load, but
there are some minor errors. The error range is within 4.67% from the above table.
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4.5. Comparison of Axial Force, Deflection, and Slip of Composite Beams under Different Stud
Stiffness Levels

With the remaining factors of the example model unchanged, the stud stiffness is
changed to K1 = 2× 104 N/mm, K2 = 5× 104 N/mm and K3 = 1× 105 N/mm. The
change in stud stiffness causes a change in interface slip between the composite beams.
At this time, the changes in the axial force, deflection, and slip of composite beams with
different stud stiffness levels under a uniform load are analyzed.

In Table 4, the axial forces in the span of the combined beam at day 7 and day 407 of
loading are listed for different stud stiffnesses and different calculation methods.

Table 4. Comparison of axial force of composite beams with different stud stiffnesses (kN).

Time/d
Simulated Calculation Value Values Calculated

Error 1 Error 2 Error 3K1 = 2× 104

N/mm
K2 = 5× 104

N/mm
K3 = 1× 105

N/mm
K1 = 2× 104

N/mm
K2 = 5× 104

N/mm
K3 = 1× 105

N/mm

7 1023.35 1189.13 1254.24 1024.12 1189.85 1254.84 0.08% 0.06% 0.05%
407 950.79 1057.76 1097.51 949.62 1063.19 1105.25 0.12% 0.51% 0.71%

value −72.56 −131.37 −156.73 −74.5 −126.66 −149.59

Note: Error 1: between numerical solution and formula solution under stiffness of studs K1; Error 2: between
numerical solution and formula solution under stiffness of studs K2; Error 3: between numerical solution and
formula solution under stiffness of studs K3.

Table 4 shows that regardless of the type of stud stiffness, the maximum error between
the calculated value and the numerical simulation value is 0.71%. With the increase in
stud stiffness, the axial force decreases more in the same creep time under the formula
calculation results, which are 72.56 kN, 131.37 kN, 156.73 kN, respectively. The change rate
is 7.09%, 11.05%, and 12.50%.

In Table 5, the span deflections of the combined beam at day 7 and day 407 of loading
are presented for different stud stiffnesses and different calculation methods.

Table 5 shows that regardless of the stud stiffness, the maximum error between the
calculated and numerical simulation values is 5.65%. With the increase in stud stiffness,
the deflection increases more in the same creep time under the formula calculation results,
which are 11.92 mm, 13.01 mm, and 13.57 mm, respectively. The change rate is 31.97%,
41.30%, and 46.60%.

In Table 6, the beam end slips are listed for different stud stiffnesses and different
calculation methods at 7 d and 407 d of loading are presented.
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Table 5. Comparison of deflection of composite beams with different stud stiffnesses (mm).

Time/d
Simulated Calculation Value Values Calculated

Error 1 Error 2 Error 3K1 = 2× 104

N/mm
K2 = 5× 104

N/mm
K3 = 1× 105

N/mm
K1 = 2× 104

N/mm
K2 = 5× 104

N/mm
K3 = 1× 105

N/mm

7 37.29 31.50 29.12 36.91 31.11 28.73 1.02% 1.24% 1.34%
407 49.21 44.51 42.69 46.97 42.16 40.28 4.55% 5.28% 5.65%

value 11.92 13.01 13.57 10.06 11.05 11.55

Note: Error 1: between numerical solution and formula solution under stiffness of studs K1; Error 2: between
numerical solution and formula solution under stiffness of studs K2; Error 3: between numerical solution and
formula solution under stiffness of studs K3.

Table 6. Comparison of slip of composite beams with different stud stiffnesses (mm).

Time/d
Simulated Calculation Value Values Calculated

Error 1 Error 2 Error 3K1 = 2× 104

N/mm
K2 = 5× 104

N/mm
K3 = 1× 105

N/mm
K1 = 2× 104

N/mm
K2 = 5× 104

N/mm
K3 = 1× 105

N/mm

7 1.6644 0.7800 0.4290 1.7038 0.8182 0.4442 2.37% 4.90% 3.54%
407 1.5836 0.7229 0.3841 1.5959 0.7408 0.3964 0.78% 2.48% 3.20%

value −0.0808 −0.0571 −0.0249 −0.1079 −0.0774 −0.0478

Note: Error 1: between numerical solution and formula solution under stiffness of studs K1; Error 2: between
numerical solution and formula solution under stiffness of studs K2; Error 3: between numerical solution and
formula solution under stiffness of studs K3.

As can be seen from Table 6, the maximum error between the calculated and numeri-
cally simulated values is 4.90%, regardless of the stud stiffness. With the increase in the
stud stiffness, the decrease in the slip of the equation calculated for the same creep time is
smaller, at 0.0808 mm, 0.0571 mm, and 0.0249 mm, respectively, and the rate of change is
4.85%, 7.32%, and 10.47%.

In summary, the existence of slip and creep in composite beams significantly affects
the axial force, deflection, and slip of composite beams. The formula solution derived in
this paper is basically consistent with the finite element simulation value and is suitable for
the solution under different creep and slip effects.

5. Conclusions

1. When considering the creep effect of the combined beam at the same stud stiffness,
the axial force of the concrete slab inside the combined beam was reduced by around
11.0–11.6%, and the slip was reduced by 7.32–11.67% at 407 d. However, the deflection
of the combined beam increased by 39.91–41.3%, so the concrete creep effect reduces
the flexural stiffness of the combined structure, increases the deformation of the
combined beam, and adversely affects the combined structure.

2. The stud stiffness is an important factor affecting the long-term performance of
steel–concrete composite beams. The stud stiffness was varied from 2000 N/mm to
10,000 N/mm, with other parameters unchanged. The change in axial force in the
combined beam due to creep variation increased from 7.09% to 12.50%; the change
in deflection increased from 31.97% to 46.60%, and the change in slip increased from
4.85% to 10.47% under long-term loading. The results show that the more strongly
the studs constrain the concrete slab, the greater the adverse effect of concrete creep
on the combined beam.

3. By comparing the theoretically derived formulation with the finite element numerical
simulation results, the error was around 5%, which proves the validity of the formu-
lation for the calculation of the axial force, deflection, and slip of simply-supported
composite beams considering the coupling of creep and slip based on the principle
of the energy variational method. The results show that the theoretically derived
formulas are applicable to the solution of the axial force, deflection, and slip of simply-
supported composite beams under different types of creep and slip coupling.
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Nomenclature

τ0 age of concrete under loading
t calculation of concrete age considering time
ε strain
σ instantaneous stress
φ concrete creep coefficient
φ0 nominal creep coefficient
φi creep coefficient at time i
βc coefficient of creep development with time after loading
fcm average cylinder compressive strength of strength grade C25~C50 concrete at 28 d age, MPa
fcu,k age of 28 d, with 95% guarantee rate of concrete cube compressive strength standard value, MPa
βRH coefficients related to annual average relative humidity
RH annual average relative humidity of the environment, %
h build theoretical thickness, mm
ρ aging coefficient
Es, Ec elastic modulus of the steel beam, elastic modulus of concrete
As, Ac cross-section area of the steel beam, cross-sectional area of concrete
µs, µc axial horizontal displacement of the steel beam, horizontal displacement of concrete
ks unit beam length slip stiffness

References
1. Xiao, L.; Wei, X.; Wen, Z.; Li, G. State-of-the-art review of steel-concrete composite bridges in 2019. J. Civ. Environ. Eng. 2020, 42,

168–182. (In Chinese)
2. Newmark, N.M.; Siess, C.P.; Viest, I.M. Tests and analysis of composite beams with incomplete interaction. Proc. Soc. Exp. Stress

Anal. 1951, 9, 75–92.
3. Adekola, A.O. The dependence of shear lag on partial interaction in composite beams. Int. J. Solids. Struct. 1974, 10, 389–400. [CrossRef]
4. Girhammar, U.A.; Pan, D. Dynamic analysis of composite members with interlayer slip. Int. J. Solids. Struct. 1993, 30, 797–823. [CrossRef]
5. Oehlers, D.J.; George, S. Composite Beams with Limited-Slip-Capacity Shear Connectors. J. Struct. Eng. 1995, 121, 932–938. [CrossRef]
6. Fabbrocino, G.; Manfredi, G.; Cosenza, E. Nonlinear analysis of composite beams under positive bending. Comput. Struct. 1999,

70, 77–89. [CrossRef]
7. Tarantino, A.M.; Dezi, L. Creep effects in composite beam s with flexible shear connectors. J. Struct. Eng. ASCE 1992,

118, 2063–2080. [CrossRef]
8. Dezi, L.; Tarantino, A.M. Creep in composite continuous beams. I: Theoretical treatment. J. Struct. Eng. 1993, 119, 2095–2111. [CrossRef]
9. Dezi, L.; Tarantino, A.M. Creep in composite continuous beams. II: Parametric study. J. Struct. Eng. 1993, 119, 2112–2133. [CrossRef]
10. Gilbert, R.I.; Bradford, M.A. Time-dependent behavior of continuous composite beams at service loads. J. Struct. Eng. 1995,

121, 319–327. [CrossRef]
11. Dezi, L.; Leoni, G.; Tarantino, A.M. Time-dependent analysis of prestressed composite beams. J. Struct. Eng. 1995,

121, 621–633. [CrossRef]
12. Dezi, L.; Leoni, G.; Tarantino, A.M. Algebraic method for creep analysis of continuous composite beams. J. Struct. Eng. 1996,

122, 423–430. [CrossRef]
13. Amadio, C.; Fragiacomo, M. Simplified approach to evaluate creep and shrinkage effects in steel-concrete composite beams. J.

Struct. Eng. 1997, 123, 1153–1162. [CrossRef]

http://doi.org/10.1016/0020-7683(74)90108-5
http://doi.org/10.1016/0020-7683(93)90041-5
http://doi.org/10.1061/(ASCE)0733-9445(1995)121:6(932)
http://doi.org/10.1016/S0045-7949(98)00173-4
http://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2063)
http://doi.org/10.1061/(ASCE)0733-9445(1993)119:7(2095)
http://doi.org/10.1061/(ASCE)0733-9445(1993)119:7(2112)
http://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(319)
http://doi.org/10.1061/(ASCE)0733-9445(1995)121:4(621)
http://doi.org/10.1061/(ASCE)0733-9445(1996)122:4(423)
http://doi.org/10.1061/(ASCE)0733-9445(1997)123:9(1153)


Appl. Sci. 2023, 13, 193 25 of 25

14. Nie, J. Calculation and analysis of long-term deformation of steel-concrete composite beams. Build. Struct. 1997, 1,
42–45. (In Chinese) [CrossRef]

15. Dezi, L. Time-dependent analysis of shear-lag effect in composite beams. J. Eng. Mech. 2001, 127, 71–79. [CrossRef]
16. Zhou, L. The stress redistribution in steel-concrete composite girders due to shrinkage and creep of concrete. Bridge Constr. 2001,

2, 1–4. (In Chinese)
17. Sheng, X.; Yang, J. Redistribution of creep stress in prestressed concrete build-up beam. Bridge Constr. 2003, 4, 11–14. (In Chinese)
18. Nie, J.; Cai, C. Steel–concrete composite beams considering shear slip effects. J. Struct. Eng. 2003, 129, 495–506. (In Chinese) [CrossRef]
19. Jiang, L.; Yu, Z.; Li, J. Theoretical analysis of slip and deformation of steel-concrete composite beam under uniform distributed

loads. Eng. Mech. 2003, 2, 133–137. (In Chinese)
20. Wang, J.; Long, P.; Liu, Z. Analysis of creep in composite beams. Highw. Traffic Sci. Technol. 2004, 8, 38–41. (In Chinese)
21. Qiu, W.; Jiang, M.; Zhang, Z. Finite element analysis for creep and shrinkage of steel-concrete composite beams. Eng. Mech. 2004,

4, 162–166. (In Chinese)
22. Fan, J.; Nie, J.; Wang, H. Long-term behavior of composite beams with shrinkage, creep and cracking (I)–Experiment and

calculation. China. Civ. Eng. J. 2009, 42, 8–15. (In Chinese)
23. Fan, J.; Nie, X.; Li, Q. Long-term behavior of composite beams with shrinkage, creep and cracking (II)–theoretical analysis. China.

Civ. Eng. J. 2009, 42, 16–22. (In Chinese)
24. Nguyen, Q.H.; Mohammed, H.; Brian, U. Time-dependent analysis of composite beams with continuous shear connection based

on a space-exact stiffness matrix. Eng. Struct. 2010, 32, 2902–2911. [CrossRef]
25. Nguyen, Q.H.; Mohammed, H. Nonlinear time-dependent behavior of composite steel-concrete beams. J. Struct. Eng. 2016,

142, 04015175. [CrossRef]
26. Miao, L.; Chen, D. Closed-form solution of composite beam considering interfacial slip effects. J. Tongji Univ. Nat.Sci. 2011, 39,

1113–1119. (In Chinese)
27. Ji, W.; Sun, B.; Deng, L.; Zhao, Y.; Lin, P. Calculation and analysis on deflection of steel-concrete continuous composite girder

considering effect of multi-factors. J. Hunan Univ. Nat.Sci. 2019, 46, 30–38. (In Chinese)
28. Oven, V.A.; Burgess, I.W.; Plank, R.J. An analytical model for the analysis of composite beams with partial interaction. Comput.

Struct. 1997, 62, 493–504. [CrossRef]
29. Salari, M.R.; Spacone, E.; Shing, P.B. Nonlinear analysis of composite beams with deformable shear connectors. J. Struct. Eng.

1998, 124, 1148–1158. [CrossRef]
30. Gattesco, N. Analytical modeling of nonlinear behavior of composite beams with deformable connection. J. Constr. Steel. Res.

1999, 52, 195–218. [CrossRef]
31. Ayoub, A.; Filippou, F.C. Mixed formulation of nonlinear steel-concrete composite beam element. J. Struct. Eng. 2000, 126,

371–381. [CrossRef]
32. Qiu, W.; Zhang, Z.; Huang, C. Finite-element method of double-layer beam model for analysis of composite steel-concrete beams.

J. Dalian Univ. Technol. 2003, 1, 101–103. (In Chinese)
33. Fang, K.; Chen, S. Finite element analysis of steel-concrete composite beams with influence of the shear connector stiffness. Ind.

Buils. 2003, 9, 75–77. (In Chinese)
34. Wei, F.; Lv, Z.; Sun, W. Nonlinear finite element analysis of composite steel-concrete beams with partial shear connection. Ind.

Build. 2003, 9, 78–79 + 88. (In Chinese)
35. Miranda, M.P.; Tamayo, J.L.P.; Morsch, I.B. Reassessment of viscoelastic response in steel-concrete composite beams. Struct. Eng.

Mech. 2022, 81, 617–631. [CrossRef]
36. Sarfarazi, V.; Haeri, H.; Shemirani, A.B.; Zhu, Z.; Marji, M.F. Experimental and numerical simulating of the crack separation on

the tensile strength of concrete. Struct. Eng. Mech. Int. J. 2018, 66, 569–582. [CrossRef]
37. Wang, Q.; Yang, J.; Zhang, Y. Analysis and design of long-term responses of simply-supported steel–concrete composite slabs. J.

Build. Eng. 2022, 53, 104496. [CrossRef]
38. Huang, Q.; Li, W.; Wang, B. Analytical method of steel-concrete composite beam based on interface slip and shear deformation. J.

Nanjing Univ. Aeronaut. Astronaut. 2018, 50, 131–137. (In Chinese)
39. JTG 3362-2018; Code for design of highway reinforced concrete and prestressed concrete bridges and culverts. People’s

Transportation Publishing House: Beijing, China, 2018. (In Chinese)
40. Liu, Y.; Liu, X. Long-term deflection of steel-concrete composite box-beam due to creep. J. Railw. Sci. Eng. 2015, 12, 317–322. (In Chinese)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.19701/j.jzjg.1997.01.008
http://doi.org/10.1061/(ASCE)0733-9399(2001)127:1(71)
http://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(495)
http://doi.org/10.1016/j.engstruct.2010.05.009
http://doi.org/10.1061/(ASCE)ST.1943-541X.0001432
http://doi.org/10.1016/S0045-7949(97)80001-2
http://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1148)
http://doi.org/10.1016/S0143-974X(99)00026-7
http://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(371)
http://doi.org/10.12989/sem.2022.81.5.617
http://doi.org/10.12989/sem.2018.66.5.569
http://doi.org/10.1016/j.jobe.2022.104496

	Introduction 
	Coupling Analysis Considering the Slip and Creep Effect 
	Analytical Solution of Axial Force 
	Analytical Solution of Deflection 
	Analytical Solution of Slip 

	ANSYS Finite Element Software Modeling Analysis 
	Selection of Modeling Unit 
	Implicit Creep Method 

	Analysis of the Result 
	Example Model 
	Comparison of Axial Force under Different Load Situations 
	Comparison of Deflection under Different Load Situations 
	Comparison of Slip under Different Load Situations 
	Comparison of Axial Force, Deflection, and Slip of Composite Beams under Different Stud Stiffness Levels 

	Conclusions 
	References

