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Abstract: Density peaks clustering (DPC) algorithm can process data of any shape and is simple and
intuitive. However, the distance between any two high-dimensional points tends to be consistent,
which makes it difficult to distinguish the density peaks and easily produces “bad label” delivery.
To surmount the above-mentioned defects, this paper put forward a novel density peaks clustering
algorithm with isolation kernel and K-induction (IKDC). The IKDC uses an optimized isolation kernel
instead of the traditional distance. The optimized isolation kernel solves the problem of converging
the distance between the high-dimensional samples by increasing the similarity of two samples in
a sparse domain and decreasing the similarity of two samples in a dense domain. In addition, the
IKDC introduces three-way clustering, uses core domains to represent dense regions of clusters,
and uses boundary domains to represent sparse regions of clusters, where points in the boundary
domains may belong to one or more clusters. At the same time as determining the core domains,
the improved KNN and average similarity are proposed to assign as many as possible to the core
domains. The K-induction is proposed to assign the leftover points to the boundary domain of the
optimal cluster. To confirm the practicability and validity of IKDC, we test on 10 synthetic and 8
real datasets. The comparison with other algorithms showed that the IKDC was superior to other
algorithms in multiple clustering indicators.

Keywords: DPC; high-dimensional data; three-way clustering; isolation kernel; K-induction

1. Introduction

As the volume and dimensionality of data continue to increase, the focus has moved
to how to analyze and process this data effectively. As a powerful data analysis tool [1,2],
clustering has been widely applied in pattern recognition [3,4], intrusion detection [5,6],
medicine [7,8], sensors [9,10], and many other fields.

Clustering can generally be categorized by partition [11,12], hierarchy [13,14], den-
sity [15–18], grid [19,20], model [21], and graph [22]. k-means [11] is a partition-based
clustering algorithm. Although this algorithm can handle complex data well and has
low complexity, it has many disadvantages; for example, it depends heavily on the input
parameter k and is sensitive to outliers. To find the optimal parameter k, Dinh et al. [23]
used the silhouette coefficient to evaluate the quality of different clusters to find the optimal
solution. Density-based clustering can also avoid the above problems well. It finds the
cluster center and noise by calculating the density of each sample point and avoids the
influence of setting the number of clusters and noise in advance on the results. Some
of the more classic ones are density-based spatial clustering of applications with noise
(DBSCAN) [24] and DPC [25].

DBSCAN [24] can discover arbitrarily shaped clusters in the noise space with just
two parameters, making the clustering results almost independent of the traversal order
of the nodes. However, DBSCAN strongly depends on the distance and is not suitable for
datasets with small density differences. However, DBSCAN has a strong dependence on the
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parameter and is not suitable for datasets with small differences in density. DBSCAN is only
effective for spherical data and has a poor impact on aspheric data. Campello et al. [26]
proposed the hierarchical density-based spatial clustering of applications with noise (HDB-
SCAN). It combined DBSCAN with hierarchical clustering, redefined the distance between
samples, and solved the problem that DBSCAN relies heavily on input parameters. How-
ever, this algorithm does not work well with boundary points.

DPC was proposed by Alex et al. [25]. It eliminates the drawbacks of DBSCAN and
HDBSCAN, which are only valid for spherical data, can find density peak points with
fewer parameters, and can efficiently assign points and remove noise. Meanwhile, DPC
can automatically find the cluster centers and realize efficient clustering of data of any
shape. However, there are still some drawbacks with DPC, mainly in two aspects: (1) poor
applicability in high-dimensional spaces. With the advent of massive data, the dimen-
sionality of the data is growing exponentially. When the dimensionality of data is high,
it can be proven by the theorem of large numbers that the sum of independent random
variables converges to a fixed value when the size of the variables is large, at which time
the distances between high-dimensional samples tend to be equal. This means that the
traditional distance formula becomes meaningless when calculating the distance between
high-dimensional samples, which leads to a poor clustering effect; (2) error message deliv-
ery. The leftover points are directly allocated to the cluster in which the closest and denser
point is located, without consideration of the information of the neighboring points. If a
point is incorrectly assigned during this process, this error will be passed on to subsequent
points, causing points that should not belong to a cluster to be assigned to a cluster, thus
resulting in clustering failure; (3) deviation from human semantic interpretation. DPC
belongs to hard clustering and does not take human semantic interpretation into account.

Aiming at the poor practicability of DPC in high-dimensional data, Xu et al. [27]
introduced the grid granularity framework into DPC to address the poor clustering of DPC
on large-scale datasets. Du et al. [28] introduced Principal Component Analysis (PCA) into
the KNN-DPC model to perform dimensionality reduction operations on high-dimensional
data before clustering. Although the above two algorithms have good feasibility and
can obtain satisfactory results on relatively high-dimensional datasets, when the dataset
presents vertical stripes, the clustering can be reduced to poor results. Hu et al. [29]
used PCA, autoencoder (AE), and t-distributed stochastic neighbor embedding (t-SNE) to
automatically extract features from high-dimensional data and then used Quasi-Monte
Carlo (QMC) to estimate the distribution of low-dimensional samples to obtain clustering
results. Mohamed et al. [30] first convert high-dimensional data into a two-dimensional
space using t-SNE and cluster low-dimensional data using mutual nearest neighbors.
The above two algorithms both use dimensionality reduction technology to process high-
dimensional data, which can easily cause information loss. Wang et al. [31] provided
feasible channels for data of different dimensions to achieve dimensionality reduction of
complex data.

Aiming at the “bad label” delivery in the DPC, Yu et al. [32] improved the validity
of DPC by collecting information on the dynamics of nearest neighbors. Li et al. [33] put
all data points into polar coordinates, calculated the distance and cosine values between
any two points, and finally output the results with a sparse matrix. It can be efficient to
minimize the running time of DPC. Liu et al. [34] proposed a two-step clustering using
shared nearest-neighbor information. Sun et al. [35] redefined local density by taking into
account information about nearest neighbors. Chen et al. [36] grouped samples with k of
the same nearest neighbors into a cluster. Seyedi et al. [37] established a similarity fusion
matrix to dynamically update the label information. All the above algorithms consider
only the K nearest neighbors around the leftover points and lack consideration of global
information. Yu et al. [38] proposed the use of evidence theory to collect and fuse neighbor
information of the leftover samples, which can effectively solve the error message delivery.
However, it is difficult to solve the conflict problem, and the fusion accuracy is not enough.
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To surmount the above-mentioned defects, this paper put forward a novel density
peaks clustering algorithm with isolation kernel and K-induction. The following are the
major contributions:

1. The isolation kernel is introduced and optimized. In this paper, the traditional dis-
tance is replaced by an optimized isolation kernel, which increases the similarity of
two samples in a sparse domain and decreases the similarity of two samples in a
dense domain. It solves the problem of poor applicability of high-dimensional data,
further improves the accuracy of the algorithm, and solves the failure of traditional
distance in high-dimensional spaces;

2. Three-way clustering is introduced, and the interval sets of the core domain and
boundary domain are used to represent the clustering result. First, the KNN based on
the optimized isolation kernel is exploited to find the K neighbors of the core domain
center, and the initial core domain is obtained. Then, the range of the initial core
domain is continuously expanded through the average similarity to obtain the final
core domain;

3. The K-induction similarity is proposed. According to the K-induction similarity, each
leftover point is allocated to the boundary domain of the cluster where the neighbor
point with the largest K-induction similarity is located, which effectively avoids the
domino effect and better solves the “bad label” delivery.

The rest of the paper is as follows: The DPC, the isolation kernel, and the three-way
clustering are detailed in Section 2. The IKDC is further elaborated upon in Section 3. The
preliminary results are displayed in Section 4 to support the efficiency of the IKDC. The
implications and future work are mentioned in Section 5.

2. Preliminaries

The main symbols used in this section are listed in Table 1.

Table 1. Symbols and descriptions.

Symbol Description

XD global sample points
X′ a subset of sample points in the universe
xi i-th sample point
ρi local density of sample point i

δi
distance from xi to the closest point with

higher density than it
θ isolation partition

CP
r the core domain of the r-th cluster

CB
r the boundary domain of the r-th cluster

CN
r the noise domain of the r-th cluster

2.1. Density Peaks Clustering

The DPC finds the peak density points by calculating the local density ρi. The DPC
uses them as cluster centers, and then the leftover points are allocated directly to the cluster
where the denser and closest points are located. For any point xi, the local density of xi is
ρi, as shown in Equation (1).

ρi =
n

∑
j=1

χ
(
dij − dc

)
(1)

where n is the number of points, dij is the distance between xi and xj, dc is the cutoff
distance, and χ(x) is the logical function when x < 0, χ(x) = 1, otherwise χ(x) = 0.
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δi is the shortest distance between xi and a point denser than it, as shown in Equation (2).
If no point with a higher density is found, the local density is made to be the farthest
distance in the dataset.

δi = min
i:ρi<ρj

(dij) (2)

According to the above definition, by constructing a decision diagram of δi relative to
ρi, the points are classified into three different types, i.e., density peaks, normal points, and
noise. The density peaks are chosen as the cluster centers, and then the DPC allocates the
leftover points to denser and the closest clusters.

2.2. Isolation Kernel

The isolation kernel is a special kernel function that uses the data isolation mechanism
to design a similarity measurement method. It can increase the similarity between points in
low-density areas and reduce the similarity between points in high-density areas. Different
from traditional distances or kernels, isolation kernel [39,40] has no closed expressions and
is stemmed directly from a dataset without learning [41]. The similarity between the two
points is measured based on the partitions created in the data space.

A key requirement for an isolation kernel is a spatial partitioning mechanism that
isolates a point from other points in the sample set. There are many kinds of spatial
segmentation mechanisms, the commonly used ones are isolation forest [42,43], Voronoi
Diagram [44,45] and isolating hyperspheres [46,47]. The definition of isolation kernel is
as follows [39,40]: Suppose Hψ

(
XD) represents the set of all admissible partitions of H

derived from a given finite dataset XD, where each H is from a random subset X
′ ⊂ XD,

and each point in X
′

has an equal probability of being chosen from XD, and |X′ | = ψ. The
role of the isolation partition θ(θ ∈ H) is to isolate the point z ∈ X

′
from other points in X

′

in a given random subset X
′
. The union of θ covers the entire dataset.

Given a data space XD, the isolation kernel about XD between any two points,
x, y ∈ XD is defined as the density distribution expectation that all H, x, and y belong to
the same isolation partition θ, as shown in Equation (3).

Kψ

(
x, y | XD

)
= EHψ(XD)[I(x, y ∈ θ | θ ∈ H)] (3)

where I(B) is the indicator function; if B is true, it outputs 1, otherwise, it outputs 0.
In fact, the isolation kernel Kψ is computed through a partition Hm ∈ Hψ(XD)

(m = 1, 2, · · · , t), as shown in Equation (4).

Kψ(x, y|XD) =
1
t

t

∑
m=1

∑
θ∈Hmi

I(x ∈ θ)I(y ∈ θ) (4)

where Kψ(x, y) ∈ [0, 1].

2.3. Three-Way Clustering

Given a data space XD = {x1, · · · , xi, · · · , xn}, where xi = {x1
i , x2

i , · · · , xD
i },

each object xi has D-dimensional attributes. The traditional cluster result is shown as
C = {C1, · · · , Cr, · · · , Ck}, where k is the number of clusters, which does not conform to the
semantic interpretation of human thinking. Three-way clustering (3w) [48–50] introduces
the idea of a three-way decision [51,52] and divides the global data space into CP

k , CB
k , and

CN
k , which are, respectively, the core domain, boundary domain, and noise domain of the

cluster, as shown in Equation (5). The samples in the core domains definitely belong to
this cluster, the samples in the boundary domains may or may not belong to this cluster,
and the samples in the noise domain definitely do not belong to this cluster. Three-way
clustering uses two disjoint sets (CP

r ∪ CB
r ) to represent a cluster, which is in accordance

with human cognition.
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CP
r ∪ CB

r ∪ CN
r = XD (5)

3. The Model of IKDC

As the dimensionality of the data becomes higher and higher, the distances be-
tween points tend to be equal, and the traditional Euclidean distance metric fails in high-
dimensional space. In addition, DPC will assign the leftover points to the closest and denser
clusters. If a point is incorrectly assigned, this “bad label” will be passed to the next leftover
point that is assigned, which will have a domino effect. To surmount the above-mentioned
defects, this paper will make improvements to the DPC in two directions: (1) introducing a
new distance based on isolation kernel; (2) defining the K-induction similarity to assign the
leftover points and assigning them to the boundary domain of the cluster with the highest
K-induced similarity. In this section, the basic details of the IKDC will be given, and its
time complexity will be theoretically analyzed.

3.1. Determining Cluster Centers and Noise Points

When the dimensionality of data is high, it can be proved by the theorem of large
numbers that the sum of independent random variables converges to a fixed value when
the size of the variables is large, and the distances between any high-dimensional samples
tend to be equal. At this time, density peak points cannot be found using the traditional
distance formula, resulting in poor clustering results. Therefore, to solve the above problem,
this paper introduces the isolation kernel and improves it. The isolation kernel can increase
the similarity of samples in the sparse domain and reduce the similarity of samples in
the dense domain, effectively solving the problem of consistent similarity between high-
dimensional samples. From this, it can be seen that compared with the distance calculation
metric used by the DPC, the isolation kernel is more suitable for calculating the distance
between high-dimensional samples. In this paper, the space segmentation mechanism of
the isolation forest is used to construct the isolation kernel, and function Kψ is used to
replace the distance calculation metric in the DPC. The optimizing distance based on the
isolation kernel is further obtained, as shown in Equation (6).

Definition 1 (distance based on isolation kernel). Given a data space XD, the distance d̃ij based
on the isolation kernel between points xi and xj is given by Equation (6).

d̃ij =
1

Kψ(xi, xj|D) + 1
t

(6)

where t is the number of total trees in the isolation forest.

IKDC uses the distance based on the isolation kernel instead of the traditional distance
and then follows the idea of DPC to find cluster centers and noise. The cluster centers and
noise are put into the core domains and noise domain Ω, respectively, and the noise domain
is removed from the global dataset to put the effect of noise on the clustering results to
the minimum.

To overcome the problem that the KNN algorithm fails in high-dimensional space, the
improved KNN is obtained by using the distance based on the isolation kernel instead of
the distance formula in the KNN algorithm.

3.2. Using Improved KNN and the Average Distance to Determine the Core Domains

After determining the cluster centers and noise points, IKDC first removes the noise
points from XD, uses the improved KNN algorithm to determine the initial core domains
in the set XD −Ω, denoted as qj(j ∈ [1, K]), and then continuously expands the range of
the core domain through the average distance to obtain the final core domain.
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Definition 2 (the K-nearest neighbors). Given a data space XD, for any point p in the dataset,
its K-nearest neighbor representation is shown in Equation (7).

Kp = {qj|j ∈ [1, K]} (7)

where K is the number of nearest neighbors.

Definition 3 (the average similarity). Given a data space XD and the point p, the average
similarity is shown in Equation (8).

davg
p =

1
K

K

∑
1

d̃pqj (8)

where d̃pqj(j∈[1,K]) is the distance based on the isolation kernel between point p and its j-th near-
est neighbor.

Based on the initial core domain, the final core domain is obtained by continuously
expanding the core domain range through the average similarity, as shown in Equation (8).
More details are shown in Algorithm 1.

Algorithm 1 Determining the core domain based on the average similarity

Input: cluster center c = {c1, · · · , cr, · · · , ck}, data space XD −Ω
Output: core domain {cp

1 , cp
2 , · · · , cp

k }
1: for r = 1, r <= k do
2: find K-nearest neighbors of cr → KNNcr ;
3: CP

r = [cr; KNNcr ];
4: initialize Q = KNNcr ;
5: while Q is not empty do
6: select the head point p;
7: find its K-nearest neighbors KNNp = {q1, · · · , qj, · · · , qK};

8: davg
p = 1

k

K
∑
1

dpqj ;

9: for each point qj in KNNp do
10: if dpqj <= davg

p then
11: CP

r = CP
r ∪ qj;

12: add qj to the end of Q;
13: end if
14: end for
15: remove p from the head of Q;
16: end while
17: end for
18: return {cp

1 , cp
2 , · · · , cp

k }

3.3. Using K-Induction to Assign Remaining Points

After the final core domains of the cluster are determined by Algorithm 1, K-induction
is used to assign the other remaining points to the boundary region of the determined
cluster. The main idea is that, for a point p, the K neighbors of its surrounding can be
regarded as K pieces of information, and by fusing this information, p is derived as to
which cluster it belongs to. The K-induction expands the search range by integrating
neighbor information of its neighbor, which effectively avoids the transfer of bad labels. It
can not only avoid the limitation caused by only considering neighbor information, but
also reduce the time consumed when searching for global information. Therefore, this
paper first calculates the K-induction between the leftover point p and the surrounding
K-neighbor and, secondly allocates the leftover points to the cluster where the point with
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the maximum K-induction is located. At this time, two situations may occur: (1) If there
is only one neighbor qj with the maximum K-induction, it allocates the point p to the
boundary domains of the cluster where the neighbor with the largest K-induction is located.
If qj has not been assigned, it continues to iterate until the most suitable cluster is found;
(2) If there are two or more neighbor points with the maximum K-induction, then it assigns
the points to the boundary domains of the clusters where these neighbor points are located.
If these neighbor points have not been assigned, then it continues to iterate. More details
are shown in Algorithm 2.

Algorithm 2 Assign the remaining points to the boundary domain based on K-induction

Input: the set of R remaining points XD −Ω−
{

CP
1 , CP

2 , · · · , CP
k
}

Output: boundary domain
{

CB
1 , CB

2 , · · · , CB
k
}

1: for each remaining point pi do
2: calculate the neighbor similarity between point pi and the j-th K-nearest-neighbor in

the direction of qj using Equations (9)–(12);
3: end for
4: construct a neighbor similarity matrix S =

[
s
(

pi, qj
)]

R×K;
5: while ∃ the maximum s =

(
pi, qj

)
in S do

6: m, n← arg max
i∈[1.R],j∈[1,K]

s
(

pi, qj
)
;

7: CB
n = CB

n ∩ pm;
8: for each unassigned point e satisfying pm ∈

e,pm
KNNe do

9: calculate the neighbor similarity between point e and the m-th K-nearest-neighbor
in the direction of qm using Equations (9)–(12);

10: update the related values in the matrix S;
11: end for
12: end while
13: for each fringe point pi do
14: calculate the neighbor similarity between point pi and the j-th K-nearest-neighbor in

the direction of qj using Equations (9)–(12);
15: n← arg max

i∈[1.R],j∈[1,K]
s
(

pi, qj
)
;

16: CB
n = CB

n ∩ pi;
17: if the point p is still not assigned then
18: find the assigned point q which is nearest to p;
19: assign p to the boundary domains of the same cluster as q is located;
20: end if
21: end for
22: return {cp

1 , cp
2 , · · · , cp

k }

Definition 4 (the neighbor difference). Given a data space XD and the point p, the neighbor
difference between the K-neighbors of the point p and the j-th K-nearest neighbor qj is shown in
Equation (9).

difp
(
qj
)
=

1
K ∑

∥∥∥Kp − Kqj

∥∥∥ (9)

Definition 5 (the neighbor weight). Given a data space XD and the point p, the weight of the
point p and the j-th K-nearest neighbor qj is shown in Equation (10).

ωp
(
qj
)
=

exp
(
−αdi fp

(
qj
))

∑j∈[1,K] exp
(
−αdi fp

(
qj
)) (10)

where α is an input parameter in (0, 1).
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Definition 6 (the weighted difference). Given a data space XD and the point p, the weighted
difference between the point p and the j-th K-nearest neighbor in the direction of qj is shown in
Equation (11).

dω
p
(
qj
)
=

1
K

(
ωp

(
qj
)
⊗

∥∥∥Kp − Kqj

∥∥∥) (11)

where ⊗ represents the dot product of two vectors.

Definition 7 (the K-induction similarity). Given a data space XD and the point p, the K-
induction similarity of point p with the j-th K-nearest neighbor qj is shown in Equation (12).

s
(

p, qj
)
= exp

(
−dω

p
(
qj
))

(12)

Given the original data distribution and core domain range as shown in Figure 1, the
detailed steps for calculating the K-induction similarity of unassigned points are shown in
Figure 2, where α = 0.05, K = 4.

1

13
p

1
PC

2
PC

12

11

10
8
2 9

3

4

5
7

6

Figure 1. Raw data distribution and core domain range.

The K-induction similarity of unassigned point 1 with its four neighbors (2, 3, 4, 5)
and the K-induction similarity of neighboring points 2, 3, 4 and 5 with their neighbors are
shown in Figure 2. The neighbor difference between unassigned points 1 and 2, 3, 4 and
5 is obtained by Equation (9), and based on this, the neighbor weight is calculated using
Equation (10), as shown in Figure 2. Then, the weighted difference of unassigned point
1 from its neighboring points is obtained using Equation (11), as in Figure 2. Finally, the
K-induction similarity between unassigned point 1 and its neighboring points is calculated
using Equation (12), as in Figure 2.

3.4. The Computation Complexity Analysis of IKDC

The computation complexity of the IKDC is discussed below. The major difference
between the IKDC and the DPC lies in Algorithms 1 and 2. Therefore, this paper limits
discussion to these two algorithms. In Algorithm 1, for each data point, the distance based
on the isolation kernel d̃ij is calculated, and the core centers are determined, resulting in O
(n2) complexity. The K-nearest neighbors for each core center are found, resulting in O(Kn)
complexity. Algorithm 2 involves finding K-nearest neighbors and calculating K-induction
for each of the remaining points. Noticing that K-nearest neighbors have been obtained in
Algorithm 1, this algorithm has a computation complexity of O(Kn). In summary, due to K
being much smaller than n, IKDC has a computation complexity of O (n2).
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1.2484 1.9960 1.9960 2.4937

1

1.2484 1.9960 1.9960 2.4937

2
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3
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1.1099 1.1099 1.4265 1.9660

5

6 7 8 2

0 0 0 0

2

1 5 8 9

0 0 0 0

3

9 10 11 12

1.2454 1.3263 2.9791 7.4073

4

1 13 3 12

0.1385 0.8861 0.5695 0.4977

5

6 7 8 2

0 0 3.2395 0.5230

1

0.2615 0.2615 0.2224 0.2547

1

2 3 4 5

0 0 0 0

2

1 5 8 9

0 0 0 0

3

9 10 11 12

0.3257 0.3468 0.6626 1.8866

4

1 13 3 12

0.0362 0.2317 0.1267 0.1268

5

6 7 8 2

0 0 3.2217 0.5214

1

1 1 0.0399 0.5937

1

2 3 4 5

distance based on isolation kernel

the neighbor difference:
pdif

the neighbor weight: p

the weighted difference

the K-induction

Figure 2. The detailed steps of K-induction similarity.

4. Experiment Analysis

To validate IKDC, we carried out experiments on 10 synthetic datasets and 8 real
datasets. These datasets for this paper are from http://archive.ics.uci.edu/ml/index.php,
accessed on 29 November 2022.

The details of the datasets are shown in Tables 2 and 3. This paper uses Accuracy
(ACC), Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI) [53] to eval-
uate the performance of the algorithm. The maximum value of the above three indicators
is 1. The closer the value of the indicators is to 1, the stronger the clustering performance.

To reflect the experimental results of the algorithm more objectively, in this paper, the
variable parameters of different datasets are set within the allowable range, and the most
suitable parameters are obtained by repeating the experiment many times. The experiment
is repeated 100 times independently according to this method, and the average results
are recorded.

http://archive.ics.uci.edu/ml/index.php
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Table 2. Synthetic datasets.

Dataset Instances Dimensions Clusters

Aggregation 788 2 7
Flame 240 2 2

Jain 373 2 2
Pathbased 300 2 3

R15 600 2 15
Spiral 312 2 3
D31 3100 2 31

DIM512 1024 512 16
S2 5000 2 15

Compound 399 2 6

Table 3. Real datasets.

Dataset Instances Dimensions Clusters

Wine 178 13 3
WDBC 569 30 2
Seeds 210 7 3
Libras 360 90 15

Ionosphere 351 34 2
Waveform 5000 21 3

Waveform (noise) 5000 40 3
Spectrometer 531 102 48

4.1. Experiments on Synthetic Datasets

In this subsection, the effectiveness of IKDC on the 10 synthetic datasets in Table 2
will be demonstrated. For ACC, NMI, and ARI, IKDC is compared with DPC [25], DB-
SCAN [24], KNN-DPC [28], SNN-DPC [34], and FCM [54]. The experimental results of
the six algorithms on different datasets are presented in Tables 4 and 5. Figures 3–7 can
more intensively display the experimental results of the six different algorithms on the
Aggregation, Flame, and Jain datasets, where different clusters are distinguished by color,
In Figure 7, the solid dots of the same color represent the core domain, and the dots of
the same color and different shapes represent the boundary domain of this cluster. Since
DIM512 is a high-dimensional dataset, no graph is formed to show its clustering results in
this paper.

As shown in Figures 3a, 4a, 5a, 6a and 7a, the clustering effect of IKDC is improved
over the other algorithms on the Aggregation dataset, with DBSCAN having the worst
effect. IKDC was 0.024, 0.034, and 0.038 higher than DBSCAN in ACC, NMI, and ARI
values, respectively. As shown in Figures 3b, 4b, 5b, 6b and 7b, for the Flame dataset, IKDC,
DPC, DBSCAN, and KNN-DPC all perform well, and FCM has the worst clustering result.
As shown in Figures 3c, 4c, 5c, 6c and 7c, for dataset Jain, the clustering results of both
IKDC and SNN-DPC are superior. As shown in Table 4, on the Spiral dataset, IKDC, DPC,
DBSCAN, KNN-DPC, and SNN-DPC all have good clustering effects, and only FCM has
the worst clustering effect. Compared with FCM, IKDC improved the ACC, NMI, and
ARI values by 0.66, 1, and 1.006, respectively. This shows that after introducing the fuzzy
domain, IKDC is more effective.

From Table 5, it can be concluded that IKDC outperforms the other five algorithms in
clustering on the DIM512 dataset with higher dimensionality. In comparison with FCM with
the worst clustering effect, the ACC, NMI, and ARI values of IKDC are improved by 0.223,
0.296, and 0.314. Therefore, IKDC has a better clustering effect in high-dimensional space.

From Tables 4 and 5, it can be concluded that IKDC outperforms the other five cluster-
ing algorithms for the remaining five datasets, especially when the datasets are unevenly
distributed and of high dimensionality.
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To sum up, by comprehensively considering the performance of the six algorithms in
Tables 4 and 5 on the three clustering indicators and Figures 3–8, it can be concluded that
IKDC outperforms the other five algorithms on the 10 synthetic datasets, which verifies
that IKDC has a superior clustering effect.

Table 4. ACC, NMI, and ARI of six algorithms on different synthetic datasets.

Algorithm ACC NMI ARI Algorithm ACC NMI ARI

Aggregation Spiral

IKDC 1.000 1.000 1.000 IKDC 1.000 1.000 1.000
DPC 0.995 0.992 0.990 DPC 1.000 1.000 1.000

DBSCAN 0.973 0.958 0.958 DBSCAN 1.000 1.000 1.000
KNN-DPC 0.997 0.992 0.996 KNN-DPC 1.000 1.000 1.000
SNN-DPC 0.978 0.955 0.959 SNN-DPC 1.000 1.000 1.000

FCM 0.778 0.825 0.684 FCM 0.340 0.000 -0.006

Flame D31

IKDC 1.000 1.000 1.000 IKDC 0.970 0.962 0.953
DPC 1.000 1.000 1.000 DPC 0.968 0.958 0.936

DBSCAN 1.000 1.000 1.000 DBSCAN 0.968 0.957 0.935
KNN-DPC 1.000 1.000 1.000 KNN-DPC 0.970 0.960 0.940
SNN-DPC 0.998 0.899 0.950 SNN-DPC 0.974 0.963 0.974

FCM 0.850 0.442 0.488 FCM 0.891 0.862 0.936

Jain DIM512

IKDC 1.000 1.000 1.000 IKDC 0.966 0.951 0.956
DPC 0.981 0.976 0.970 DPC 0.944 0.940 0.935

DBSCAN 0.928 0.895 0.890 DBSCAN 0.851 0.774 0.749
KNN-DPC 0.970 0.960 0.940 KNN-DPC 0.918 0.897 0.890
SNN-DPC 1.000 1.000 1.000 SNN-DPC 0.939 0.896 0.926

FCM 0.778 0.831 0.707 FCM 0.743 0.655 0.6428

Table 5. ACC, NMI, and ARI of six algorithms on different synthetic datasets.

Algorithm ACC NMI ARI Algorithm ACC NMI ARI

Pathbased S2

IKDC 0.980 0.920 0.916 IKDC 0.966 0.951 0.956
DPC 0.753 0.555 0.472 DPC 0.944 0.940 0.935

DBSCAN 0.823 0.731 0.613 DBSCAN 0.851 0.774 0.749
KNN-DPC 0.760 0.561 0.561 KNN-DPC 0.918 0.897 0.890
SNN-DPC 0.977 0.901 0.929 SNN-DPC 0.939 0.896 0.926

FCM 0.747 0.550 0.465 FCM 0.741 0.690 0.694

R15 Compound

IKDC 1.000 1.000 1.000 IKDC 0.885 0.913 0.899
DPC 0.997 0.994 0.993 DPC 0.832 0.873 0.833

DBSCAN 0.993 0.989 0.986 DBSCAN 0.840 0.828 0.844
KNN-DPC 0.997 0.994 0.993 KNN-DPC 0.870 0.552 0.809
SNN-DPC 0.997 0.994 0.993 SNN-DPC 0.857 0.853 0.835

FCM 0.997 0.965 0.993 FCM 0.501 0.619 0.406
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(a) Aggregation (b) Flame (c) Jain

Figure 3. Clustering effect of the DBSCAN algorithm on Aggregation, Flame, and Jain.

(a) Aggregation (b) Flame (c) Jain

Figure 4. Clustering effect of the KNN-DPC algorithm on Aggregation, Flame and Jain.

(a) Aggregation (b) Flame (c) Jain

Figure 5. Clustering effect of the SNN-DPC algorithm on Aggregation, Flame, and Jain.
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(a) Aggregation (b) Flame (c) Jain

Figure 6. Clustering effect of the FCM algorithm on Aggregation, Flame, and Jain.

(a) Aggregation (b) Flame (c) Jain

Figure 7. Clustering effect of the IKDC algorithm on Aggregation, Flame, and Jain.

4.2. Experiments on Real Datasets

In this subsection, the validity of IKDC on the eight real datasets in Table 3 will be
shown. For ACC, NMI, and ARI, IKDC is compared with DPC, DBSCAN, KNN-DPC,
SNN-DPC, and FCM. Tables 6 and 7 show the comparison results of the six algorithms.

As shown in Tables 6 and 7, IKDC has markedly more clustering effects for the
Ionosphere, Wine, Waveform, Waveform (noise), Libras, WDBC, Spectrometer, and Seeds
datasets. On Ionosphere and WDBC datasets, IKDC has improved values in ACC, NMI,
and ARI compared to SNN-DPC and FCM. Overall, the clustering performance of IKDC
outperforms the other five algorithms in high-dimensional space. On the Libras dataset,
although the clustering effect of IKDC is the same as that of DPC, IKDC introduces three-
way clustering, which is more consistent with human cognition, and IKDC outperforms
the other five algorithms. On the other datasets, IKDC significantly outperforms the other
five algorithms.

To sum up, by comprehensively considering the performance of the six algorithms on
the three indicators, it is demonstrated that the IKDC outperforms the other five clustering
algorithms on the eight real datasets, which verifies that the clustering effect of IKDC is
more excellent.
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Table 6. ACC, NMI, and ARI of six algorithms on different real datasets.

Algorithm ACC NMI ARI Algorithm ACC NMI ARI

Ionosphere Waveform

IKDC 1.000 1.000 1.000 IKDC 0.980 0.984 0.955
DPC 1.000 1.000 1.000 DPC 0.968 0.958 0.936

DBSCAN 1.000 1.000 1.000 DBSCAN 0.524 0.152 0.135
KNN-DPC 1.000 1.000 1.000 KNN-DPC 0.635 0.218 0.223
SNN-DPC 0.998 0.899 0.950 SNN-DPC 0.598 0.326 0.311

FCM 0.850 0.442 0.488 FCM 0.628 0.374 0.353

Wine Waveform
(noise)

IKDC 0.952 0.873 0.852 IKDC 0.983 0.979 0.959
DPC 0.882 0.710 0.627 DPC 0.969 0.958 0.936

DBSCAN 0.910 0.753 0.741 DBSCAN 0.968 0.957 0.935
KNN-DPC 0.904 0.743 0.727 KNN-DPC 0.970 0.960 0.940
SNN-DPC 0.966 0.878 0.899 SNN-DPC 0.974 0.963 0.974

FCM 0.949 0.850 0.834 FCM 0.891 0.862 0.936

Table 7. ACC, NMI, and ARI of different clustering algorithms on different real datasets.

Algorithm ACC NMI ARI Algorithm ACC NMI ARI

Libras Spectrometer

IKDC 0.503 0.543 0.401 IKDC 0.979 0.975 0.975
DPC 0.420 0.514 0.345 DPC 0.968 0.958 0.936

DBSCAN 0.458 0.626 0.309 DBSCAN 0.968 0.957 0.935
KNN-DPC 0.497 0.634 0.361 KNN-DPC 0.970 0.960 0.940
SNN-DPC 0.494 0.661 0.393 SNN-DPC 0.974 0.963 0.974

FCM 0.183 0.216 0.069 FCM 0.891 0.862 0.936

WDBC Seeds

IKDC 0.917 0.720 0.751 IKDC 0.934 0.763 0.830
DPC 0.830 0.373 0.373 DPC 0.910 0.716 0.742

DBSCAN 0.631 0.530 0.530 DBSCAN 0.624 0.423 0.487
KNN-DPC 0.870 0.766 0.436 KNN-DPC 0.914 0.734 0.766
SNN-DPC 0.874 0.535 0.650 SNN-DPC 0.924 0.754 0.789

FCM 0.928 0.609 0.631 FCM 0.900 0.691 0.727

4.3. The Influence of Own Parameters on the Experimental Results

In this subsection, to verify the effect of its own parameters on the clustering effect, we
conducted experiments with the Wine dataset as an example, and the experimental results
of the control parameter ψ and parameter t are shown in Figure 8. When ψ = len(wine)/5,
as the number of isolation trees increases, the number of wrong points becomes less and
less. When the number of isolation trees is the same, as ψ increases, the experimental results
are better. Therefore, the experiments show that when the number of ψ and t is within the
maximum limit, the clustering effect is better.
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Figure 8. Influence of own parameters on experimental results.

5. Discussion

The limitations of this paper mainly lie in two points: (1) the need to manually
set parameter K in the nearest neighbor; and (2) the calculation of K-induction is more
complicated. To ameliorate the above limitations, in the future, we can proceed in the
following two orientations: (1) finding the most suitable K through an adaptive method;
and (2) a deep neural network can be utilized to assign the leftover points.

6. Conclusions

The proposed IKDC makes two improvements to the DPC. The first improvement is
to introduce an isolation kernel to replace the distance calculation metric in the DPC, which
effectively solves the “curse of dimensionality” problem and avoids the failure of traditional
distance formulas for high-dimensional samples. The second improvement is to use the
K-induction to assign the leftover points, which can effectively avoid the transmission
of the error message and prevent the domino effect. Through experiments on several
high-dimensional datasets, this paper compares the clustering performance of the IKDC
with five representative algorithms (including DPC, DBSCAN, KNN-DPC, SNN-DPC, and
FCM) for ACC, NMI, and ARI. The IKDC algorithm works better for high-dimensional
samples obtained by comparing the experimental results.
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