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Abstract: This study discusses methods for the sustainability of freezers used in frozen storage
methods known as long-term food storage methods. Freezing preserves the quality of food for a long
time. However, it is inevitable to use a freezer that uses a large amount of electricity to store food with
this method. To maintain the quality of food, lower temperatures are required, and therefore more
electrical energy must be used. In this study, machine learning was performed using data obtained
through a freezer test, and an optimal inference model was obtained with this data. If the inference
model is applied to the selection of freezer control parameters, it turns out that optimal food storage
is possible using less electrical energy. In this paper, a method for obtaining a dataset for machine
learning in a deep freezer and the process of performing SLP and MLP machine learning through the
obtained dataset are described. In addition, a method for finding the optimal efficiency is presented
by comparing the performances of the inference models obtained in each method. The application
of such a development method can reduce electrical energy in the food manufacturing equipment
related industry, and accordingly it will be possible to achieve carbon emission reductions.

Keywords: artificial intelligence; machine learning; food storage; electrical energy optimization;
electrical energy prediction

1. Introduction

The use of industrial refrigeration technology for food preservation is known to be
an efficient and widely used technology from crop harvesting to final consumption by
customers. The transport systems to operate these cold chain systems must maintain
optimal food storage temperatures to ensure optimal safety and high-quality shelf life.
The sustainability of cooling systems is also increasingly considered due to their excellent
properties for preserving food. When considering the sustainability of a cold chain system,
an approach from a total cost aspect is required. For example, maintaining lower tempera-
tures for food preservation may require more energy consumption, but it can significantly
extend shelf life and reduce waste, so energy costs are high but environmental costs are
low. Thus, it can lead to a sustainable system [1]. The technology used for long-running
cooling storage systems is mostly based on a vapor compression cooling system to generate
cold air. The vapor compression cycle method requires a considerable amount of electrical
energy. In particular, if an appropriate energy-efficient design is not implemented in the
storage space, the energy consumption increases.

Refrigerators, which play an important role in terms of household appliances and are
used as the most efficient method to store food, account for a large portion of electrical
energy consumption in the home, with a rate of 14–19%. Therefore, in a reality where
resource depletion and global warming are reaching serious levels, refrigerator energy
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efficiency has emerged as an important issue in the efficient management of electrical
energy in the home [2].

According to the research results of Gutberlet [3], it was concluded that improving
the energy efficiency of household refrigerators can bring significant energy savings, and
it was estimated that if ecologically beneficial recycling designs and energy label policies
were successfully implemented, they could save 6 TWh of energy per year. Brito [4]
selected external temperature, enclosure, insulation, door opening time, etc., as parameters
that affect thermal energy gain, and energy consumption was simulated from the point
of the design of the cooling chamber in order to organize and implement the correct
efficiency measurement method for production facilities using cold storage. In addition, a
methodology for optimizing energy consumption was developed by applying the results.

Sakallı [5] reported an experimental study considering the parameters affecting the
percentage of operating time in the freezer compartment of a domestic refrigerator. In
the experiment, it was confirmed that the energy consumption of the refrigerator changes
according to parameters such as the evaporator temperature, air flow rate, insulation, and
internal volume adjustment, and a mathematical model calculated based on these results
was presented. Meneghetti [6] conducted simulations that also reflected the influence of
the surface material and the internal volume of the refrigerator compartment to create a
sustainable design for the automated refrigeration warehouse. To minimize the total annual
cost of a refrigerated automatic storage facility, a model was developed that considers the
influence of the temperature of the stored food and the energy loss caused by opening
the door during operation. By applying the storage temperature and incoming product
temperature using the model presented in this method, it is possible to analyze and optimize
the impacts of actual operation variables on costs. Through this method, the energy use
and carbon dioxide emissions of the entire food supply chain were controlled, and the
storage facility properties of the supply chain design model were properly evaluated, so
the entire cold chain system was able to be optimized.

Yilmaz [7] studied the effects of the cold storage capacity and various refrigerants on
the total power consumption of the cooling system and the payback period, according to
the capacity design, in order to design a sustainable cold storage warehouse. According
to the results, it was confirmed that the calculated power consumption per unit volume
decreased as the capacity increased. It was found that the larger the capacity, the faster the
profit was able to be recovered from the investment in the refrigerated warehouse.

Tian [8] reported that large-scale cold storage, which accounts for about 80% of China’s
total cold storage volume, accounts for more than 60% of the refrigeration energy demand
used in buildings, so optimizing refrigeration energy consumption can provide incentives
for decarbonization. To do this, an equation was created by measuring the internal cooling
load and the thermal energy penetrating from the outside using the 3R2C (composed of
three resistances and two capacitances) heat transfer modeling method, and the transient
prediction of the energy consumption of the building and thermal modeling were studied
using this equation.

Nunes [9] developed an energy estimation method to evaluate the energy efficiency of
the cooling process used during food manufacturing and storage in Portugal. This method
was designed with parameters such as the amounts of raw materials processed per year,
the annual energy consumption, and the volume of the cooling chamber. In order to create
this prediction tool, a database was built by receiving data from 87 agri-food companies,
including 33 meat processing factories, 31 dairy factories, and 23 horticultural orchard
farms on the central coast of Portugal, and a prediction program was created based on
these data. In order to verify the significance of this prediction tool, it was applied to three
other companies.

Using the Taguchi methodology, Mukhopadhyay [10] studied the optimal design
through a heat gain measurement based on the parameters of the side wall insulation
thickness, side wall area, and roof insulation thickness factor of the cold storage.
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Hovgaard [11] proposed a management technique using model predictive control
(MPC) to make model predictions for efficient and flexible power consumption in cooling
systems. It was estimated that if this technique was applied to a supermarket refrigeration
system, significant power savings of 9–30% could be achieved. MPC was able to select the
optimal cooling strategy from various predicted results. For example, food with a heat
capacity was designed to be transported to another location within a specified time without
wasting energy while maintaining its temperature within a specified range. Importantly, it
was said that the moving range setting was selected within the limit that does not affect
food quality.

To optimize energy traditionally, a method of improving hardware, a method by
structure design, and a method of statistical analysis of data and a method of reflecting
it in design have been used, but looking at recent research papers, a prediction method
based on machine learning has been reported. This trend started in 2016, when AlphaGo,
developed by Google’s (Menlo Park, CA, USA) Deep Mind, beat Lee Se-dol (9th Dan) in
Go [12]. After the confrontation of the century, all industries paid considerable attention to
deep-learning-based artificial intelligence, and many experiments were conducted to apply
it to industries in each unique field. This is also being attempted throughout the cold chain
industry related to food storage and transportation [13].

In order to reduce the energy consumption of cooling storage in the past, a me-
chanical method of simply controlling the frequency of the compressor to reduce power
consumption was used, but Kim [14] presented reported that aimed to reduce the power
consumption of refrigeration equipment by using machine learning techniques based on
data obtained from the IoT and consequently reduce the carbon energy footprint for food
retailers. To implement this method, the temperature measured by connecting digital sen-
sors was transmitted to a cloud server through a wireless network, and it was proven that
optimal operating conditions could be created through the machine learning of cloud data.

Artificial intelligence will be able to be used not only for energy optimization in food
refrigeration stores but also for maintaining food quality. Through reviews of many papers,
Loisel [15] examined whether it was possible to solve the problem of microbial contami-
nation that may occur during the cold chain process through artificial intelligence. In the
review, various techniques on how to obtain cold chain system data were summarized,
and through the data obtained in this method, several suggestions were made about the
possibility of applying artificial intelligence in cold chain break analysis. Through these
methods, it was argued that temperature control in the cold chain system was able to
reduce food waste and health risks, and the application of artificial intelligence was essen-
tial to ensure the quality of food for consumers. Therefore, it was said that, in the long
term, data analysis based on machine learning methods can enrich knowledge about cold
chain break, optimize cold chain management, reduce food waste and operating costs, and
ensure consumer safety. In addition, it was also used in the field of detecting or diagnosing
failure in refrigeration systems using machine learning algorithms [16], and food drying
model characteristics were able to be predicted through machine learning in food dryers.
Microstructures during drying could be predicted through the prediction model, and it
was also utilized for change characterization and process parameter optimization [17].

As such, the use of artificial intelligence in the field of food refrigeration and frozen
storage is gradually increasing, and the final goal to be achieved through this is to lower the
cost to the environment. This study aims to verify the similarity with actual results through
the inference model obtained when machine learning was performed in two different
techniques using data studied in the past and, through this, to prove that the optimization
design of electrical energy consumption is possible.

2. Materials and Methods
2.1. Freezers and Data Acquisition Devices

To measure and verify the data, an FD-170-SF cryogenic freezer (Unique daesung,
Sungdong-gu, Seoul, Republic of Korea) was modified and used, as shown in Figure 1. The
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equipment added to control environmental variables and to obtain data from designed test
cases was as follows: A MOACON PLC (Compile technology, Guro-gu, Seoul, Republic
of Korea) was used for programming control, and a D12E-24PH (Nidec, Muko-shi, Kyoto,
Japan) BLDC fan was used for air volume control. A CSW-H80 (Sollae system, Michuhol-gu,
Incheon, Republic of Korea) was used to convert and transmit RS-232C communication
to Wi-Fi, and an ePS80WL (Fujitsu, Minato-ku, Tokyo, Japan) power supply was used
to variably supply BLDC fan power. To measure electrical energy, a WT130 (Yokogawa,
Musashino, Tokyo, Tokyo) was used.
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Figure 1. Device connection diagram for collecting electrical energy data [18].

2.2. Software Development

A test automation program that runs unmanned tests and collects test case data was
developed using LabView (Version 2013, National Instruments, Austin, TX, USA). LabView
is one of the most popular and widely used graphical programming environments in
the engineering community [19]. The developed test automation program automatically
performed planned tests and collected vast amounts of data until the test schedule was
completed.

2.3. Test Case Composition

The electrical energy result data linked to test cases needed to be configured as a set in
order to obtain data for machine learning. The test case was configured by adjusting the
software variables of the controllable parts in the freezer to various parameters. As shown
in Figure 2, control and setting parameters were divided into a total of five parameters.
The “notch step”, the control temperature parameter of the freezer, was divided into −20,
−30, and −40 ◦C, and the “differential step”, the hysteresis of the temperature control, was
divided into 1.0, 3.0, and 5.0 ◦C. The “compressor delay time”, a parameter that forcibly
delays the compressor after the operation is stopped, was divided into 420 and 720 s. In



Appl. Sci. 2023, 13, 346 5 of 11

addition, the “freezer fan speed step”, a parameter related to the speed of the BLDC fan, was
divided into 3000, 13,000, and 23,000 steps, and “freezer fan delay time”, a time parameter
that forcibly prevents the fan from turning on again after stopping was constructed by
dividing the steps into 0, 60, and 120 s. If the detailed steps of these parameters are
combined, 162 test cases can be configured. All test cases were placed in a random order
by the test automation program, and the beginning and end of each test were conducted
by the “optimal method for reducing the measurement time” [18]. After completing 162
tests, 75% of the obtained data were used for training, and the remaining 25% were used
for verification.
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2.4. Machine Learning Modeling Methods

Python (Version 3.9.13) was used to develop the machine learning program and predic-
tion service program. Python is a high-level programming language that was introduced
in 1991 by Dutch software engineer Guido van Rossum. It is a platform-independent,
interpreted, object-oriented, dynamically typed conversational language [20].

2.4.1. Single-Layer Perceptron (SLP)

Python and the Scikit-learn (Version 1.1.3) library were used for machine learning
using the least squared method, which is SLP [21]. LinearRegression, included in Scikit-
learn, fits a linear model with coefficients ω = (ω_1, . . . , ω_p) to minimize the residual
sum of squares between the observed targets in the dataset and the targets predicted by the
linear approximation. Mathematically, it solves a problem of the form:

min
ω

Xω − y2
2 (1)

Linear Regression takes in its fit method arrays (X and y) and stores the coefficients
(ω) of the linear model in its coefficient member. The coefficient estimates for ordinary
least squares rely on the independence of the features. When features are correlated
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and the columns of the design matrix (X) have an approximately linear dependence, the
design matrix becomes close to singular, and as a result the least-squares estimate becomes
highly sensitive to random errors in the observed target, producing a large variance. This
situation of multicollinearity can arise, for example, when data are collected without an
experimental design.

2.4.2. Multi-Layer Perceptron (MLP)

The experiment was designed using Python and Keras (Version 2.7), in order to use
deep learning using MLP. Keras is an open-source neural network library written in Python.
It can run on MXNet, Deeplearning4j, TensorFlow, Microsoft Cognitive Toolkit, or Theano.
It was designed to enable rapid experimentation with deep neural networks (DNN) and
focuses on minimal modular extensibility. In this study, a rectified linear unit (ReLU)
method was used for the activation of the input and intermediate layers, and a linear
method was used for the activation of the output. It was optimized with a method for
stochastic optimization (ADAM), and the loss was calculated using the mean absolute
percentage error (MAPE) [22]. It was trained by setting 30,000 epochs and 20 batch sizes to
fit the inference model.

2.5. Web-Based Power Electrical Energy Prediction Service

This experiment was programmed using the Flask (Version 2.2.2) library to provide
a web-based electrical energy prediction service that anyone can easily access. Flask is a
micro web framework that was written in Python and is based on the Werkzeug tool kit
and the Jinja2 template engine [23].

2.6. Statistics

Prediction by the tracking signal method (TSM) was used to confirm the reliability of
the prediction values, and if the tolerance was out of range, it meant that the prediction
method was inappropriate. Therefore, the validity of this study could be confirmed [24].
Mathematically, this method solves a problem with the following form:

TS =
Cumulative Forecast Error(CFE)
Mean Absolute Deviation(MAD)

= ∑
At − Ft
MAD

= ∑ (At − Ft)/((∑ At − Ft)/n) (2)

2.7. Electrical Energy Optimization

For an example of the optimization method, the optimal power consumption was
inferred at the freezer setting temperature of −20 ◦C using a prediction model created
through deep learning machine learning. When using a predictive model, it has the
advantage of being able to combine all ranges of variables that have not been tested.

A predictive test was conducted for all combinations of the following variables:

• Target (◦C) = −20;
• Hysteresis (◦C) = 1, 2, 3, 4, or 5;
• Compressor delay (s) = 0, 20, 120, 220, 320, 420, 520, 620, or 720;
• Fan speed (step) = 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10,000, 11,000, 12,000, 13,000,

14,000, 15,000, 16,000, 17,000, 18,000, 19,000, 20,000, 21,000, 22,000, or 23,000;
• Fan delay (s) = 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, or 120;
• Room temperature average (◦C) = 24.

All combinations for each item result in 12,284 cases. This means that the electric
energy values of 12,284 tests could be derived through virtual tests using predictive models.

3. Results
3.1. Test Automation Program and Data Collection

A long-term automated test was conducted using the test automation program in
Figure 3, developed using LabView, and 11,436 data records were obtained. To summarize,
it was organized as in Table 1. Two prediction models were developed by inputting the vast
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amount of data obtained in the test automation program into the SLP and MLP machine
learning program.
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Table 1. Validation dataset example obtained from test automation program.

Test
Number

Target
(◦C)

Hysteresis
(◦C)

Compressor
Delay (s)

Fan
Speed
(Step)

Fan
Delay (s)

Average
Room

Temperature
(◦C)

Electrical
Energy
(kWh)

Data
Filename

Number
of

Records

1 −20 5 720 13,000 0 23.0 760,567.9 1.csv 456
2 −40 5 420 13,000 120 24.2 1,486,217.0 2.csv 724
3 −20 5 720 3000 60 23.6 890,658.1 3.csv 920
4 −20 1 720 13,000 60 24.6 786,036.6 4.csv 213
5 −30 3 720 23,000 60 24.8 1,070,131 5.csv 182
6 −20 3 420 3000 120 23.5 875,112.1 6.csv 369
7 −30 3 720 3000 120 22.5 1,130,707.0 7.csv 294
8 −20 1 720 3000 120 23.2 851,244.7 8.csv 301
9 −20 3 720 23,000 120 24.6 784,586.0 9.csv 240
10 −30 3 720 13,000 120 24.5 1,056,281.0 10.csv 182
11 −20 3 720 13,000 0 23.7 761,028.9 11.csv 256
12 −30 1 720 3000 60 22.8 1,116,712.0 12.csv 219
13 −40 5 420 23,000 60 22.6 1,432,057.0 13.csv 250
14 −40 1 720 13,000 120 23.7 1,428,087.0 14.csv 136
15 −40 1 420 13,000 120 23.7 1,445,620.0 15.csv 128
16 −40 1 420 3000 60 24.1 1,546,400.0 16.csv 204
17 −30 3 420 13,000 0 24.0 1,044,196.0 17.csv 227
18 −40 5 420 23,000 60 23.2 1,442,864.0 18.csv 248
19 −30 5 720 23,000 120 22.6 1,029,990.0 19.csv 289
20 −20 1 720 23,000 60 23.6 764,630.9 20.csv 192
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Table 1. Cont.

Test
Number

Target
(◦C)

Hysteresis
(◦C)

Compressor
Delay (s)

Fan
Speed
(Step)

Fan
Delay (s)

Average
Room

Temperature
(◦C)

Electrical
Energy
(kWh)

Data
Filename

Number
of

Records

21 −30 5 720 13,000 60 24.2 1,057,877.0 21.csv 238
22 −30 5 720 13,000 0 24.1 1,051,675.0 22.csv 266
23 −30 5 720 3000 0 23.7 1,179,404.0 23.csv 370
24 −40 3 420 23,000 120 23.2 1,442,853.0 24.csv 194
25 −30 1 720 3000 60 22.5 1,111,537.0 25.csv 248
26 −30 1 420 23,000 60 23.3 1,061,260.0 26.csv 148
27 −40 1 420 3000 120 24.2 1,553,932.0 27.csv 206
28 −40 5 420 13,000 60 24.2 1,475,870.0 28.csv 275
29 −40 5 720 23,000 60 23.5 1,471,280.0 29.csv 274
30 −20 1 720 23,000 120 22.9 761,361.0 30.csv 215
31 −20 3 720 23,000 120 22.5 756,175.3 31.csv 226
32 −30 5 720 3000 120 23.9 1,214,821.0 32.csv 344
33 −40 5 720 13,000 120 24.7 1,495,908.0 33.csv 268
34 −30 3 720 23,000 120 23.7 1,051,823.0 34.csv 225
35 −40 3 720 13,000 60 23.2 1,425,506.0 35.csv 191
36 −40 1 720 13,000 0 22.9 1,406,442.0 36.csv 132
37 −20 3 420 13,000 120 22.7 761,447.4 37.csv 281
38 −40 5 720 13,000 120 24.4 1,499,554.0 38.csv 257
39 −40 3 420 23,000 0 25.4 1,494,355.0 39.csv 208
40 −20 5 420 23,000 0 24.4 782,610.8 40.csv 340
41 −30 3 420 23,000 0 23.1 1,046,752.0 41.csv 176
42 −20 5 720 23,000 0 23.3 780,575.7 42.csv 324

3.2. Web-Based Prediction Service and TS Calculation

As shown in Figure 4, a web-based service based on two inference models obtained by
the machine learning of the test results was built. Through this web service, the predicted
value for each model was calculated, and a graph, as shown in Figure 5, which can visually
compare the measured value and the predicted value, is presented.
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3.3. The Combination of Items for Minimum Electrical Energy

The electrical energy prediction results for the freezer setting temperature of −20 ◦C
using a deep learning inference model are shown in Table 2. Using the results of 12,284
virtual tests obtained through all the proposed combinations, the maximum and minimum
values of electrical energy and each set item value were summarized, as shown in Table 3.

Table 2. Virtual test results using the inference model made by MLP.

Sequence
Number Target (◦C) Hysteresis

(◦C)
Compressor

Delay (s)
Fan Speed

(Step)
Fan Delay

(s)

Average
Room

Temperature
(◦C)

Electrical Energy
Prediction Results

(kWh)

0 −20 1 0 3000 0 24 915,796.8
1 −20 1 0 3000 10 24 916,796.1
2 −20 1 0 3000 20 24 917,795.3
3 −20 1 0 3000 30 24 918,794.8
4 −20 1 0 3000 40 24 919,794.0
5 −20 1 0 3000 50 24 920,793.3
6 −20 1 0 3000 60 24 921,792.6
7 −20 1 0 3000 70 24 922,791.9
8 −20 1 0 3000 80 24 923,791.2

:
12,276 −20 5 720 23,000 40 24 783,313.6
12,277 −20 5 720 23,000 50 24 781,319.5
12,278 −20 5 720 23,000 60 24 779,325.5
12,279 −20 5 720 23,000 70 24 777,331.5
12,280 −20 5 720 23,000 80 24 775,337.5
12,281 −20 5 720 23,000 90 24 773,343.4
12,282 −20 5 720 23,000 100 24 771,349.4
12,283 −20 5 720 23,000 110 24 769,355.4
12,284 −20 5 720 23,000 120 24 768,018.1
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Table 3. Summary of predicted electrical energy values.

Minimum
Electrical Energy

Maximum Electrical
Energy Max.−Min.

Sequence Number 2054 10,088 N/A
Target (◦C) −20 −20 N/A

Hysteresis (◦C) 1 5 N/A
Compressor delay (s) 620 0 N/A

Fan speed (step) 14,000 23,000 N/A
Fan delay (s) 0 0 N/A

Average room temperature (◦C) 24 24 N/A
Electrical energy prediction

results (kWh) 737,498 1,100,332 362,834

Comparing the maximum and minimum values, it can be known that a maximum
of 362,834 kWh of electrical energy consumption can be reduced simply by optimizing
the control value for each item to maintain the freezer at the same temperature of −20 ◦C.
Using the same method, it is possible to optimize the freezer set temperatures of −30 ◦C
and −40 ◦C, and the predictability can be checked, even for temperatures, such as −50 ◦C,
that were not tested.

4. Discussion

The TS is a simple indicator that forecasts bias present in a forecast model. It is most
often used when the validity of the forecasting model might be in doubt.

If the value of the TS is between −4 and +4, the accuracy of the prediction method is
regarded as acceptable and can be continuously applied. However, if it is outside of this
range, there is a problem with the fitness of the currently applied prediction model, so
it must be relearned with new data or new algorithms. If the TS is ±4, it means that the
cumulative error is ±4 MAD, which corresponds to ±3.2 s. Since s

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 12 
 

Table 2. Virtual test results using the inference model made by MLP. 

Sequence 
Number 

Tar-
get 
(℃) 

Hyste-
resis 
(℃) 

Com-
pressor 
Delay 

(s) 

Fan 
Speed 
(Step) 

Fan Delay (s) Average Room 
Temperature (℃) 

Electrical 
Energy Pre-
diction Re-
sults (kWh) 

0 −20 1 0 3000 0 24 915,796.8 
1 −20 1 0 3000 10 24 916,796.1 
2 −20 1 0 3000 20 24 917,795.3 
3 −20 1 0 3000 30 24 918,794.8 
4 −20 1 0 3000 40 24 919,794.0 
5 −20 1 0 3000 50 24 920,793.3 
6 −20 1 0 3000 60 24 921,792.6 
7 −20 1 0 3000 70 24 922,791.9 
8 −20 1 0 3000 80 24 923,791.2 
     :   

12,276 −20 5 720 23,000 40 24 783,313.6 
12,277 −20 5 720 23,000 50 24 781,319.5 
12,278 −20 5 720 23,000 60 24 779,325.5 
12,279 −20 5 720 23,000 70 24 777,331.5 
12,280 −20 5 720 23,000 80 24 775,337.5 
12,281 −20 5 720 23,000 90 24 773,343.4 
12,282 −20 5 720 23,000 100 24 771,349.4 
12,283 −20 5 720 23,000 110 24 769,355.4 
12,284 −20 5 720 23,000 120 24 768,018.1 

Table 3. Summary of predicted electrical energy values. 

 Minimum Elec-
trical Energy 

Maximum Elec-
trical Energy 

Max.−Min. 

Sequence Number 2054 10,088 N/A 
Target (℃) −20 −20 N/A 

Hysteresis (℃) 1 5 N/A 
Compressor delay (s) 620 0 N/A 

Fan speed (step) 14,000 23,000 N/A 
Fan delay (s) 0 0 N/A 

Average room temperature (℃) 24 24 N/A 
Electrical energy prediction re-

sults (kWh) 737,498 1,100,332 362,834 

4. Discussion 
The TS is a simple indicator that forecasts bias present in a forecast model. It is most 

often used when the validity of the forecasting model might be in doubt. 
If the value of the TS is between −4 and +4, the accuracy of the prediction method is 

regarded as acceptable and can be continuously applied. However, if it is outside of this 
range, there is a problem with the fitness of the currently applied prediction model, so it 
must be relearned with new data or new algorithms. If the TS is ±4, it means that the 
cumulative error is ±4 MAD, which corresponds to ±3.2 s. Since s ≒ 1.25 MAD, 1 MAD = 
0.8 s. The probability that the normal TS value is within the range of ±4 is 99.8%, and the 
probability that the abnormal TS value is outside of the range of ±4 is 0.2%. Therefore, 
there is little possibility of an outlier. 

1.25 MAD, 1 MAD
= 0.8 s. The probability that the normal TS value is within the range of ±4 is 99.8%, and
the probability that the abnormal TS value is outside of the range of ±4 is 0.2%. Therefore,
there is little possibility of an outlier.

This means that 99.8% of normal prediction errors will be in the range between ±4
MAD, and if the TS value of an inference model is outside of ±4 MAD, it becomes an
abnormal error, and it means that the machine learning algorithm needs corrective action.

In the results of this study, comparing the TS values of Scikit-learn using SLP machine
learning and Keras using MLP machine learning, it was found that the learning results of
MLP were more predictive. However, Scikit-learn also had a TS value within the range of
±4, so there would be no problem in applying it to food processing equipment with few
parameters. In this study, learning was conducted using the deep learning method using
the data obtained by Kim [18], and through TS verification it was confirmed that it was
possible to create a predictive model with over 99.8% predictive power.

Reliable predictive models can be applied to virtual tests to optimize electrical energy
consumption, and the results can be predicted in advance by approaching areas that are
not actually tested. The application of such a development method can reduce electrical
energy to achieve the same effect in the food manufacturing equipment related industry.
As a result, it will be possible to contribute carbon emission reductions without spending
money.
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