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Abstract: Methods based on electromagnetic time reversal (EMTR) have recently demonstrated
promising results. In particular, EMTR, as a correlation estimator metric, has offered a quantitative
definition for fault location candidates. As the correlation estimator already obtains the system
transfer functions by simulating fault occurrences, these functions are subsequently correlated with
the fault-generated transfer function. Therefore, it is necessary to explore the analysis related to the
pre-fault processing of this metric. Firstly, the impact of fault impedance mismatch between the fault
occurrence and fault estimation stages was investigated, and a simple approach is presented after
observing the fault locations’ error. Secondly, it was noticed that the existing correlation estimator
approach does not accurately identify fault types; therefore, a pseudo approach was developed
to address this issue. Finally, the spatial step considered during the fault estimation stage was
investigated. It is demonstrated that larger spatial steps result in inaccuracies in fault location. The
smaller spatial steps improved the performance, but increased the memory burden on the data storage
devices, especially when simple and pseudo approaches must be employed. The memory issue was
resolved by presenting a hybrid approach that makes use of regression analysis. A single-phase and
a three-phase lossy transmission line system were used to illustrate the proposed analyses.

Keywords: transmission lines; fault location; correlation estimator method; regression analysis

1. Introduction

Faults on transmission lines disrupt the smooth operation of power systems; the
robust finding of their location plays a vital role. Various fault location methods have been
developed over the years; two categories, namely impedance-based methods [1,2] and
travelling-wave-based methods [3,4], are well known. In the impedance-based methods,
the fault position is determined by analysing the voltage and current measurements taken
before and after the fault event, while in travelling-wave-based methods, the fault locations
are computed by exploiting the transient signals produced by the fault. The accuracy of
impedance-based methods can be influenced by the line configuration, fault resistance, load
imbalance, and the presence of distributed generation sources [5–7]. On the other hand,
the disadvantages of travelling-wave-based methods are as follows: (a) The data acquisition
requires complicated signal processing techniques. (b) The problem of synchronising the
time between multiple observation points is challenging. (c) In lossy transmission lines, the
travelling waves will be distorted and attenuated during signal propagation. Therefore,
the accurate calculation of the arrival time will be challenging. (d) In scenarios involving
branched lines, fault-generated transient signals have to propagate over numerous junc-
tions and will experience attenuation, resulting in a decrease in their intensity. (e) In a
mixed overhead–undergroundcable transmission line power system, the travelling speed
difference between multiple media will cause location bias [7–10].

The time reversal theory, which was initially applied to the acoustic field, is used to
address the issues of travelling-wave-based methods, in which ultrasonic pressure fields
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are recorded, time-reversed, re-emitted, and focused on the source target [11]. Recent
applications of time reversal theory to electromagnetics have led to the development of
a method called the EMTR-based disturbance localisation method. It has been utilised
for the localisation of flash-overs and lightning discharges, where it has been demonstrated
that the wave fronts generated by time-reversed electromagnetic fields are focused at
lightning strike locations [12]. This concept is then employed for fault location in power
grids, in which fault-generated transients observed at specific observation points are time-
reversed and sent back to the same simulated system, focusing on the fault position [5,7].
In this regard, researchers have extended its application to various power system network
topologies while proposing new metrics and design criteria for fault position estimation.
Razzaghi et al., for example, investigated the use of EMTR-based fault location algorithms
in systems such as series-compensated, overhead–underground mixed cable, and multi-
terminal HVDC transmission line networks [13,14]. In [15], an alternative approach to that
of [7] was proposed, where the fault position was determined on the basis of a particular
range of the arguments of the voltage and transfer function. The authors of [16] showed that
the computed fault signals at the actual fault position were the time-delayed copies of the
fault-generated transient signals. The concept of mirrored minimum energy was proposed
in [17], where it was demonstrated that, when time-reversed signals are back-propagated,
their energy is minimum at the actual fault position. In [18], the EMTR-based norm criteria,
namely the two-norm and P-norm for fault location computation, were introduced, and it
was confirmed that the P-norm performed better. Moreover, The EMTR technique has been
validated experimentally on a full-scale setup [19].

Currently, the EMTR technique can be defined as a correlation estimator between the
transfer functions of the fault occurrence and fault estimation stages, yielding the correlation
coefficient value (CCv) at the corresponding guessed fault location (GFL) [8]. The correla-
tion estimator metric is time-efficient compared to other EMTR metrics, because, in other
metrics, the time-reversed transients are injected back into the same system and a large
number of simulation batches are performed after the fault’s occurrence, whereas, for
the correlation estimator metric, the database in the form of the transfer functions of the
same system is already available to correlate with the fault-generated transfer function.
Furthermore, its quantitative property outperforms other EMTR metrics in terms of offering
confidence in the estimated fault candidate. For the sake of brevity, the detailed explanation
of the correlation estimator is not presented here and can be found in [8,10,20], where
different aspects of its applicability were discussed. It is worth mentioning here that a
new method based on time reversal, known as the FasTR algorithm, has been proposed
recently to infer the fault location while employing the optimisation algorithm, which is
time-efficient as well [6]. However, it relies on the measured/recorded transients of two
terminal observation probes. In the existing EMTR methods, usually, the low-impedance
fault scenarios are considered. In recent times, the EMTR-III method has been proposed
to accurately locate high-impedance faults [21], and another EMTR-based method, which
does not require knowledge of the fault impedance, has been reported [22]. However, these
methods rely on the recorded transients of multiple observation points. The correlation
estimator, on the other hand, relies on a single observation point.

Nevertheless, in the correlation estimator method, the data preparation analysis of
the fault estimation stage is of utmost importance. Some characteristics require further
investigation, such as (1) the necessity of fault impedance analysis, because the fault
impedance might take on any value during the fault occurrence stage; therefore, an accurate
guess of the fault impedance during the fault estimation stage is crucial. (2) Only the transfer
functions of the three-phase fault scenario are stored in the existing correlation estimator
approach. In this manner, errors in the fault location and the fault type have been observed.
(3) The spatial step considered in the fault estimation stage is an additional key aspect
that requires investigation. It has been observed that, if a larger spatial step is selected,
there will be an error in the fault location. The correlation estimator method identifies this
inaccuracy based on its CCv, but the traditional EMTR method does not.
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In order to improve the correlation estimator method and make it more adaptive
while tackling the aforementioned issues, three different approaches are proposed in this
study. Firstly, the impact of fault impedance mismatch between the fault occurrence and
fault estimation stages was analysed. It was observed that the accuracy of the method
was not affected by fault locations close to the observation probes, but when the fault
position moved farther away, the error in the fault estimation increased significantly. Then,
a simple approach was used to address this problem by storing the transfer functions
for both the low- and high-fault-impedance scenarios during the fault estimation stage.
Secondly, a so-called pseudo approach was used to accurately identify the fault type and
locate the fault position, in which, in the fault estimation stage, the transfer functions are
stored, taking into account all possible fault types, rather than just the three-phase fault
type scenario. Finally, the efficiency of the correlation estimator increased with a feasible
smaller spatial step, but at the expense of higher memory space requirements for the storage
devices. This is especially the case for long transmission lines that have measuring devices
with larger bandwidths. This memory problem was solved by proposing a regression-
analysis-based hybrid approach, in which few fault estimation stage transfer functions
were selected, instead of all the data. A relationship was learned/regressed between the
CCvs and their corresponding locations along the line length, ultimately predicting the
actual fault position.

The structure of the paper is as follows: Section 2 discusses the basics of EMTR and
the correlation estimator method. In Section 3, the impact of fault impedance mismatch
is analysed. Section 4 presents a pseudo approach for the accurate identification of the
fault type. The issue of the spatial step with the details is discussed in Section 5, and the
regression-analysis-based hybrid approach is presented in Section 6. Finally, Section 7
concludes this paper and proposes future works.

2. EMTR and Correlation Estimator Methods
2.1. EMTR-Based Fault Location Method in Transmission Lines

To understand the application of EMTR to diagnose the fault location in transmission
lines, Figure 1 is taken as a reference, where ZT and ZC represent the equivalent terminal
impedance and the characteristic impedance of the line, respectively, while V f (t) is the fault
voltage of the source, which can be a step-like function [7], or the exponential charge [8],
and the fault impedance was assumed to be zero. This method can be summed up in three
steps as follows [7]:

Figure 1. Simplified representation of post-fault line.

(I) Forward propagation stage: In this stage, fault-generated transient signals are
measured at one of the line extremities, such as Vm(t) at x = 0 in Figure 1. (II) Back-
propagation stage: The measured transients in Step 1 are time-reversed and back-injected
into the simulated system model from the same observation point, e.g., Vm(T − t). Then,
on each pre-defined GFL (xg), the fault signals are observed. (III) Finally, the fault location
is computed by employing different proposed metrics.
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The recorded transients in the first step along with the necessary details are expressed
in the frequency domain as follows:

Vm(ω) = (1+ρ)e
−γx f

1+ρe
−2γx f

Vf

ρ = ZT−ZC
ZT+ZC

γ =
√

Z′Y′

ZC =
√

Z′
Y′

(1)

where x f , ρ, γ, Z′, and Y′ are the fault location, reflection coefficient, propagation constant,
total per-unit length impedance, and per-unit admittance, respectively. Impedance and
admittance are defined as follows:

Z′ = jωL′ + Z′w + Z′g

Y′ =
(G′+jωC′)Y′g
G′+jωC′+Y′g

(2)

where Zw
′, L′, C′, G′, Zg

′, and Yg
′ are the wire impedance, inductance, capacitance, conduc-

tance, ground impedance, and ground admittance, respectively, further defined as:

Z′w = 1
2πrw

√(
jωµw
2σw

)
L′ = µ0

2π ln
(

2h
rw

)
C′ = 2πε0

ln( 2h
rw )

G′ = σair
ε0

C′

Z′g = jωµo
2π ln

(
1+γgh

γgh

)
Y′g =

γg
2

Z′g

γg =
√

jωµ0(σg + jωε0εrg)

(3)

where h, rw are the height and radius of the conductor, σair, σg, and σw are the conductivity
constants of the air, ground, and wire respectively, while µ0, ε0, and γg are the permeability,
permittivity, and propagation constant in ground respectively. It is worth noticing that
the line parameter expressions defined above, namely (2) and (3), are based on the line
configuration with its equivalent circuit shown in Figure 2. The following is a mathematical
representation of Step 2, in which the conjugated recorded transients, i.e., Vm*, are sent
back to the system [7,15]:

Vm
∗ = conj(Vm)

V(xg, ω) = (1+ρ)e−γxg

1+ρe−2γxg Vm
∗

V(xg, ω) = (1+ρ)2e
−γ(xg−x f )

(1+ρe−2γxg)
(

1+ρe
+2γx f

)Vf
∗

(4)

Finally, in Step 3, the fault location is computed using either the energy norm or the
peak amplitude norm, which are denoted as [18]:

x f = arg

∣∣∣∣∣xg max

{{∫ T

0
V2(xg, t) dt

}1/2
}

(5a)

x f = arg
∣∣∣xg max

{
sup

∣∣V(xg, t)
∣∣∣∣∣T0 } (5b)
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It is worth mentioning that the voltage signals in (5) are the time domain representation
over the time period T, and these quantities are the inverse Fourier transform of the ones
in (4).

Figure 2. Single-conductor transmission line cross-section with equivalent circuit.

2.2. Correlation-Estimator-Based Fault Location Method

The correlation estimator method provides a quantitative, rather than a qualitative,
interpretation. In addition, it is more of an active approach than the conventional EMTR,
which can be characterised as reactive. Because there is no need to inject the time-reversed
signals into the system and perform the large batches of simulations if we already have a
database of the same system prior to the fault occurrence, this method is more computa-
tionally efficient. Mathematically, it can be written as follows:

ρHH(xg) =
〈H f os( f )H f es( f ;xg)〉

σf osσf es(xg)

σf os
2 =

〈∣∣∣H f os( f )
∣∣∣2〉

σf es
2 =

〈∣∣∣H f es( f ; xg)
∣∣∣2〉

(6)

As depicted in Figure 1, when the fault occurs at some point along the line, H f os is
the system’s single output/input response, known as the fault occurrence stage transfer
function. In fact, Vm(t) is composed of V f (t) convoluted with H f os(t) in the time domain,
where V f (t) is modelled here as an exponential step function, which reads [8]:

Vf (t) = V0(1− exp(−t/Tr)) (7)

Tr and V0 are the rise time and peak voltage, respectively. The expression of Vm(t) due to a
fault can be represented in the frequency domain mathematically as

Vm(t) =
∫

BW Vf ( f )H f os( f )ej2π f td f (8)

V f (f) is the fault voltage source generator in the frequency domain over the bandwidth BW,
which can be defined as

Vf ( f ) = V0
2π fc

j2π f (j2π f+2π fc)
, fc =

1
2πTr

(9)

The analytical expression of H f os for a single without the branch transmission line case
can be obtained from the general solution of the voltage and current expressions, which
was presented in detail in [23]. Hence, the H f os in its mathematical form can be written as

H f os( f ) = e−γ(x−L)−ρ0e−γ(x+L)

(2ZC(1−ρ0ρLe−2γL))

[
−
(

eγ(L−x f ) − ρLe−γ(L−x f )
)]

(10)

ρ0 and ρL are the reflection coefficients at x = 0 and x = L. H f es is the database of transfer
functions computed at regular intervals along the line length. They can also be represented
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analytically as (10). σ f os and σ f es are the energy terms of the fault occurrence and fault esti-
mation stage transfer functions, respectively. ρHH(xg) is the so-called correlation function,
which provides the CCv corresponding to each GFL (xg). The numerator in Equation (6) is
the projection between the transfer functions of the fault occurrence and fault estimation
stages, giving the measure of similarity, while the denominator provides the measure
of intensity.

Since the only information available is the fault-generated transient signal (Vm), to
estimate the transfer function, the assumptions of V f proposed in [8] are considered. H f es,
on the other hand, are already obtained by utilising the Baum–Liu–Tesche (BLT) formu-
lation [24,25], which was developed in the MATLAB environment. To employ the BLT
formulation, Figure 3 is taken as a reference, where JF is the fault junction, while JI and
J2 represent the terminal junctions. During the fault phenomena, the line is divided into
two sections, shown as tubes P and Q. The problem depicted in Figure 3 is represented
mathematically as follows:

[V] = 1
2 ([S] + [T])([1]− [S][Γ])−1

[
W(S)

]
(11)

[I] = 1
2 [YC]([S]− [T])([1]− [S][Γ])−1

[
W(S)

]
(12)[

W(S)
]
= [WS1 WS2 WS3 WS4 ] (13)

[Γ]= diag
[
e−γx f e−γx f e−γ(L−x f ) e−γ(L−x f )

]
(14)

[S] =


0 S1 0 0

SF11 0 0 SF12
SF21 0 0 SF22

0 0 S2 0

; [T] =


0 1 0 0
1 0 0 1
1 0 0 1
0 0 1 0

 (15)

[YC] =
[

ZC
−1
]
; [1] = diag[1 1 1 1] (16)

where W(S) and Γ are the source super-vector and propagation super-matrix, respectively,
while S, T, and YC are the scattering super-, identity super-, and admittance super-matrices,
respectively. Finally, the transfer functions can be easily obtained from the voltage/current
responses, denoted by (11) and (12).

Figure 3. Fault emulation by the BLT formulation.

Now, with Figure 1 as a reference, a test fault location of 8 km on a line length of 10 km
is considered by employing EMTP-RV [26,27]. Figure 4 shows the transients recorded
at x = 0 due to fault voltage source V f (t) (described by Equation (7), with Tr = 10 µs,
Vo = 2 kV). The time step and the time window used to record the transients are 1 µs and
7 ms, respectively. The related information of the studied analysis is given in Table 1.
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Figure 4. Fault-generated transients recorded at x = 0 due to a fault at x f = 8 km.

Table 1. Transmission line parameters.

Parameter Value

Height above the ground 15 m
Line length 10 km/50 km

Wire diameter 18 mm
Wire conductivity 3.7 × 107 S/m
Air conductivity 5 × 10−15 S/m

Dielectric constant of air 8.8419 × 10−12

Air permeability 1.2566 × 10−6

Relative ground permittivity 10
Ground resistivity (conductivity) 100 Ωm

Load impedance’s 10 kΩ

Following the steps of the EMTR conventional metric (energy metric), presented in
Section 2.1, the fault location is estimated and shown in Figure 5, whereas, for the correlation
estimator metric, in order to obtain the transfer function from the recorded transients, first
of all, the surge compression technique is applied to these transients. It is necessary to
mention that, for the accurate estimation of the transfer function, surge compression is
essential. Because the discrete sampling will inevitably produce a sampling bias, this will
produce additionallocation error. The surge compression technique is adopted to erase
this sampling bias in the first step. Then, the inverse filter is used to filter out the fault
transient signal in order to increase the location’s spatial resolution; more details can be
found in [20]. The corresponding result is presented in Figure 6. Then, the FFT is applied to
the fault source voltage and to the surge-compressed transients (Vm−comp) to finally obtain
the fault occurrence stage transfer function (H f os), defined as

H f os =
Vm−comp( f )

Vf ( f ) (17)

The fault location is then estimated using the correlation of H f os and H f es, which is also
shown in Figure 5. The frequency spectrum from DC to 1 MHz with a step of 10 Hz is
adopted during the back-propagation phase of the EMTR energy metric and the computa-
tion of H f es.

The correlation estimator metric is computationally more efficient than the EMTR
energy metric, as shown in Table 2, where it can be seen that, for the correlation estimator
metric, the only time spent is during the pre-fault processing, whereas, during post-fault
processing, it only takes a fraction of asecond to estimate the fault location. All the simula-
tions presented in this paper were performed on an HP laptop with an Intel Core i7-4600U
CPU running @ 2.10 GHz with 16 GB of RAM.
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Figure 5. Correlation coefficient value and normalised signal energy as a function of GFL (xg). The
test fault location is 8 km.

Figure 6. Surge compression by inverse filtering of the transient signal presented in Figure 4.

Table 2. Computational efficiency of the EMTR energy metric and correlation estimator metric, while
considering a spatial step = 10 m and a frequency bandwidth of 100 kHz.

Line Length EMTR Energy
Metric Correlation Estimator Metric

Post-Fault
Processing Time

Pre-Fault
Processing Time

Post-Fault
Processing Time

10 km 2 min 30.96 min 2.4 s
50 km 18.3 min 2.8 h 11.59 s

In addition to being time-efficient, the correlation estimator outperforms conventional
EMTR energy metric, as shown in Figure 5. This is because, when using the EMTR energy
metric, there is an error in the fault location, and for the lossy case, this error increases
as the fault moves away from the observation point. More importantly, when using the
EMTR energy metric, it is hard to distinguish between falsely and truly estimated fault
location candidates, because it uses the normalised to the maximum value criterion for the
fault locations, whereas, in the correlation estimator method, the CCv corresponding to
the guessed fault locations verifies the true candidate for the fault position. Therefore, the
presented analysis in this paper is focused on the correlation estimator method. As the lossy
transmission line case is considered throughout the entire study, the frequency-dependent
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line model is employed, whose accuracy is very robust and whose simulation findings
were consistent with the field test results [28].

3. Impact of Fault Impedance Mismatch

As mentioned earlier, during a fault event, the fault impedance can take any value,
and the accurate guess of fault impedance in the fault estimation stage is a very difficult task.
In this section, the impact of the fault impedance mismatch between the fault occurrence
and fault estimation stages of the correlation estimator method is presented. It is worth
mentioning that the results shown in Figure 5 were obtained assuming Z f = 10 Ω in
both stages. In order to observe the impact of fault the impedance mismatch, Figure 1
and Table 1 (with line length = 50 km) are taken as references for the demonstration.
The transfer functions for the fault estimation stage were obtained and stored considering
Z f = 10 Ω, whereas, in the fault occurrence stage, four different values were considered,
i.e., Z f = 0.0 Ω, 10 Ω, 300 Ω, and 1000 Ω.

For the fault estimation stage, the BLT formulation was utilised, and H f es were ob-
tained. The fault phenomenon was emulated in the EMTP-RV environment, and H f os
were computed for test fault locations of 8 km and 45 km. The results are shown in
Figures 7 and 8 for the respective scenarios. It was observed that the fault impedance
mismatch did not affect the method’s accuracy for the fault locations near the observa-
tion point. As it is clear from Figure 7, when x f = 8 km, even with a high-impedance
fault, i.e., Z f = 1000 Ω (solid black line), the GFL (xg) was 7.98 km. The mismatch due to
Z f = 300 Ω (solid grey line) had a negligible impact as well, having GFL (xg) = 7.99 km.
The respective CCvs, i.e., 0.7941 and 0.8861, confirmed the mismatch between the fault
occurrence and fault estimation stages. When the values of Z f in both stages were equal or
almost similar, only then GFL (xg) = x f .

Figure 7. CCvs as a function of the GFL (xg): considering different values of Z f in the fault occurrence
stage, while in the fault estimation stage, Z f = 10 Ω; the test fault location is 8 km.

On the other hand, as the fault position moved away, the location error became
significant in the presence of a mismatch. As can be seen in Figure 8, for x f = 45 km
considering Z f = 1000 Ω (solid black line) and 300 Ω (solid grey line) in the fault occurrence
stage, the GFL (xg) was 44.71 km and 44.84 km, respectively. This impact can be eliminated
by employing a simple approach, i.e., separately storing H f es for low and high impedance
faults. In other words, whenever a fault occurs, its related H f os would be correlated with
each H f es of a low- and high-impedance fault, respectively. Then, the best candidate for
the GFL (xg) would be selected based on the higher CCv. This becomes clear by looking at
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Figure 9, where the results presented in Figure 8 were obtained considering Z f = 1000 Ω in
the fault estimation stage. It can be seen that the fault location was estimated accurately,
which was also confirmed by CCv = 1.00. In addition, H f os due to Z f = 300 Ω was correlated
with a low and high fault impedance H f es, and two GFLs (xg) were computed, i.e., 44.84 km
and 45.07 km, respectively. The best candidate among these two will be decided based on
the corresponding CCv, and in this case, the CCv of 45.07 km was 0.9501, which is higher
than 0.8603 (solid grey line).

Figure 8. CCvs as a function of the GFL (xg): considering different values of Z f in the fault occurrence
stage, while in the fault estimation stage, Z f = 10 Ω; the test fault location is 45 km.

Figure 9. CCvs as a function of the GFL (xg): considering different values of Z f in the fault occurrence
stage, while in the fault estimation stage, Z f = 1000 Ω; the test fault location is 45 km.

A comprehensive analysis of the impact of the fault impedance mismatch along the
line length was performed, which is shown in Figures 10 and 11. It can be seen that, in all
cases, the impact was almost negligible for fault locations up to 25 km, and the impact is
presented in the form of the relative location error, defined as

e[%] =
|x f−xg|

L × 100 (18)
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Figure 10. Impact of the fault impedance mismatch along the line length in terms of the relative
location error; in the fault occurrence stage, four different values of fault impedance are considered,
while in the fault estimation stage, Z f = 10 Ω.

Figure 11. Impact of the fault impedance mismatch along the line length in terms of the relative
location error; in the fault occurrence stage, four different values of fault impedance are considered,
while in the fault estimation stage, Z f = 1000 Ω.

On the other hand, as the fault location moves away from the observation point,
the impact increased for the cases of Z f = 300 Ω and Z f = 1000 Ω, while, in the fault
estimation stage, Z f = 10 Ω, as shown in Figure 10.

A similar pattern was observed for the cases of Z f = 0 Ω and Z f = 10 Ω, when
Z f = 1000 Ω was assumed in the fault estimation stage, as shown in Figure 11. Therefore,
this analysis shows that both low and high fault impedances should be taken into account
during the fault estimation stage to obtain more accurate results. Then, the fault location
candidate with the highest CCv should be selected.
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4. Identification of Fault Type with Accuracy

The issue of fault type identification for a three-phase transmission line is discussed in
this section. In this regard, a 345 kV frequency-dependent transmission line system with
the configuration illustrated in Figure 12 was investigated; other related parameters were
already presented in Table 1. The corresponding total p.u.l. transmission line impedance
and admittance matrices at f = 1 kHz are as follows:

Z′ =

 0.96 + 13.1i 0.86 + 4.5i 0.86 + 3.6i
0.86 + 4.5i 0.96 + 13.16i 0.86 + 4.5i
0.86 + 3.6i 0.86 + 4.5i 0.96 + 13.16i

Ω/km

Y′ =

 5.5e−5+43i 4.9e−5−7.6i 4.7e−5−3.6i
3.8e−5−7.6i 4.3e−5+44i 3.8e−5−7.6i
4.7e−5−3.6i 4.9e−5−7.6i 5.5e−5+43i

µS/km

(19)

Figure 12. Cross-section representation of three-phase transmission line.

The fault phenomenon was simulated in an EMTP-RV environment, shown in Figure 13,
and H f os was obtained for each phase (explained in Section 2.2), whereas, H f es were
computed at regular spatial steps along the line by solving the multi-conductor transmission
line equation using the BLT formulation (also presented in Section 2).

Figure 13. Schematic representation of the system under study, implemented in EMTP–RV.

For any fault type scenario, three H f es must be stored in principle. It was observed
that, if only the H f es of a three-phase fault scenario were correlated with H f os, then the
accuracy of the method would be affected. For instance, a fault location of 45 km in
Phase “a” was considered, and the related H f os were correlated with the H f es of the three-
phase fault scenario, as shown in Figure 14. The GFL(xg) were inconsistent over all three
phases, with values of 43.9 km, 46.9 km, and 47.30 km for Phases a, b, and c, respectively.
Despite the fact that the CCv of Phase “a” was greater, i.e., 0.8416, identifying the faulty
phase, the estimated fault location was inaccurate. A similar pattern was observed in
other scenarios, which are presented comprehensively in Table 3. This was because of the
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coupling phenomena that exist between the phases. The data in Table 3 are written as (CCv,
xg (km)).

Figure 14. CCvs as a function of the GFL (xg): a fault is considered in Phase “a” at 45 km and esti-
mated in all three phases, while the correlation of the H f os and H f es of the 3-phase fault type scenario
is shown.

Table 3. Test fault location of 45 km having different fault types scenarios and its estimation (CCv, xg)
in each phase by the pseudo approach.

Fault Type Estimation Simulation Storage Data

Phase a Phases ab Phases abc

Phase a a 1.00, 45.0 0.902, 44.6 0.841, 43.9
b 1.00, 45.0 0.474, 47.0 0.487, 46.9
c 1.00, 45.0 0.713, 45.0 0.405, 47.3

Phases ab a 0.898, 45.8 1.00, 45.0 0.941, 44.7
b 0.506, 41.7 1.00, 45.0 0.919, 44.7
c 0.713, 45.0 1.00, 45.0 0.425, 46.8

Phases abc a 0.864,46.4 0.945, 45.8 1.00, 45.0
b 0.534, 43.1 0.926, 45.9 1.00, 45.0
c 0.459, 42.5 0.495, 43.3 1.00, 45.0

In order to address this issue, another so-called pseudo approach is proposed, in which
the H f es for all the possible fault types, e.g., Phases a, b, c, ab, bc, ca, and abc, were stored.
For the sake of simplicity, only three scenarios are written in Table 3. Whenever the fault
event will occur, to identify the fault type, H f os will be correlated with all the storage data
one by one. This will be decided based on the CCv and the consistency of the GFL (xg) in
all three phases.

For demonstration purposes, the identical fault scenario in Phase “a” at 45 km was
repeated, but this time, the related H f os were correlated with H f es of the Phase “a” fault
type. Figure 15 illustrates that the CCvs in all three phases were “1.00” and that the GFL
(xg) were equally consistent and accurate, i.e., 45 km. Thus, the storage data of the fault
estimation stage, at which the so-called “symmetry condition” is satisfied, determine both
the fault type and the location.
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Figure 15. CCvs as a function of the GFL (xg): the fault is considered In Phase “a” at 45 km and
estimated in all three phases, while the correlation between the H f os and H f es of the Phase “a” fault
type scenario is given.

5. Influence of Spatial Step in EMTR Methods
5.1. Issue of Spatial Step in the Fault Estimation Stage

During the fault estimation stage of the EMTR-based fault location methods, the sig-
nificance of the spatial step (∆g) cannot be overlooked. Firstly, a comparison is presented
between the EMTR energy metric and the correlation estimator method while assessing this
issue. For both techniques, a simulation considering a certain spatial step was performed;
in the EMTR energy metric, the simulation was run after the fault occurrence, and in the
correlation estimator, it was already completed before the fault event, which is why it is a
time-efficient approach and, hence, preferred.

For illustration purposes, x f = 8.25 km along the line length of 10 km was considered.
The results are shown in Figures 16 and 17 for the EMTR energy metric and the correlation
estimator method, respectively. Four different values of the spatial steps were selected in
the fault estimation stage, e.g., ∆g = 1000 m (solid blue line), 500 m (dashed purple line),
100 m (dotted-dashed red line), and 10 m (dotted black line). From the figures, it can be
seen that, with a larger spatial step, there was location error in the GFL (xg), and as the
spatial step became smaller, the fault detection accuracy increased.

Moreover, once again, the advantage of the correlation estimator metric was confirmed
by the results shown in Figure 17, where CCv = 1.0000 as the deciding criterionfor the
accurate guess of the test fault location, i.e., x f = xg. Unlike the EMTR energy metric,
as shown in Figure 16, there is no clear and distinctive definition to decide between the
true and false estimations. As it uses a global normalisation, i.e., En = 1 (normalised to
the maximum value) as the fault location criterion, so all the GFLs (xg) could be the best
candidates for the true fault location.

5.2. Memory Burden on Data Storage Devices

The results reported in the previous subsection show that the correlation estimator
has a few advantages over the EMTR energy metric. However, in order to improve the
fault detection accuracy further, the fault estimation stage should use the smallest spatial
step possible. As highlighted in Table 4, it is quite clear that this was only possible when
∆g = 10 m; only then, the fault position was estimated accurately. However, this would
increase the volume of data (number of H f es along the line length), which is an extra burden
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for data storage devices. Moreover, this data volume would increase further for long
transmission line lengths and high-frequency bandwidths, as highlighted in Table 5.

Figure 16. EMTR energy metric: considering different spatial steps in the fault estimation stage.
The test fault location is 8.25 km.

Figure 17. Correlation estimator: considering different spatial steps in the fault estimation stage.
The test fault location is 8.25 km.

Table 4. Correlation estimator: fault location accuracy for different spatial steps in the fault estima-
tion stage.

Test Fault Locations (x f ) (m) Simulated Phase Spatial Step

1000 m 500 m 100 m 10 m

Guessed Fault Location (xg) (m)

20 1000 500 100 20
370 1000 500 400 370
2750 3000 2500 2800 2750
7320 7000 7500 7300 7320

18,690 19,000 19,000 18,800 18,690
23,980 24,000 24,000 24,100 23,980
34,110 34,000 34,500 34,300 34,110
42,540 43,000 43,000 42,800 42,540
46,070 46,000 46,500 46,400 46,070
48,880 49,000 49,000 49,200 48,880
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Table 5. Existing correlation estimator: memory space required for different spatial steps in the fault
estimation stage.

Transmission
Line Length Frequency Simulated Phase Spatial Step

1000 m 500 m 100 m 10 m

Memory Space Required

50 km DC-1 MHz 73 MB 146 MB 733 MB 7.40 GB
DC-5 MHz 370 MB 741 MB 3.67 GB 35.25 GB

100 km DC-1MHz 147 MB 295 MB 1.47 GB 14.9 GB
DC-5 MHz 748 MB 1.5 GB 7.35 GB 74.5 GB

It is clear that gigabytes (GB) of storage space are required to obtain accurate results. To
address this issue and further improve the correlation estimator method, this work proposes
a hybrid approach, which combines a correlation estimator with regression analysis.

6. Regression-Analysis-Based Hybrid Approach

Figure 1 is considered again, and the relevant information was already presented in
Table 1. In this approach, first, H f es with a smaller ∆g were obtained and correlated with
the transfer functions at fewer selected positions, obtaining the CCvs at those locations.
The relationship between the CCvs and line lengths (with a smaller possible ∆g) was
learned to construct a regression model. This model was then used for fault location
prediction on new CCvs (obtained by correlating the selected transfer functions with the
fault occurrence stage transfer function). Therefore, fewer H f es needed to be stored instead
of all of the H f es and, in this way, ultimately relieving the memory burden of the data
storage devices.

The MATLAB regression learner app (RLA) was used for the regression analysis [29].
In this application, the training data were imported and trained with the available re-
gression models. Based on their statistical properties, the best-fit models were selected,
which were then evaluated on new data and and exported for future use as standalone
applications. The available regression models in RLA are linear regression, decision trees,
Gaussian process regression, support vector machines, and ensembles of tree.

Five locations were selected along the line length of 50 km as the storage locations,
e.g., xg (SL) = [10 m, 12,500 m, 25,000 m, 37,500 m, 49,990 m]. The transfer functions
corresponding to these positions are known as storage transfer functions (HSTF). These
HSTF were then correlated with H f es (obtained at ∆g = 10 m), and the CCvs were computed
utilising Equation (6), mathematically written as follows:

CCvs(xg[SL]) = 〈HSTF( f ;xg [SL])H f es( f ;xg [∆g=10 m])〉
σ(xg [SL])σ(xg [∆g=10 m])

(20)

These CCvs served as the independent variable, and a line length of 50 km with a
spatial step of ∆g = 10 m was taken as the dependent variable. This training dataset was
imported into MATLAB RLA to learn the relationship, employing all the available models.
Table 6 displays the statistical outcomes of these models. It is important to note that, for the
sake of simplicity, only models with substantial outputs are listed in the table, where
MSE = mean-squared error, RMSE = root-mean-squared error, MAE = mean absolute error,
and R2 = determination coefficient, which are mathematically defined as [30]

MSE =

N
∑

i=1
(yi−ŷi)

2

N−(q+1) ; RMSE =
√

MSE

MAE = 100
N

N
∑

i=1

∣∣∣ yi−ŷi
yi

∣∣∣ ; R2 = 1−

N
∑

i=1
(yi−ŷi)

2

N
∑

i=1
(yi−ȳ)2

(21)
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ȳ, yi, and ŷi are the mean, observed, and fit values of the dependent variable, respectively,
whereas N and q are the total No. of observations and predictors, respectively. On the basis
of these parameter values, the performance of the regression models was evaluated and
the best-fit model was selected.

Table 6. Statistical outputs of regression models.

Regression Model RMSE R2 MAE Training Time (s)

Tree Fine 159 1 108 5.49
Tree Medium 170 1 112 3.2

SVM Fine Gaussian 1787 0.98 1654 69.75
SVM Medium Gaussian 1292 0.99 1147 14.8
Ensemble Bagged Trees 178 1 49 24.6

GPR Squared Exponential 72 1 18 837.26
GPR Matern 5/2 27 1 8 1218

GPR Exponential 18 1 5.11 1991
GPR Rational Quadratic 35 1 12 2450

As can be seen in Table 6, the Gaussian process regression (GPR) models outperformed
the other regression models. In addition, GPR exponential has the lowest RMSE value = 18 and
a determination coefficient value (R2) of “1”. Although the other regression models also
had a determination coefficient value of “1”, the RMSE is considered the best criterion
for the decision; moreover, the model that gave the required results would be the best
choice [30]. The response plot at one of the storage locations for GPR exponential is shown
in Figure 18. It is clear that there was a perfect agreement between the regression estimation
and the training sample data. After training the data, the regression models were tested
on new data, which were obtained by correlating HSTF with H f os of some random fault
locations along the line (e.g., 20 m, 370 m, 2750 m, 7320 m, 18,690 m, 23,980 m, 34,110 m,
and 42,540 m), mathematically defined as

CCvs(new) =
〈H f os( f )HSTF( f ;xg [SL])〉

σf osσSTF(xg [SL]) (22)

Figure 18. Response plot of GPR exponential at one of the storage locations, i.e., 37,500 m.
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It was observed that the GPR models provided more precise and consistent fault loca-
tion estimation. As shown in Figure 19, the exponential model produced more promising
outcomes within the GPRs, with the error near zero. The absolute error is mathematically
denoted as

Absolute Error (m) =
∣∣∣x f − xg

∣∣∣ (23)

Figure 19. Comparison of the GPR models in the prediction of fault locations.

As the objective of this presented analysis was to reduce the amount of memory space
required, the case was made to show that a fault can be computed accurately with just a
few transfer functions and a regression model. Table 7 compares the memory requirements
of the hybrid technique and the existing correlation estimator (with a smaller spatial step).
It is obvious that only tens or hundreds of megabytes were required, as opposed to allotting
gigabytes (GBs) of memory for H f es. For instance, for the case of line length = 100 km
and frequency spectrum = DC-5MHz, while employing the existing correlation estimator,
the memory space requirement was 75 GB, whereas, the same job could be performed with
80 MB by taking advantage of the machine learning algorithms.

Table 7. Memory space requirement: comparison between the existing correlation estimator and the
hybrid approach.

Transmission
Line Length Frequency Memory Space Required

Existing Correlation Hybrid Approach

50 km DC-1 MHz 7.40 GB 7.9 MB
DC-5 MHz 35.25 GB 38.9 MB

100 km DC-1 MHz 14.9 GB 15.9 MB
DC-5 MHz 74.5 GB 79.7 MB

As discussed in Section 3, two separate copies of H f es are required for low- (Z f = 10 Ω)
and high-impedance (Z f = 1000 Ω) fault scenarios to locate the fault position accurately.
This will, however, use more memory space; therefore, a hybrid approach can be applied
to both scenarios independently to alleviate the large memory requirement for the data
storage devices. Consequently, the fault location processes can be stated as follows: when-
ever a fault occurs, H f os will be correlated with HSTF of low- and high-impedance faults.
The regression model and HSTF for fault location prediction will be selected based on the
maximum CCv of the two scenarios. For instance, in Figure 20, it can be seen that the H f os
due to x f = 10 km with Z f = 0 Ω was correlated with HSTF of low- and high-impedance
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faults, and the CCv of HSTF @ Z f = 10 Ω was higher. Therefore, for fault prediction, this sce-
nario was selected to give 10.05 km. Similarly, for H f os due to x f = 35 km with Z f = 500 Ω,
as the CCv of HSTF @ Z f = 1000 Ω was higher, so it would be utilised for fault prediction,
which was 35.13 km.

Figure 20. Correlation of low- and high-impedance fault—HSTF with H f os due to x f = 10 km with
Z f = 0 Ω and 2000 Ω (left column) and with H f os due to x f = 35 km with Z f = 0.1 Ω and 500 Ω
(right column).

The pseudo approach described in Section 4 will also require additional memory,
because it takes GBs to store just one copy of H f es; as we mentioned in the case of a
single-conductor transmission line, so the more memory space will be needed to store
transfer function copies for each fault type. The memory burden once again was reduced
by employing the hybrid approach, as argued before. The results provided in Table 3 are
repeated in Table 8 using the hybrid method (requiring only a few selected transfer functions
with a regression model). Even with a few selected transfer functions, the similarity of the
results in Tables 3 and 8 is evident. It is important to note that, although a new database
must be generated when the system topology is altered, this will not influence the method’s
efficiency because the data are prepared prior to fault occurrences, and this is not repeated.

Table 8. Test fault location of 45 km having different scenarios of fault types and its estimation by the
pseudo and hybrid approaches.

Fault Type Estimation (xg
′) Fault Estimation Stage Storage Data

Phase a Phases ab Phases abc

Phase a a 44.99 40.73 36.2
b 45 29.09 32.4
c 44.99 37.2 28.5

Phases ab a 39.8 45.05 46.9
b 49.5 45 43.8
c 43.5 44.99 29.4

Phases abc a 38.35 46.63 45
b 38.8 35.71 44.9
c 30.66 27.25 45
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7. Conclusions

In this paper, some key issues relating to the fault estimation stage of the correlation
estimator method were analysed. First of all, the impact of the fault impedance mismatch
between the fault occurrence and fault estimation stages was discussed. An error in the
fault location was observed for the fault positions far from the observation point. To tackle
this problem, a simple approach was proposed in which the fault estimation stage transfer
functions are stored separately for low- and high-impedance faults. Secondly, a new pseudo
method was developed to correctly identify fault types and pinpoint their precise locations,
in which the fault estimation stage transfer functions were stored for all possible fault types.

Finally, the important issue of the spatial step, considered in the fault estimation
stage of conventional EMTR and the correlation estimator methods, was studied. Mean-
while, the advantage of the latter method was also highlighted, which was based on the
CCv. It was shown that only a smaller spatial step ensures the fault location’s accuracy,
but at the cost of more memory space required. This problem was solved by proposing a
hybrid approach utilising a mixture of the correlation estimator method and regression
analysis, in which a few locations along the line length were selected to store their corre-
sponding transfer functions. These transfer functions were correlated with the transfer
functions having a smaller spatial step to provide the CCv. The line length and CCv then
served as the training data for the regression model’s construction, and the Gaussian pro-
cess regression was the best-fit model to predict the fault location. It was demonstrated
that, by employing the existing correlation estimator, the memory space requirement was
75 GB, whereas the same job could be performed with 80 MB by taking advantage of the
proposed approach.

The hybrid approach was also applied in conjunction with the simple and pseudo
approaches. It is important to note that the current analyses were based on theoretical
and simple cases. Complex networks will be investigated in future studies, and the
experimental validation of the method proposed will be presented using field data from
real-world systems. Moreover, the study of nonlinear fault impedance scenarios with
uncertain parameters is already in progress.
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