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Abstract: Sentiment-controlled text generation aims to generate texts according to the given sentiment.
However, most of the existing studies focus only on the document- or sentence-level sentiment control,
leaving a gap for finer-grained control over the content of generated results. Fine-grained control
allows a generated review to express different opinions toward multiple aspects. Some previous
works attempted to generate reviews conditioned on aspect-level sentiments, but they usually suffer
from low adaptability and the lack of an annotated dataset. To alleviate these problems, we propose a
novel pre-trained extended generative model that can dynamically refer to the prompt sentiment,
together with an auxiliary classifier that extracts the fine-grained sentiments from the unannotated
sentences, thus we conducted training on both annotated and unannotated datasets. We also propose
a query-hint mechanism to further guide the generation process toward the aspect-level sentiments
at every time step. Experimental results from real-world datasets demonstrated that our model
has excellent adaptability in generating aspect-level sentiment-controllable review texts with high
sentiment coverage and stable quality since, on both datasets, our model steadily outperforms other
baseline models in the metrics of BLEU-4, METETOR, and ROUGE-L etc. The limitation of this
work is that we only focus on fine-grained sentiments that are explicitly expressed. Moreover, the
implicitly expressed fine-grained sentiment-controllable text generation will be an important puzzle
for future work.

Keywords: artificial intelligence; natural language processing; controllable text generation; review
generation; pre-trained language model; fine-grained sentiment

1. Introduction

In recent years, Transformer-based pre-trained language models (LMs) have greatly
improved the state-of-the-art of natural language processing tasks as well as natural lan-
guage generation (NLG). Large-scale autoregressive Transformer models [1] that leverage
large amounts of unannotated data and a simple log-likelihood training objective have
achieved remarkable results in many text-generation tasks, such as machine translation,
text summarization, and text style transfer. Meanwhile, for other real-world text-generation
applications, such as review generation and essay writing, users prefer the generated text to
be more controllable. However, since the LMs are trained on unannotated data, controlling
attributes of generated text becomes difficult without modifying the model architecture to
allow for extra input attributes or fine-tuning with attribute-specific data [2,3]. Therefore,
some approaches, such as Plug-and-Play-Language-Models (PPLM) [4], control generated
text through attribute models without changing the architecture or weights of pre-trained
LMs. These models usually regard controllable text generation as generating tasks condi-
tioned on the attributes, such as topic and sentiment at the sentence- or document-level,
leaving a gap for finer-grained (e.g., aspect-level) control over the content of generated texts.

The fine-grained sentiment-conditioned text-generation task aims to automatically
generate a highly relevant statement when given a series of fine-grained sentiments (e.g.,
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aspect-opinion, aspect-sentiment) as input. Zang and Wan [5] first introduced the aspect-
sentiment information to perform aspect-level sentiment-controllable review generation.
They conducted conditional training by adopting a supervised method requiring a large
dataset annotated with sentence-level aspect-sentiment labels. However, very few datasets
provide such sufficient fine-grained labels, and it is also labor-intensive and time-consuming
to conduct annotation on all data instances. Chen et al. [6] proposed a mutual learning
framework leveraging large unlabeled data through interactive learning between the
generator and the classifier. Besides the aspect-sentiment, aspect-opinion pairs also express
aspect-level sentiment information. Therefore, inspired by them, in this work, we introduce
the aspect-opinion information into the fine-grained sentiment-controllable text generation.

The aspect-opinion pairs represent the fine-grained sentiments that could be expressed
within a review sentence, where the aspect term refers to the target of an opinion, and the
opinion term refers to the sentimental words that describe the aspect term. For example, in
the sentence of Figure 1, (”hotdog”, “better”) is an aspect-opinion pair, where “hotdog” is
an aspect term, and “better” is an opinion term, together they form the backbone of fine-
grained sentiment in the review text. Therefore, the aspect-opinion conditioned generation
task aims to generate a review text X that correctly contains the sentiment information
from n non-repeated aspect-opinion pairs (a, o)1:n. Most previous works [5,7,8] used the
aspect-polarity pairs rather than the aspect-opinion pairs, and they used a straightforward
data-to-text modeling approach, which is much more difficult due to the discrete and
sparsity of the input data. To tackle this problem, relying on the natural characteristics of
aspect-opinion pairs directly presented in sentences, our approach proposed a query-hint
mechanism as a dynamic prompt strategy to guide the generation direction. Furthermore,
in order to guarantee the quality of the generated results, in the generator, we incorporate
a GPT-2 345M model [9] as the “super generator,” then by extending this state-of-the-art
model with our proposed query-hint mechanism and our sentiment control loss function
to guide the generating process toward the given controlling information. Moreover, to
further enhance the generator’s performance, with the assistance of a classifier by extracting
the fine-grained sentiments, we leveraged a large unlabeled dataset to train the generator.
The experimental results demonstrate the effectiveness of these components.

Sentence: 

Their hotdog is better compared with tasteless bread. 

Aspect-Opinion Pairs:  

{(hotdog, better), (bread, tasteless)} 

Figure 1. An illustrative example of how the aspect-opinion pairs are expressed in a review sentence.
The terms highlighted in red and blue are aspect terms and opinion terms, respectively.

Our Contributions:

• We propose our conditional generative model by extending a pre-trained state-of-the-
art Transformer-based generative model with our introduced query-hint mechanism
and sentiment control loss function to further guide the text generation at a finer-
grained level.

• To better model a text-to-text schema, we introduce the aspect-opinion pair as the
fine-grained sentiment unit to control the constrained text generation.

• Through employing an auxiliary classifier, we leverage a large unannotated dataset to
re-train and fine-tune an end-to-end conditioned text generative model.

The remainder of this paper is organized as follows. Section 2 discusses the related
works in controlled text generation, including the review generation and the aspect-level
sentiment-controlled generation, which is less studied. Section 3 introduces our proposed
approach that achieved finer-grained sentiment control in generation. In Section 4, the
experimental settings are detailed, and evaluation metrics and results are also discussed to
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demonstrate the validity of our approach. Finally, we conclude this work in Section 5 while
discussing future work.

2. Related Work
2.1. Controlled Text Generation

Recently, there has been many studies that aim to generate text conditioned on input
attributes with neural networks. Some of the earlier efforts have studied this controlled
text generation by training a conditional generative model [10,11] while fine-tuning pre-
trained models with Reinforcement Learning (RL) [3] and training a Generative Adversarial
Network [12] have also shown inspiring results. The Conditional-Transformer-Language
(CTRL) model [2] is a recent approach that trains a language model conditioned on a
variety of control codes (e.g., “Reviews” and “Legal” control the model to generate reviews
and legal texts, respectively), which prepended meta-data to the text during generation.
Although it uses a GPT-2-like architecture to generate high-quality text, the result is at
the cost of fixing the control codes and training a very large model. PPLM [4] composed
a pre-trained LM with attribute controllers guiding text generation toward the desired
attribute. At the same time, its flexible design allows it to control the generating process
through relatively small “pluggable” attribute models while keeping parameters in the LM
fixed. Chan et al. [13] incorporated a pre-trained GPT-2 model with a Content-Conditioner
(CoCon) to control the generated text under the guidance of target text content. Yu et al. [14]
proposed a simple and flexible method, infusing attribute representations into a pre-trained
unconditional LM without changing the LM parameters to achieve sentiment- and topic-
controlled generation. Different from our fine-grained sentiment-controlled text-generation
(FSCTG) task, these works focus on sentence-based sentiment and topic control in text
generation. In the FSCTG task, the text-generation process is controlled by a series of
fine-grained sentiments (e.g., aspect-opinion or aspect-sentiment).

2.2. Review Generation

Review generation [7,15], a generation task aiming to automatically generate review
text, is a related area that generates reviews conditioned on the given information. While
most of the previous approaches [7,8] have framed review generation as A2T (Attribute-
to-Text problem), leaving a gap between attributes (e.g., user, product, and rating) and
linguistic data. To tackle this problem, Kim et al. [16] proposed AT2T (Attribute-matched-
Text-to-Text) by augmenting inductive biases of attributes with matching reference reviews
to learn the rich representations of attributes.

2.3. Aspect-Level Sentiment Control

Nevertheless, most of these works only focus on sentence-level sentiments and ignore
the aspect-level sentiment control, and very few researchers have studied generating
reviews from fine-grained sentiments due to the lack of announced data. Zang and Wan [5]
gave the first attempt to generate reviews from aspect-sentiment scores, which requires the
reviews with sentence-level aspect-sentiment score annotations. This makes it impractical
in real-world applications due to the lack of labeled data. To tackle this problem, Chen
et al. [6] proposed a semi-supervised aspect-level sentiment-controllable review generation
method, under their proposed mutual learning framework with the assistance of a classifier,
it can take advantage of large-scale unlabeled data to achieve aspect-level sentiment control
in review generation with few labeled data. Fei et al. [17] combined fine-grained sentiment
classification and generation tasks as a joint dual learning system, strengthening the mutual
connection of both tasks. To overcome the defect of sparsity and discrete nature brought by
the input data in the data-to-text scheme, Yuan et al. [18] proposed a hierarchical template-
transformer (HTT); they split the generation task into two corresponding pipeline subtasks,
i.e., opinion phrase generation and review composition, which were jointly trained on the
HTT. Although in different ways, they all trained an efficient end-to-end generative model.
However, they did not attempt to dynamically adjust the attention weights during the
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model’s generation process since some contents (e.g., the completion of sentiment words
generation) are informative to the global generation and need to be notified.

3. Method

In this section, we introduce our fine-grained sentiment-controllable text-generation
task together with a conditional generative model named Aspect-level Sentiment Conditioner
(AlSeCond), which was trained with both labeled and unlabeled data to learn a fine-grained
sentiment review generator with the assistance of a classifier.

First, we give the formalization of our fine-grained sentiment-controllable text-
generation task. Specifically, given the fine-grained sentiment units (i.e., aspect-polarities
or aspect-opinions) as the input s, the model generates a target text X that covers the
input sentiments. As a straightforward approach, as other studies have used [5,7,8], the
data-to-text modeling can be much more difficult when compared with the text-to-text
modeling due to the discrete and sparsity of the input data [17]. Therefore, in this work,
we consider a translation of this task to the text-to-text formulation. More conveniently,
given aspect and polarity, it is effortless to retrieve opinion phrases from aspect sentiment
triplets (AST [19], i.e., the triplet of aspect, opinion, and sentiment polarity) extracted from
the review text. This work, therefore, set s = {(a1, o1), (a2, o2), . . . , (an, on)} and aims to
generate a review text X comprising m words (X = {x1, x2, . . . , xm}), which presents each
aspect phrase ai and its corresponding opinion phrase oi (i ∈ {1, 2, . . . , n}) properly.

In this task, we have a labeled dataset L and an unlabeled dataset U. In the labeled
dataset L, each labeled datum ` ∈ L comprises a review text and a list of aspect-opinion
phrase pairs s, i.e., ` = 〈X, s〉, while in the unlabeled dataset U, each u ∈ U only contains a
review text, i.e., u = 〈X〉.

In the following subsections, we first introduce our main framework for how to train
a generator on both labeled and unlabeled datasets. Then, we explain our generator and
classifier in detail.

3.1. Main Framework

To make full use of both the limited labeled dataset and the large unlabeled dataset,
inspired by Chen et al. [6], in the case of a text generator G, our proposed method addition-
ally employs a sentiment classifier C, which is incorporated to extract all aspect sentiment
triplets (aspect, opinion, polarity) in each sentence through a sequence-labeling schema,
thus yielding pseudo labels for the unlabeled dataset. We assume that the generator can
enhance itself by leveraging a large dataset with pseudo labels predicted by the classifier.

In order to benefit from both the data size of the unlabeled dataset and the correctness
of the labeled dataset, we train our model sequentially using these two datasets. Specifically,
as shown in Figure 2, following Chen et al. [6], we adopt three steps to make full use of the
large unlabeled dataset:

{X, s}

Train

Train

{X} {X, s'} {X, s}

Fine-tune

Predict

Step 1 Step 2 Step 3

Limited Annotated Dataset

Large Unannotated Dataset

Train

Figure 2. Illustration of the training steps for the generator and classifier. Note that “X”, “s”, “G”,
and “C” represent the review text, fine-grained sentiment, generator, and classifier, respectively.
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• Step 1: We train both our generator and classifier on a limited labeled dataset to get
G0 and C0, respectively.

• Step 2: The C0 is then used to extract the fine-grained sentiments in the large unlabeled
dataset, thus yielding the pseudo labels for the next step’s training.

• Step 3: Again, the generator is trained on the unlabeled dataset that is attached with
pseudo labels. Finally, the generator is fine-tuned with the labeled dataset (used in
Step 1) to receive the final generator G1.

As a result, we obtain an enhanced generator G1 trained on both the limited labeled
dataset and the large unlabeled dataset.

3.2. Generator

Unconditional language models (LMs) are trained on the huge amount of unlabeled
text data to optimize the probability of p(xi|x1:xi−1) in an auto-regressive manner [20,21]
where xi is the next token and x1:xi−1 are the previous tokens. While in the controlled text
generation, the conditional distribution p(xi|a, x1:xi−1) is optimized, where a is the attribute
for the model to control the generation.

To make use of the LM pre-trained with large unlabeled datasets, we need to infuse
attribute a into the unconditional distribution p(xi|x1:xi−1). What is more, the pre-trained
Transformer-based language model GPT-2 [9] has demonstrated remarkable natural text
generation in an auto-regressive manner in recent years. Thereby, to improve the generated
texts’ quality, our generative model incorporates a pre-trained GPT-2 model as the “super-
generator,” and we further use the fine-grained sentiment infusion blocks, which are stacked
in the AlSeCond to extend this pre-trained state-of-the-art language model’s decoder blocks.

Essentially, the GPT-2 model is stacked with numerous Transformer-Decoder blocks,
each consisting of layer normalization [22], multi-head self-attention [1], and position-wise
feed-forward operations. Therefore, our AlSeCond blocks extend this kind of decoder
block and incorporate a sentiment infusion operation together with our proposed query-
hint mechanism to conditionally infuse the fine-grained sentiments into the next-token
prediction process.

The sentiment infusion operation is performed inside the AlSeCond’s blocks. Figure 3
briefly illustrated how our AlSeCond model works. Specifically, the target fine-grained
sentiment pairs s0 are appended sequentially as a prompt to the head of the regular sequence
s1 to form the S. This special appended sequence S is then encoded to h (h = [h0; h1], h0, h1

is the hidden representation of s0 and s1, respectively) through numerous AlSeCond blocks,
thus h1

t self-attends to the hidden states of the regular sequence h1 for previous t time steps
and, further, all time steps of the fine-grained sentiment pairs h0. Therefore, the sentiment
representation h0 is infused into the intermediate representation h1 to control the next token
logits (o) and hence the generation process.

Pr
om
pt

food good sever rude They had good food but the sever was rude

had good food but the sever was rude

... ... ... ... ... ... ... ... ... ... ... ... ...

!

C
ontext

Figure 3. Illustration of how the AlSeCond model works. The curved arrow indicates where the
sentiment unit should be hinted to the review sequence. The gradient color in the square indicates
that this step is affected by the query-hint mechanism with prompt values brought by it.
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Our AlSeCond’s block (illustrated in the pink block in Figure 4) is a special Transformer-
Decoder block that incorporates our proposed query-hint mechanism to guide the con-
trolled generation process. Specifically, for fine-grained sentiment-appended hidden states,
h = [h0; h1] (h0 and h1 are the hidden states for the sentiment and regular sequence, respec-
tively.), its key, value, and a special hinted query matrix (K, V, Q′ ∈ R(ls+t)×d, ls, t is the
length of the appended sentiments and regular sequence, respectively) are computed to
perform a query-hinted self-attention. Furthermore, during the computation of the hinted
query (Q′) matrix, we infuse K0 ∈ Rls×d, the sentiments’ part of K, into Q1 ∈ Rt×d at their
corresponding time step as the query-hint:

Q = [Q0; Q1] = h×WT
q , K = [K0; K1] = h×WT

k

Q′ = [Q0; Q′1], Q′1 = fhint(K0, Q1)×WT
q′

(1)

fhint(K0, Q1) = Q1 + Mh ×


Mean(K0:l1)
Mean(Kl1 :l2)
· · ·
Mean(Kln−1 :ln)


where fhint(·) is our proposed function, it strategically allocated the sentiments’ repre-
sentation to Q1 as the query-hint information, and Mh ∈ Rt×n is an adjacency matrix,
representing which sentiment pair should be hinted for each time step in Q1, and n is the
number of sentiment pairs, la (a ∈ {1, 2, . . . , n}) is the end index of the a-th sentiment pair
in S. As a result, we guide the text generation by infusing the sentiment information into
the generation process through the query-hinted self-attention operation.

food great server rude Their great food server quite rude

... ...

...

Embed
...

...

...

AlSeCond Block

Add & Norm

Add & Norm

Feed Forward

Q
uery-H

Inted 
Self-A

ttention

AlSeCond Block

......

... ...

...have food , was rude .

... ...

...

have

great

Figure 4. Architecture of the generator. This model is stacked with 24 AlSeCond blocks with the
same structure. The dashed lines in the block represent the general attention, while the red solid lines
represent the attention that is hinted at with prompt key values.

3.3. Query-Hint Mechanism

Since the distance from the prompt and the next-token prediction correlates negatively
with the prompt’s influence [23], which makes it difficult to use a prompt to guide a non-
adjacent piece of text, especially when the generation time step is far away from the prompt.
In other words, prompt and regular sentences share equal importance, which is inadequate
for prompt-based generative models because the prompt tokens propagate less dominant
information to the next-token prediction as the sequence expands. Our idea is similar to
Xia et al. [24], where the actual importance of information from different sentiment units is
unequal to each token in a sentence, so they need to be attended to differently. Therefore,
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as mentioned in Section 3.2, we introduced a query-hint mechanism to further remind
each generation time step about the following content. The main idea of this mechanism is
to let the generation process understand what text to generate in order to catch the next
sentiment text.

Specifically, for each general sentiment pair, its aspect and opinion phrases have their
own corresponding subsequence to provide query-hints. As shown in Figure 5 (e.g., 1 to 1),
a sentiment pair’s member starts query-hint at the beginning of the sentence or the end
step of the previous sentiment pair and closes before its own full-presenting. The hinted
steps form a “hint-unit” (framed in the red dotted line in Figure 5).

<SOS> The dinner here is so great , even if the prices are over the top .

dinner

great

price

over the top

Query-Hint No Hint

<SOS> They have great food and drinks , and the server was patient and attentive .

food

drinks

server

patient

great

attentive

(e.g., 1 to 1)

(e.g., 1 to n)

Aspect phrase Opinion phrase

Figure 5. Strategy of the query-hint mechanism, this illustration demonstrates two different instances
of query-hint strategy, i.e., “1 to 1” and “1 to n,” which correspond to the one-to-one and one-to-many
situations for aspect-opinion pairs, respectively.

In the source sentences, however, there are also some sentiment pairs that share the
same phrase either in aspect or opinion (e.g., (food, great), (drinks, great)). Therefore,
in order to make query-hint consistent in the training and generation process, given n
sentiment pairs that share the same aspect/opinion phrase, their query-hints are merged
into one “hint-unit”. As shown in Figure 5 (e.g., 1 to n), within the “hint-unit”, each
aspect/opinion phrase gives the query-hint sequentially.

Although our proposed strategy of query-hint in the training process is almost identical
to the generation process, there is still a slight difference between them. During the
training process, the corresponding time steps in the sentence are provided with query-hint
according to the position of each sentiment information presented in the sentence. While
in the generation process, since the part of the sentence that has not been generated is
unknown, query-hint should be allocated according to the generated part of the sentence.

3.4. Loss Functions

Generation loss function: through an LM training objective, we train our conditional
generative model with the general generating loss term conditioned on previous x:t−1 and
input sentiment information s:

LG = −∑
t

log[p(xt
′|s, x:t−1)]Ix(xt) (2)

where xt
′ is the predicted token at time step t. Ix(·) is the index function of a vector.

Sentiment control loss function: To encourage the generator to output texts incorpo-
rating the input sentiment information (phrases), we train the generator additional with
our proposed sentiment-control loss function. The main idea of this loss function is to
maximize the probability value of the one with the highest probability in terms of given
aspect/opinion word from all the next-word predictions of a sentence. Specifically, for
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every aspect phrase a and opinion phrase o presented in the source text, the training loss is
defined as:

LSenti = La + Lo

La = −∑
a

∑
t

log[Q(x′, Maska,t)]Ix(xa,t)

Lo = −∑
o

∑
t

log[Q(x′, Masko,t)]Ix(xo,t)

Q(x, Mask) = Mask� pmax(x) + (1⊕Mask)× φmean

pmax(x) = MaxPooling([p(x1|s, x:0); p(x2|s, x:1); · · · ; p(xt|s, x:t−1)])

(3)

where La and Lo are the losses for aspect and opinion term inclusion, respectively. Maska,t/o,t
is a one-hot vector with the size of V (vocabulary size), and only the element in the index of
at/ot is 1. φmean is a hyper-parameter controlling how much the prediction of aspect/opinion
terms should be enhanced. pmax(·) is a max-pooling operation with a kernel size of lt × 1
(lt is the length of the target text). � and ⊕ represent the element-wise product and XOR,
respectively.

As a result, our final loss function comprehensively considers the loss of generation
quality and the loss of sentiment control:

Ltotal = λGLG + λSentiLSenti (4)

where λ values are hyper-parameters controlling how much the loss terms dominate
the training.

3.5. Classifier

In this section, first, we give the task definition of Aspect Opinion Pair Extraction
(AOPE), then we briefly introduced the model architecture of our sentiment classifier C.

The task of AOPE aims to extract aspect terms and their corresponding opinion
terms as pairs [25–27]. This task can be defined as follows: Given a sentence with m
words X = {x1, x2, . . . , xm}, the goal of this task is to extract all aspect-opinion pairs
τ = {(a, o)n}|τ|n=1 from X, where {(a, o)n} is an aspect-opinion pair presented in X and the
notations a and o denote an aspect term and an opinion term, respectively.

For the overall architecture of our classifier, the two-dimensional interaction-based
multi-task learning framework (2D-IMLF) is shown in Figure 6. Given an input sentence,
two highly related works of the extraction task (aspect term extraction and opinion term
extraction) are adopted to learn aspect-related and opinion-related features, respectively.
Then, to capture different interactive features of aspect terms and opinion terms, a 2D
interactive representation is obtained by tensor composition. Finally, the classifier model
regards the AOPE task as a grid tagging problem and in the end, obtains the final results
by applying a decoding algorithm [28].

As shown in Figure 6, we first use a group of CNN layers to encode the input sentence
and get their hidden state:

Hc
k = Conv1Dk(X)

Hc
∗ = [Hc

1; Hc
2; . . . ; Hc

k ]

Hc = Conv1D3(Conv1D5(Hc
∗))

(5)

where k ∈ {1, 2, 3, . . .} represents the kernel size of an 1D-CNN. Then, a Bi-LSTM layer
together with multi-head self-attention is incorporated to extract the context information
from the sentences:

Hl
t = BiLSTM(Hl

t−1, Hc
t )

Hc = MultiHeadAttention(Hl)
(6)
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Afterward, we concatenate the hidden state Hc with their transferring state HT
c to get

a grid-formed feature. We then obtain the prediction probabilities of Pc
a and Pc

o for aspect
and opinion terms, respectively, from the final logits P:

Ôc = [Hc; HT
c ]

P = Linear(Ôc)
(7)

Finally, by using a grid-formed tagging schema [28], we can easily obtain a series of
aspect-opinion pairs.

...

CNN 
& 

Bi-LSTM

Multi-Head 
Attention

...

...

 Matrix Transpose 
&

 Tensor Composition

...

... ... ......

Linear & Decoding

(a,o) 1 (a,o) m...

Sentence

Context 
features

Attentioned 
features

2D interactive 
representation

Outputs

...

...

Figure 6. Architecture of the classifier. This model incorporates 2D interaction representation and
grid-formed tagging schema [28] to extract all aspect and opinion phrases in a sentence.

4. Experiments

In this section, we first introduce datasets and settings in our experiment and then
report the evaluation metrics and results.

4.1. Dataset and Settings

We conduct experiments on three real-world datasets, two labeled and one unlabeled;
the statistics of the datasets are reported in Table 1. Moreover, the experimental settings are
also listed in this subsection.

Table 1. Statistics of the labeled and unlabeled datasets. Note that “Val” is short for “Validation”, the
ASTE-Data-V2-Rest is labeled with aspect, opinion, and polarity, while the MAMS-ASTA is labeled
with only aspect and polarity.

Dataset #Instance #Positive #Neutral #Negative Sentiment Form

ASTE-Data-V2-Rest
Train 2728 3490 241 1014

Aspect-Opinion-PolarityVal 668 841 76 248
Test 1140 1497 120 376

MAMS-ASTA
Train 4297 3380 5042 2764

Aspect-PolarityVal 500 403 604 325
Test 500 400 607 329

Yelp - 1,160,546 - - - -
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4.1.1. Labeled Dataset

We conduct experiments of aspect-opinion and aspect-polarity pairs of conditioned con-
trollable text generation on English restaurant reviews with ASTE-Data-V2 from Xu et al. [29]
and MAMS-ASTA from Jiang et al. [30], respectively.

ASTE-Data-V2 (https://github.com/xuuuluuu/SemEval-Triplet-data, accessed on
accessed on 18 May 2022): From Xu et al. [29], is originally from SemEval Challenges [31–33],
and contains both aspect and opinion labels in each review datum. Specifically, we union
the 14Rest, 15Rest, and 16Rest included in the ASTE-Data-V2 as our labeled dataset.

MAMS-ASTA: From MAMS (https://github.com/siat-nlp/MAMS-for-ABSA, ac-
cessed on accessed on 14 May 2022) (Multi-Aspect Multi-Sentiment), ref. [30] is an aspect-
level sentiment-labeled dataset. Wherein, each datum instance in MAMS-ASTA is labeled
with at least two aspects and different sentiment polarities, while no opinion term is labeled.
Therefore, by using our classifier to retrieve opinion phrases according to the original pairs
of aspect-polarity, we also conduct aspect-level sentiment-controllable text generation on
MAMS-ASTA.

4.1.2. Unlabeled Dataset

To ensure that the training data are in the relevant review domain, we use Yelp’s review
dataset (https://www.kaggle.com/yelp-dataset/yelp-dataset, accessed on accessed on
18 May 2022) as the unlabeled dataset and filter out the sentences with a length greater than
150. Unlike the labeled datasets, the Yelp dataset did not contain fine-grained sentiment
labels. Therefore, we only use the sentences in the unlabeled data and discard other items,
including user information.

4.1.3. Experimental Settings

Generator: In the experiment, we train our AlSeCond model that extends from a
pre-trained GPT-2 medium 345M model [9]. The AlSeCond’s blocks clone the GPT-2 Trans-
former blocks’ parameters and settings. To ensure the generator can compute the probability
of (and also generate) any string, we apply Byte Pair Encoding (BPE) [34] for the inputs.
The max generating length was set to 32. We tune the λG together with λsenti to 1 and 8,
respectively. Adam [35] is used for optimization, while the batch size is set to 16, and the
learning rate is set to 5× 10−5. During the period of G0, the generator is trained with the
labeled and pseudo-labeled dataset for 4 and 2 epochs, respectively. In the following G1,
the generator is fine-tuned with the labeled dataset for 24 epochs. We apply the above steps
to train our model on an RTX A4000 GPU for 20 h. Furthermore, the above steps are also
applied to train other baseline models. We ran our model and all baselines five times to
average the scores.

Classifier: Following GTS [28], we combine a 300-dimension domain-general embed-
ding from pre-trained GloVe [36] and a 100-dimension domain-specific embedding trained
with fastText [37] to initialize double word embeddings. We use Adam as the optimizer,
and the learning rate is 5× 10−4. The batch size and dropout rate are set to 32 and 0.5,
respectively. The number of hidden units in Bi-LSTM is set to 128.

4.2. Baselines

We compare with six baselines. PPLM [4] incorporates an attribute model BoW (bag of
words) to steer a pre-trained GPT-2 model toward increasing the generating probability of
the target words. In this baseline, the BoW is formed with the words contained in the target
sentiment pairs. For HTT [18], we omit the process of opinion phrase generation and only
use its results (i.e., sentiment pairs) to compose the review. Through prepending the task
description before the input text, the state-of-the-art text-to-text model T5 [38] is pre-trained
with a multi-task objective. Following this schema, we append the sentiment pairs into
the prompt, thus forming: “generate a sentence with a1 is o1, . . . , an is on.”, and fine-tune the
model with the target sentence. Its coverage of the input sentiment pairs in the baselines
serves as an upper bound. Moreover, we also fine-tune UniLM [39], UniLM-v2 [40], and

https://github.com/xuuuluuu/SemEval-Triplet-data
https://github.com/siat-nlp/MAMS-for-ABSA
https://www.kaggle.com/yelp-dataset/yelp-dataset
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BERT-Gen [40] in a similar sequence-to-sequence fashion with both the large unlabeled
dataset and the limited labeled dataset.

4.3. Generated Quality Evaluation

To study the performance of these models in a diversified manner, we conduct evalua-
tions on both the quality and sentiment coverage of the generated text.

4.3.1. Fluency and Diversity Evaluation

We conduct a fluency evaluation on the generated texts with some automatic metrics:
BLEU [41], ROUGE [42], and METEOR [43], which compare the similarity between the
generated text and ground truth based on n-gram matching. Moreover, the diversity of
generations is also an important indicator. We measure diversity for the generated results
with Dist-1,-2,-3 [44] scores and Self-Bleu [45].

Table 2 shows the fluency and diversity evaluation results by the automatic evalu-
ations. From the results, we can observe that: (1) Compared with baseline models, our
AlSeCond model extended from the GPT-2 achieves better performance in fluency evalu-
ations. (2) Comparing results in diversity metrics, it can be observed that our AlSeCond
model performs much better than the rest of the baselines in the MAMS-ASTA dataset,
which means the results generated by our model are less like the template-generated text
than that generated by other models.

Table 2. Results for the fluency and diversity evaluation. Note that “↑” means the higher the better,
“↓” means the lower the better, “w/o” means “no”.

Dataset Models BLEU-3 (↑) BLEU-4 (↑) METETOR (↑) ROUGE-L (↑) Self-Bleu-4(↓) Dist-1 (↑) Dist-2 (↑) Dist-3 (↑)

ASTE-Data-V2

PPLM 0.196 0.032 14.078 13.827 7.939 0.0841 0.4102 0.7180

HTT 13.100 7.656 34.899 42.544 42.664 0.0525 0.2356 0.4113
T5-base 21.246 13.216 29.007 41.092 22.580 0.1621 0.4725 0.6101
T5-large 24.747 16.462 29.986 43.614 23.045 0.1721 0.4658 0.5934
UniLM 33.093 27.486 46.808 52.582 20.334 0.1489 0.4961 0.6663
BERT-Gen 32.693 28.050 45.223 45.162 24.149 0.1450 0.4957 0.6411
UniLM-v2 32.159 27.525 45.107 44.514 22.830 0.1451 0.5060 0.6553

AlSeCond 40.453 34.611 55.127 63.720 15.972 0.1610 0.5439 0.7073
b w/o sentiment loss 37.961 32.190 55.699 62.911 16.195 0.1552 0.5301 0.7028
b w/o query-hint 34.305 29.080 55.391 61.237 14.442 0.1551 0.5431 0.7264
b w/o unlabeled dataset 29.085 26.387 42.601 48.213 21.727 0.1444 0.4942 0.6628

MAMS-ASTA

HTT 2.279 0.412 17.193 23.197 51.373 0.0602 0.2271 0.4003
T5-base 3.653 1.479 14.400 24.181 27.671 0.1299 0.3761 0.5541
T5-large 4.212 1.767 15.180 25.828 27.626 0.1418 0.3761 0.5591
UniLM 3.178 1.251 18.833 23.872 37.890 0.1032 0.3211 0.4878
BERT-Gen 4.003 1.605 17.751 24.162 28.284 0.1284 0.4024 0.5778
UniLM-v2 3.898 1.559 17.757 23.999 27.858 0.1255 0.3989 0.5796

AlSeCond 5.159 2.113 19.736 31.738 13.714 0.1627 0.5085 0.6811
b w/o sentiment loss 4.944 1.999 23.734 31.302 14.112 0.1477 0.4978 0.7171
b w/o query-hint 4.208 1.635 23.661 29.497 10.835 0.1604 0.5538 0.7653
b w/o unlabeled dataset 3.458 1.026 20.761 28.924 15.787 0.1478 0.4728 0.6627

4.3.2. Sentiment Evaluation

As to measure the quality of sentiment containment in the generated sentence and
indicate whether the input sentiments are correctly expressed in the generated text, we
employ two metrics: Coverage (Cov.), just like in Lin et al. [46], which is the average rate of
input sentiment pairs presented in the generated texts. This metric includes Cov-a, Cov-o,
and Cov-ao, representing the presenting rate of aspect, opinion, and aspect-opinion pairs,
respectively. Accuracy (Acc.) is a rate indicating how many fine-grained sentiments are
accurately expressed in the sentence, and it is evaluated by the external sentiment classifier [30]
trained on MAMS-ASTA.

Table 3 shows the results of sentiment coverage and accuracy for generated texts. It is
worth noting that for a linguistically complicated sentence, its aspect-level sentiments are
more difficult to be correctly predicted by the external classifier than a relatively simple
sentence, so its sentiment accuracy may be lower than the actual situation. What is more,
T5’s original seq2seq architecture allows it to generate texts that highly correspond to
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the input sequences. Hence its coverage and accuracy scores serve as an upper bound,
although its generated results’ syntax is relatively simple and repetitive.

Table 3. Results for the sentiment evaluation. Note that Accuracy (Acc.) is a rate indicating how many
fine-grained sentiments are accurately expressed in the sentence, and it is automatically evaluated by
an external classifier.

Dataset Models Cov-a Cov-o Cov-ao Acc.

ASTE-Data-V2

PPLM 0.3597 0.3642 0.1094 0.1761

HTT 0.7689 0.7773 0.6050 0.6328
T5-base 0.9563 0.9764 0.9403 0.7812
T5-large 0.9633 0.9839 0.9508 0.7948
UniLM 0.9513 0.9568 0.9182 0.7450
BERT-Gen 0.9352 0.9343 0.8886 0.7521
UniLM-v2 0.9438 0.9488 0.9087 0.7475

AlSeCond 0.9824 0.9849 0.9734 0.7771
b w/o sentiment loss 0.9633 0.9649 0.9468 0.7683
b w/o query-hint 0.9412 0.9313 0.8966 0.7443
b w/o unlabeled dataset 0.8158 0.8841 0.7556 0.6306

MAMS-ASTA

HTT 0.7203 0.5123 0.3800 0.4532
T5-base 0.9610 0.9147 0.9042 0.5734
T5-large 0.9738 0.9453 0.9416 0.5698
UniLM 0.9251 0.7821 0.7590 0.5883
BERT-Gen 0.9438 0.8009 0.7807 0.6048
UniLM-v2 0.9341 0.7515 0.7305 0.6310

AlSeCond 0.9798 0.9588 0.9558 0.6267
b w/o sentiment loss 0.9318 0.8952 0.8825 0.6050
b w/o query-hint 0.8338 0.6811 0.6257 0.5447
b w/o unlabeled dataset 0.7829 0.7095 0.6325 0.5157

Comparing the above metrics results for all models on different datasets, we can
observe that our model has stable advantages over both ASTE-Data-V2 and MAMS-ASTA,
which indicates that our AlSeCond model has stronger adaptability. Additionally, Figure 7
presents the learning curves for fine-tuning all models with the labeled dataset, which also
demonstrates the strong capabilities of our model compared to baselines.
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(a) Learning curves for BLEU-4
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Figure 7. Learning curves for fine-tuning models with the labeled dataset. (a) illustrated the learning
curves for BLEU-4 changing with fine-tuning steps. (b) illustrated the learning curves for Cov-ao
changing with fine-tuning steps.
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4.4. Case Study

Figure 8 presents some generated cases from AlSeCond, HTT, T5, UniLM, BERT-
Gen, and UniLM-v2. From the cases, we found that: AlSeCond tends to generate more
linguistically complicated sentences, while the other baselines are more likely to focus
on generating review texts that simply express the input information and less on the
complexity of the expressions and the syntaxes.

Aspect-level Sentiments: {wait staff - friendly, meal - great} 

AlSeCond: the wait staff is very friendly and will take great care of you, if you end up getting a great meal, 

they 'll even throw in some dessert. 

HTT: the wait staff is very friendly and you get a great deal for a great meal at a great price and a great value. 

T5-Large: wait staff was friendly and the meal was great. 

UniLM: The wait staff is friendly and you always have a great meal and always leave feeling satisfied. 

BERT-Gen: the wait staff is very friendly and always has a great meal. 

UniLM-v2: wait staff is friendly and we have always had a great meal! 

Aspect-level Sentiments: {hostess - kind, hostess - gracious} 

AlSeCond: It's always a delight to have greeted by a kind and gracious hostess. 

HTT: the hostess was very kind, gracious, and made us feel at home with a smile. 

T5-Large: the hostess was kind and gracious. 

UniLM: The hostess was very kind and gracious.  

BERT-Gen: the hostess is very kind and gracious. 

UniLM-v2: our hostess and all of the people helping her were kind and gracious. 

Aspect-level Sentiments: {atmosphere - cozy, service - horrible} 

AlSeCond: When I sat down at the bar the atmosphere was cozy but service was horrible. 

HTT: the atmosphere is very cozy, but the service is horrible, i would never go there again. 

T5-Large: the atmosphere is cozy, but the service is horrible. 

UniLM: The atmosphere is very cozy but the service is horrible. 

BERT-Gen: cozy atmosphere and horrible service. 

UniLM-v2: cozy atmosphere but horrible service 

Aspect-level Sentiments: {place - hidden away, place - worth} 

AlSeCond: The place is a little hidden away, but it is worth finding. 

HTT: this place is a must if you want to try it, it's a must and worth it. 

T5-Large: hidden away and worth every penny. 

UniLM: This place is so hidden away but is def worth an hour drive. 

BERT-Gen: this place is hidden away but is def worth it. 

UniLM-v2: this place is a bit hidden away but is worth it. 

Figure 8. Generated samples from the generative models. Red phrases represent the aspect-level
sentiment formed by aspect-opinion pairs.

5. Conclusions and Future Work

In this paper, we propose a fine-grained sentiment-controllable text-generation method
based on the pre-trained language model and the auxiliary sentiment classifier that utilizes
both the labeled and unlabeled dataset to reach the aspect-level sentiment control in text
generation. Our proposed query-hint mechanism and fine-grained sentiment control loss
function have greatly enhanced the generator in controlling the sentiment during the text-
generating process. Experiments on real-world datasets have demonstrated our generator’s
ability to generate aspect-level sentiment-controllable review statements with high quality
and diverse syntax.

For future work, we will explore the controllable text generation for implicitly ex-
pressed fine-grained sentiments (e.g., in this sentence: “We had to constantly ask the waiter to
top up water glasses.”, the reviewer had a negative opinion of the waiter although there is no
related opinion phrase in the sentence.), since the query-hint mechanism proposed in this
paper is only effective for explicitly expressed fine-grained sentiments.
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