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Abstract: An important issue in the protection of information against electromagnetic penetration is
the possibility of its non-invasive acquisition. In many cases, getting hold of protected information
involves recreating and presenting it in a readable and understandable form. In particular, this applies
to data processed in graphic form and in such a form presented on the side of eavesdropping system.
The effectiveness of reconstructing data in graphic form requires knowledge of raster parameters, i.e.,
the line length and the number of lines of the reproduced image. This article presents new measures
allowing for the determination of the correct number of lines in an image. The maximum value
of the measures has been proposed as a criterion for the correctness of determining the number of
image lines. A predetermined number of image lines was assumed as the input data, which was
determined on the basis of the analysis of the amplitude variability of the recorded revealing emission
signal. The result of the considerations of the effectiveness of the measures adopted in the process of
electromagnetic infiltration was the indication of methods that allow for the correct determination of
the number of lines of the reproduced image. The correct number of image lines allows the use of the
coherent summation algorithm of tens of images.

Keywords: security information; reveal emission; information processing; image processing;
electromagnetic infiltration; data acquisition; contrast enhancement; image reconstruction

1. Introduction

Computerization of everyday life means that almost all information processed by us
is in electronic form. The most popular devices in the information processing process are
computers, laptops, laser printers, multifunctional devices, wireless communication termi-
nals, etc. These devices have also become elements of extensive IT networks. Therefore,
attention is paid to the protection of information in these types of networks very often,
using the solutions to counteract cyberattacks [1–3].

Each of these devices, in accordance with the laws of physics, creates an electromag-
netic field around it, which can change in time with changes in electrical signals in the
form of which the information is processed. Thus, it becomes a source of electromagnetic
emissions that spread uncontrollably around the device [4–10]. By using the physical prop-
erties of such a field, it is possible to come into possession of protected data without the
knowledge of its owner (Figure 1). The most spectacular phenomenon is the emergence of
emission sources during the processing of information in graphic form, e.g., a presentation
of such information on various types of displays. Then, the acquired and reconstructed
data can also be presented in the form of an image [11–15].

Due to unintended radiation, the recorded electromagnetic emissions are very often
characterized by low levels. Hence, the quality of the reproduced and processed data in the
form of images is very poor and the images require processing in order to extract essential
information from them [16–20].
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Figure 1. Surrounding us potential sources of undesirable emissions correlated with the information 
processed. 

Devices intended for the processing of classified information require prior research 
in the scope of the assessment of measured electromagnetic emissions in laboratory con-
ditions, i.e., in electromagnetically tight anechoic chambers(Figure 2). Meeting the re-
quirements of information protection by the tested device inside the anechoic chamber 
guarantees information security in any other electromagnetic environment, in the envi-
ronment surrounding us in particular. 

 
Figure 2. An example of anechoic chamber. 

The assessment is related to the determination of the degree of correlation of these 
emissions with the information processed [21–23]. This applies to devices that process 
data in graphic form in particular. The importance of this type of source of undesirable 
emissions results from the fact that the reconstructed data can be presented in the form of 
images containing human-readable and -understandable data [24–27]. In order for the 

Figure 1. Surrounding us potential sources of undesirable emissions correlated with the information
processed.

Devices intended for the processing of classified information require prior research in
the scope of the assessment of measured electromagnetic emissions in laboratory conditions,
i.e., in electromagnetically tight anechoic chambers(Figure 2). Meeting the requirements of
information protection by the tested device inside the anechoic chamber guarantees infor-
mation security in any other electromagnetic environment, in the environment surrounding
us in particular.

The assessment is related to the determination of the degree of correlation of these
emissions with the information processed [21–23]. This applies to devices that process
data in graphic form in particular. The importance of this type of source of undesirable
emissions results from the fact that the reconstructed data can be presented in the form
of images containing human-readable and -understandable data [24–27]. In order for
the reproduced data to be visualized in the form of images, it is necessary to know two
basic image parameters: width (d image line length) and height (number BCorr of image
lines) [28–31]. These parameters determine the correctness of the reconstruction of the
image ready for effective further processing with the use of, e.g., the coherent summation
algorithm of tens of realizations of the same image, which is possible thanks to a sufficiently
long recorded implementation of the signal s(t) of the revealing emission. It should be
noted that in this case the emission source, which is the signal x(t), must be a periodic
signal in which the information about the processed data is repeated cyclically [30,31]. Such
signals are, for example, video signals that excite graphic displays. Incorrect values of these
parameters cause the quality of the reproduced image, after applying the image summation
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process, to deteriorate and the data contained in it to become more unreadable (identifiable
data becomes blurred, and not sharpened) or to result in an incomplete image (Figure 3).
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Determining the correct number BCorr of the reproduced image line results directly
from its ignorance, which is related to a lack of access to the eavesdropped graphic imaging
device in the electromagnetic infiltration process. This applies to typical computer monitors
as well as any devices equipped with graphic displays, e.g., multifunctional devices. A
rough estimate of the raster parameter of the number of lines in an image can be made based
on a visual analysis of the reproduced image. The result of this analysis is an image that
should not contain repeating graphic elements observed in a horizontal line. However, the
exact indication of the number of image lines must already be carried out in an automatic
manner, which allows for a quick classification of the recorded undesirable emissions.

At the same time, this process, together with the algorithm for determining the correct
length d of the image line with an accuracy of ∆ equal to at least 10−5, enables automation
of the process of recreating graphic data in the form of images with the possibility of
effective further summation of tens of realizations of the same image (Figure 4).

The method of pseudo-colouring of images was used to visualize the data. This made
it possible to present the acquired data in the form of colour images, for which visual
perception allows for the perception of more details than for images in grey colours [20,32].
Thus, the use of the pseudo-colouring algorithm facilitates the analysis and classification of
revealing emissions.
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Figure 3. Illustrating the effect of the number lines of image on its content: (a) correct number lines
of the image, (b) too few lines of the image, (c) too many lines of the image.

Incorrect determination of the number lines of image makes it impossible to effectively
use image processing methods to improve its quality. In particular, it concerns the coherent
summation algorithm of tens implementations of the same image (Figure 5).

One of the measures used in the assessment of image quality is the one related to
the contrast of the analysed image [33]. We can mention here the measures based directly
on the values of the maximum and minimum pixel amplitudes, the values of the average
pixel amplitudes or the variance of the pixel amplitudes. The fulfilment of the appropriate
criterion, i.e., the maximum value of these measures, clearly indicates the correct number B
of the line for which the appropriate values are calculated [28]. It should be noted, however,
that the change in the number of B lines does not change the amplitudes of the pixels
composing the image in the case of measures related to the contrast assessment. It only
increases the number of pixels that are included in the calculation of each measure. Thus, it
does not change the image quality and the contrast assessment. Hence, direct use of the
measure of image contrast becomes ineffective. It also indicates the necessity to:

• Propose another dedicated measure and its criterion, effective in correctly determin-
ing the number of lines of the reconstructed image from the registered revealing
broadcast signal;

• Pre-processing the reconstructed image depending on the B number of lines, and then
analysing it in accordance with the adopted measure.
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Figure 5. Illustrating the influence of a wrongly determined number lines of image on the result
of coherent summation (a summation of two first images): (a) for a small number lines of image,
(b) for a large number lines of image.

The work on images summed up several times is proposed, assuming the use of
a previously determined, correct value of the d∆ line length of the reconstructed image
(∆—accuracy of the image line length estimation, where ∆ = 100, 10−1, 10−2, 10−3, 10−4,
10−5). Then, the maximum contrast should be achieved for the number BCorr line of the
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image corresponding to the number of the original image (Figure 6). This approach causes
the pixel amplitude values to change by averaging them, and the maximum average value
should be achieved for the correct number of image lines.
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constructed image for the revealing emission signal measured at the frequency fo = 1334 MHz, band
reception BW = 50 MHz, primary image displayed in the mode of 1280 × 1024/60 Hz, DVI standard,
image in greyscale.

Additionally, three other measures have been proposed to enable the determination of
the number of lines of the reproduced image. These are measures based on the methods
of determining the correct length d of the image line. Nevertheless, in the case described
in [28], the basis was the reconstructed images that were not processed by the use of the
coherent summation algorithm. The criterion for determining the correct number BCorr of
the image line is also the maximization of the value of the proposed measure.

Conventional methods, which are used to assess an image’s contrast, can be applied
to determine the number lines in a reconstructed image. These methods sometime require
counting a lot of parameters before the achievement of purpose connected with the value
of contrast. Therefore, simple methods are needed to determine the number lines in a
reconstructed image. The simple method should not require a count of the square of
amplitude pixels or a multiple sum, average value of amplitude pixels. Such operations
lengthen calculation time, which is very important in the process of electromagnetic infil-
tration. Simultaneously, such a method has to be effective and resistant to disturbances
in the determination process of number lines of reconstructed images (such images are
characterized by a very low level of quality and include a lot of graphic elements that aren’t
valuable data from the viewpoint of the eavesdropping process).
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2. Conditions of Conducted Tests
2.1. Test Images

Analyses concerning the possibility of using typical measures of contrast assessment
and the methods proposed by the authors of the article were carried out on the basis
of the test images presented in Figure 7. The selection of the images was based on the
research experience related to the assessment of devices intended for processing classified
information, which may be a source of undesirable electromagnetic emissions, and the
analyses carried out in [34–37].
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Figure 7. Test images used in the analysis of the effectiveness of the proposed measures in the process
of determining the correct number of lines of the reproduced image: (a) a photo showing two vehicles
(HDMI standard), (b) a three-column text (HDMI standard), (c) three words “protection” written in
secure font (VGA standard), (d) menu of multifunctional device.

Images contain different data structures in the form of text, photos, and the menu that
is provided to the user of MFPs. In the case of the first two types of images, the computer
set worked with the use of the VGA and HDMI graphic standards.

2.2. Test Conditions

The tests were carried out in an anechoic chamber (Figure 8). The measurement system
FSWT26 receiver from Rohde & Schwarz with a set of measurement antennas (a vertical
active rod antenna (100 Hz up to 50 MHz), a biconical active antenna (20 MHz up to
200 MHz), and a dipole active antenna (200 MHz up to 1000 MHz)) were used in the tests.
The distance between antenna and the PDA-1000 8-bit analogue-to-digital converter card
was used to sample of the revealing emission signals (Signatec PDA100 Scope Application
software, version 1.19). The card offers a signal sampling rate of 1 GS/s. The sampling rate
can be reduced by using a card clock frequency division in the range from 2 to 1024.
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The tests were carried out using a computer set (Figure 8a) and a laser printer—HP
Color Laser Jet M477fdn (Figure 8b). During testing of revealing emissions from a computer
set, the monitor was operated at 1280 × 1024/60 Hz (HDMI standard) or 1024 × 768/60 Hz
(VGA standard). The printer was not connected to the computer. In case of text data,
black-letter characters were displayed on a white background. Images were presented
in greyscale.

2.3. Algorithm of the Determining the Correct Number Lines of Image

Details determination of the number lines of the reconstructed image are described in
the form of the algorithm shown in Figure 9.
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3. Methods of Determining of Image Number Lines
3.1. Introduction

Determination of the correct number BCorr lines of the reconstructed image is per-
formed based on this image. This may be a reconstructed image, or an image subjected to a
preselected image processing algorithm. In the case of a reconstructed image that has not
undergone previous transformations causing changes in the pixel amplitude values, the
use of contrast evaluation methods makes it impossible to determine the correct number of
lines forming the image. Changing the number of lines only affects the data content in the
image (Figure 10)—the data may be incomplete (too few lines, Figure 10a) or the data may
be duplicated (too many lines, Figure 10c). Hence, the image used to determine the number
of lines must undergo appropriate processing, for which the values of pixel amplitudes
change as a function of changes in the number of lines in the image.
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ously indicates the correct number of 𝐵஼௢௥௥ lines for the reconstructed image. 

The correct number lines of image is determined primarily from the point of view of 
the possibility of efficient coherent summation of tens of realizations of the reconstructed 
image. Too many or too few lines mean that the coherent summation process does not 
sharpen the data contained in the image, which is the goal of the process, but introduces 
additional blurring. In particular, it is noticeable when the sum of images is large. Hence, 
the basis for the analysis of the usefulness of the methods of contrast assessment and the 
methods proposed by the authors of the article were images that are the sum of tens 

Figure 10. Image reconstructed (two consecutive realizations of the image) from the recorded
revealing signal for: (a) too few image lines, B = 730; (b) correct number of image lines, BCorr = 806;
(c) too many image lines, B = 900 .

The maximum value of the adopted image quality assessment measure unambiguously
indicates the correct number of BCorr lines for the reconstructed image.

The correct number lines of image is determined primarily from the point of view of
the possibility of efficient coherent summation of tens of realizations of the reconstructed
image. Too many or too few lines mean that the coherent summation process does not
sharpen the data contained in the image, which is the goal of the process, but introduces
additional blurring. In particular, it is noticeable when the sum of images is large. Hence,
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the basis for the analysis of the usefulness of the methods of contrast assessment and
the methods proposed by the authors of the article were images that are the sum of tens
realizations of the same reconstructed image, for a previously determined length d of the
image line.

3.2. Methods of Evaluating Contrast of Reconstructed Images

In order to determine the number lines of reconstructed images from the revealing
emission signals, four basic methods were used to evaluate image contrast. At this point,
it should be emphasized that these methods effectively determine the level of contrast of
images of satisfactory quality, e.g., from data display systems in the form of photos [38,39].
The data obtained in the process of electromagnetic infiltration are recreated and presented
in the form of images. The images obtained in this way are very often highly noisy,
containing graphic elements that strongly contrast with the background and have no
relation to the processed information [11,17,19,35]. This largely hinders the analysis of such
images and the possibility of direct use of typical image processing methods [40–42].

The input data of the reconstructed image line BCorr algorithm are the BEntr quantities,
which are determined at the preliminary stage of analyzing the time course of the amplitude
variation of the revealing emission signal. The authors’ experience shows that the BEntr
estimation’s accuracy is ±10, hence the need to clarify this value, which allows for effective
processing of the obtained image in the process of tens of coherent summations.

The algorithm for determining the correct number lines of image assumes carrying
out appropriate calculations of the values of the adopted measures for the number of lines:

B = BEntr ± n, (1)

where n = 0, 1, 2, . . . , 20.
In this way, 41 values are obtained:

B = BEntr − 20,
B = BEntr − 19,
B = BEntr − 18,
. . . ,
B = BEntr,
. . . ,
B = BEntr + 18,
B = BEntr + 19,
B = BEntr + 20,
selected measures that allow for the selection of the BCorr value that meets the adopted
criterion, which is the maximum value. It corresponds to the correct number of lines of the
reconstructed image.

3.2.1. Contrast Evaluation Based on the Value of the Average Amplitude of Pixels of the
Reconstructed Image—Method I

ContrastI_Un(B) =
ContrastI(B)
maximumI

, (2)

where

ContrastI(B) =
lB_max(B)− lB_min(B)

lB(B)
, (3)

maximumI = max
B

(ContrastI(B)), (4)

lB =
1

B·M

M−1

∑
m=0

B−1

∑
b=0

lB(b, m), (5)
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lB_max(B) = max
b,m

(lB(b, m)), (6)

lB_min(B) = min
b,m

(lB(b, m)), (7)

M—columns number of reconstructed image;
m—number of columns of reconstructed image (m = 0, 1, 2, . . . , M− 1);
B—rows number (lines) of reconstructed image calculated according to (1);
b—number of rows (lines) of reconstructed image (b = 0, 1, 2, . . . , B− 1);
lB(b, m)—value of image pixel amplitude for coordinates (b, m);
lB_max(B)—the maximum value of the image pixel amplitude for the number B line;
lB_min(B)—the minimum value of the image pixel amplitude for the number B line.

The maximum value determined by (8) is assumed as the criterion for determining
the correct BCorr number of the image line:

Contrast_maxI_Un = max
B

(ContrastI_Un(B))→ BCorr. (8)

3.2.2. Contrast Evaluation Based on the Maximum and Minimum Values of the Amplitude
of Pixels of the Reconstructed Image—Method II

ContrastI I_Un(B) =
ContrastI I(B)
maximumI I

, (9)

where

ContrastI I(B) =
lB_max(B)− lB_min(B)
lB_max(B) + lB_min(B)

, (10)

maximumI I = max
B

(ContrastI I(B)), (11)

The maximum value determined by (12) is assumed as the criterion for determining
the correct BCorr number of the image line:

Contrast_maxI I_Un = max
B

(ContrastI I_Un(B))→ BCorr. (12)

3.2.3. Contrast Evaluation Based on the Sum of the Differences between Adjacent Image
Pixels—Method III

ContrastI I I_Un(B) =
ContrastI I I(B)
maximumI I I

, (13)

where:

ContrastI I I(B) =
1

B·M·2552

M−1

∑
m=0

B−2

∑
b=0

(lB(b, m)− lB(b + 1, m))2

+
M−2

∑
m=0

B−1

∑
b=0

(lB(b, m)− lB(b, m + 1))2

+
M−2

∑
m=0

B−2

∑
b=0

(lB(b, m)− lB(b + 1, m + 1))2

+
M−1

∑
m=0

B−2

∑
b=0

(lB(b, m)− lB(b + 1, m− 1))2



(14)

maximumI I I = max
B

(ContrastI I I(B)). (15)
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The maximum value determined by (16) is assumed as the criterion for determining
the correct BCorr number of the image line:

Contrast_maxI I I_Un = max
B

(ContrastI I I_Un(B))→ BCorr. (16)

3.2.4. Contrast Evaluation Based on the Variance of the Grey Levels of the Reconstructed
Image—Method IV

ContrastIV_Un(B) =
ContrastIV(B)
maximumIV

, (17)

where

ContrastIV(B) =
4

B·M·2552

M−1

∑
m=0

B−1

∑
b=0

[
lB(b, m)− lB(B)

]2
, (18)

maximumIV = max
B

(ContrastIV(B)). (19)

The maximum value determined by (20) is assumed as the criterion for determining
the correct BCorr number of the image line:

Contrast_maxIV_Un = max
B

(ContrastIV_Un(B))→ BCorr. (20)

3.3. Methods Proposed by Authors

The methods proposed by the authors of the article are based only on the values of
the maximum and minimum pixel amplitudes and their differences. The mean values and
variances of the amplitudes of pixels composing the analysed image are not calculated.
Therefore, taking into account the time-consuming computation for images of large sizes,
e.g., for sources of unwanted emission in the form of graphic paths of laser printers or mon-
itors operating in higher graphic modes, these methods may be effective in electromagnetic
infiltration processes.

3.3.1. The Maximum Value of the Difference between the Maximum and Minimum Pixel
Amplitude Sums Calculated for Each Vertical Line of the Reconstructed Image—Method V

Method V is not based directly on the maximum and minimum amplitude values of
the pixels building the reconstructed image. The respective maximum MaximumMet_V(B)
and minimum MinimumMet_V(B) values are calculated for the sums SumMet_V(B, m) of
pixel amplitude values calculated for each column of the analysed image according
to formulas:

SumMet_V(B, m) =

B−1

∑
b=0

lB(b, m), (21)

MaximumMet_V(B) = max
m

(SumMet_V(B, m)), (22)

MinimumMet_V(B) = min
m

(SumMet_V(B, m)). (23)

Then, according to the adopted algorithm, the differences Di fMet_V(B) between
the maximum value MaximumMet_V(B) and the minimum MinimumMet_V(B) of sums
SumMet_V(B, m) are calculated, according to the formula

Di fMet_V(B) = MaximumMet_V(B)−MinimumMetV (B). (24)

The next stage of the procedure requires the determination of the maximum value
MaximumDi fMet_V :

MaximumDi fMet_V = max
B

(Di fMet_VI(B)), (25)
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which allows us to calculate normalized values:

Di fMet_V_Un(B) =
Di fMet_V(B)

MaximumDi fMet_V

. (26)

The maximum value determined by (27) is assumed as the criterion for determining
the correct BCorr number of the image line:

Di f _maxMet_V_Un = max
B

(Di fMet_V_Un(B))→ BCorr. (27)

3.3.2. The Minimum Value of the Sum of the Differences of the Maximum
and Minimum Amplitudes Calculated for Individual Vertical Lines of
the Reconstructed Image—Method VI

Method VI requires the calculation of the maximum MaximumMet_VI(B, m) and mini-
mum MinimumMet_VI(B, m) values of the pixel amplitude for each column m of the recon-
structed image according to the formula

MaximumMet_VI(B, m) = max
b

(lB(b, m)), (28)

MinimumMet_VI(B, m) = min
b

(lB(b, m)). (29)

Next, a sum of differences MaximumMet_VI(B, m) − MinimumMet_VI(B, m)
is calculated:

SumMet_VI(B) =
M−1

∑
m=0

(MaximumMet_VI(B, m)−MinimumMet_VI(B, m)), (30)

which is calculated independently for each value of B. In the next step, the maximum value
of SumMet_V(B) is determined:

Maximum_SumMet_VI = max
B

(SumMet_VI(B)) (31)

allowing for the calculation of normalized values:

SumMet_VI_Un(B) =
SumMet_VI(B)

Maximum_SumMet_VI
. (32)

The maximum value determined by (33) is assumed as the criterion for determining
the correct BCorr number of the image line:

Sum_maxMet_V_Un = max
B

(
SumMet_V(B)

Maximum_SumMet_V

)
→ BCorr. (33)

3.3.3. The Minimum Value of the Sum of the Maximum Pixel Amplitudes Calculated for
the Individual Vertical Lines of the Reconstructed Image—Method VII

Method VII is similar to method VI, requiring only the calculation of the sums of
the maximum values MaximumMet_VII(B, m) image pixel amplitudes for the B values
determined for each column m of the reconstructed image according to the formula:

SumMet_VII(B) =
M−1

∑
m=0

MaximumMet_VII(B, m). (34)
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Further stages of the procedure are the same as in the case of the VI method and
require the determination of the maximum value of Maximum_SumMet_VII :

Maximum_SumMet_VII = max
B

(SumMet_VII(B)), (35)

which allows us to calculate normalized values:

SumMet_VII_Un(B) =
SumMet_VII(B)

Maximum_SumMet_VII
. (36)

The maximum value determined by (37) is assumed as the criterion for determining
the correct BCorr number of the image line:

Sum_maxMet_VII_Un = max
B

(SumMet_VII_Un(B))→ BCorr. (37)

4. Test Results

The input datam in the conducted analyses was the BEntr value, which is the number of
image lines estimated on the basis of preliminary analyses of the variability of the amplitude
values of the undesirable emission signal, which is the basis of the screening process. As
shown in Figure 3, the data contained in the reconstructed image are periodically repeated,
which facilitates the preliminary determination of the number of image lines. Its more
precise determination requires the use of an algorithm based on the proposed measures and
criteria. The final verification of the correctness determination of the number of image lines
is carried out on the basis of visual assessment, i.e., the readability of the data contained
in the image after using coherent summation of several dozen image realizations. The
summation process is intended to improve image quality.

4.1. HDMI Standard as a Source of Reveal Emissions—Sample Images
4.1.1. Primary Image in the Form of the Photo Presented in Figure 7a (BEntr = 1069,
d =195,364,892)

Figure 11 (Table 1) shows the changes in the values of the adopted measures (methods)
calculated as a function of the number lines of the image reconstructed from the recorded
revealing emission signal. The criterion for which the correct number of image lines is
indicated is the maximum value of the calculated measure (method, Figure 12).
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Figure 11. Normalized values (in relation to the maximum value) of the variability of measures as a
function of the number of image lines, supporting the determination of the correct number of lines of
the image reproduced for the source image in the form of a picture from Figure 7a—HDMI graphic
standard, computer monitor operating mode 1280 × 1024/60 Hz, frequency of the reveal emission
signal fo = 1334 MHz, reception bandwidth BW = 50 MHz, correct number of lines BCorr = 1066.
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Table 1. Normalized values (in relation to the maximum value) of the variability of measures as a
function of the number of image lines, supporting the determination of the correct number of lines of
the image reproduced for the source image in the form of a picture from Figure 7a.

Number
Lines

Method
I

Method
II

Method
III

Method
IV

Method
V

Method
VI

Method
VII

1049 0.48112 0.66368 0.12038 0.37683 0.99667 0.31955 0.71072
1050 0.48110 0.66368 0.12021 0.37914 0.99715 0.32650 0.71337
1051 0.49375 0.68114 0.12035 0.38169 0.99745 0.33138 0.71521
1052 0.50641 0.70756 0.11987 0.38257 0.99724 0.33263 0.71511
1053 0.50008 0.68553 0.12118 0.38610 0.99735 0.34176 0.71963
1054 0.51276 0.70289 0.12727 0.38881 0.99713 0.34896 0.72230
1055 0.50012 0.69427 0.12123 0.38966 0.99706 0.34518 0.71935
1056 0.51913 0.71607 0.12294 0.39326 0.99653 0.35504 0.72366
1057 0.53815 0.72844 0.12468 0.39653 0.99597 0.36058 0.72539
1058 0.53175 0.73354 0.12395 0.40099 0.99654 0.36990 0.72964
1059 0.55056 0.75496 0.12560 0.40755 0.99693 0.38265 0.73666
1060 0.56307 0.77231 0.12623 0.41467 0.99802 0.39878 0.74565
1061 0.56945 0.77611 0.12566 0.42114 0.99845 0.41260 0.75270
1062 0.58229 0.78356 0.12731 0.42737 0.99767 0.42734 0.75961
1063 0.58216 0.78356 0.12921 0.43537 0.99821 0.43099 0.75837
1064 0.60099 0.79440 0.13341 0.44595 0.99939 0.44564 0.76384
1065 0.63890 0.81494 0.13197 0.46566 1.00000 0.49005 0.79045
1066 0.70862 0.86816 0.13563 0.51140 0.99897 0.56892 0.83785
1067 0.76568 0.91229 0.14481 0.58404 0.99926 0.66339 0.87759
1068 0.77841 0.92737 0.12076 0.67389 0.99864 0.80281 0.88614
1069 1.00000 1.00000 1.00000 1.00000 0.99840 1.00000 1.00000
1070 0.78485 0.92983 0.11941 0.67282 0.99878 0.80118 0.88511
1071 0.75955 0.90972 0.13853 0.58123 0.99778 0.64458 0.86525
1072 0.70892 0.87802 0.13447 0.51034 0.99741 0.56897 0.83815
1073 0.63931 0.82458 0.13166 0.46514 0.99732 0.49238 0.79136
1074 0.61399 0.81112 0.13834 0.44651 0.99688 0.44840 0.76632
1075 0.58869 0.78722 0.12767 0.43508 0.99715 0.42876 0.75767
1076 0.62670 0.80825 0.12894 0.42835 0.99642 0.43172 0.76325
1077 0.56340 0.76272 0.12668 0.42104 0.99655 0.41378 0.75347
1078 0.56973 0.77611 0.12589 0.41452 0.99608 0.40084 0.74680
1079 0.55709 0.75886 0.12571 0.40814 0.99556 0.38421 0.73693
1080 0.55076 0.75496 0.12554 0.40280 0.99555 0.37415 0.73254
1081 0.52544 0.72025 0.12342 0.39780 0.99577 0.36193 0.72628
1082 0.52545 0.71130 0.12327 0.39436 0.99512 0.35500 0.72396
1083 0.51278 0.70289 0.12137 0.39026 0.99595 0.34622 0.72014
1084 0.51911 0.71607 0.12295 0.38815 0.99599 0.34502 0.72043
1085 0.50009 0.68553 0.12346 0.38674 0.99619 0.34480 0.72162
1086 0.50642 0.69861 0.11976 0.38258 0.99663 0.33250 0.71538
1087 0.50640 0.68136 0.12013 0.38166 0.99640 0.33270 0.71585
1088 0.51273 0.70289 0.11969 0.37905 0.99640 0.32642 0.71335
1089 0.49375 0.68114 0.12204 0.37712 0.99619 0.32428 0.71281
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Figure 12. Images reconstructed from the revealing emission signal measured at the frequency
fo = 1334 MHz for the number of lines of this image determined in accordance with the criterion of
the maximum value of the measures presented in Figure 11: (a) the number of image lines determined
in accordance with method V (B = 1062, the number of lines smaller than required), (b) number of
image lines determined in accordance with methods I, II, III, IV, VI, and VII (BCorr = 1066, correct
number of lines).

4.1.2. Primary Image in the Form of the Text Presented in Figure 7b (BEntr = 1125,
d =741,466,826)

Figure 13 (Table 2) shows the changes in the values of the adopted measures (methods)
calculated as a function of the number lines of the image reconstructed from the recorded
revealing emission signal. The criterion for which the correct number of image lines is
indicated is the maximum value of the calculated measure (method, Figure 14).
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Figure 13. Normalized values (in relation to the maximum value) of the variability of measures as a
function of the number of image lines, supporting the determination of the correct number of lines of
the image reproduced for the source image in the form of a picture from Figure 7b—HDMI graphic
standard, computer monitor operating mode 1280 × 1024/60 Hz, frequency of the reveal emission
signal fo = 200 MHz, reception bandwidth BW = 100 MHz, correct number of lines BCorr = 1125.



Appl. Sci. 2023, 13, 447 17 of 28

Table 2. Normalized values (in relation to the maximum value) of the variability of measures as a
function of the number of image lines, supporting the determination of the correct number of lines of
the image reproduced for the source image in the form of a picture from Figure 7b.

Number
Lines

Method
I

Method
II

Method
III

Method
IV

Method
V

Method
VI

Method
VII

1105 0.57762 0.89215 0.14516 0.37915 0.99855 0.24556 0.55184
1106 0.56075 0.89722 0.13708 0.38025 0.99800 0.24318 0.54736
1107 0.55649 0.90676 0.14503 0.38373 0.99833 0.25174 0.55427
1108 0.57335 0.90127 0.13439 0.38217 0.99851 0.24458 0.54638
1109 0.57754 0.89215 0.18423 0.40866 0.99843 0.29020 0.56635
1110 0.56487 0.89858 0.13218 0.38417 0.99867 0.24414 0.54494
1111 0.57752 0.90258 0.14120 0.38847 0.99901 0.25906 0.55138
1112 0.56902 0.89993 0.13411 0.38971 0.99940 0.25478 0.54643
1113 0.60694 0.91139 0.16184 0.40234 0.99955 0.28113 0.56222
1114 0.56900 0.89993 0.13398 0.39623 0.99997 0.26640 0.54818
1115 0.58582 0.90517 0.13849 0.40093 0.99960 0.27724 0.55031
1116 0.58584 0.90517 0.13491 0.40621 0.99885 0.28810 0.55000
1117 0.58169 0.89350 0.15796 0.42220 0.99843 0.31262 0.56130
1118 0.58603 0.90517 0.13985 0.42119 0.99813 0.31692 0.55634
1119 0.60320 0.91018 0.14516 0.43215 0.99713 0.33761 0.55992
1120 0.60339 0.91018 0.14191 0.44263 0.99662 0.35726 0.56085
1121 0.63727 0.91953 0.15370 0.46147 0.99601 0.39707 0.57700
1122 0.62035 0.91496 0.14898 0.47962 0.99615 0.42268 0.57586
1123 0.63299 0.91841 0.15725 0.51080 0.99643 0.47718 0.59181
1124 0.80171 0.95558 0.16425 0.58135 0.99707 0.57332 0.64581
1125 1.00000 1.00000 1.00000 1.00000 0.99703 1.00000 1.00000
1126 0.78902 0.95326 0.16353 0.58082 0.99725 0.56847 0.64176
1127 0.64129 0.92065 0.15858 0.51102 0.99749 0.47550 0.59170
1128 0.62862 0.91727 0.15249 0.48096 0.99735 0.42839 0.58010
1129 0.64968 0.92284 0.15407 0.46193 0.99789 0.39447 0.57593
1130 0.58637 0.90517 0.14125 0.44246 0.99751 0.35709 0.56039
1131 0.58636 0.89483 0.14507 0.43175 0.99705 0.33826 0.56026
1132 0.56944 0.89993 0.13790 0.42055 0.99786 0.31653 0.55444
1133 0.59473 0.90770 0.15950 0.42232 0.99807 0.31523 0.56187
1134 0.59050 0.90645 0.13854 0.40677 0.99832 0.29376 0.55238
1135 0.57357 0.90127 0.13832 0.40079 0.99887 0.27779 0.55003
1136 0.58200 0.90389 0.13431 0.39567 0.99878 0.26565 0.54704
1137 0.61572 0.91378 0.16145 0.40153 0.99865 0.28136 0.56207
1138 0.56508 0.89858 0.13339 0.38904 0.99916 0.25475 0.54625
1139 0.56929 0.88941 0.14100 0.38781 0.99910 0.25648 0.55012
1140 0.56924 0.89993 0.13318 0.38434 0.99964 0.24651 0.54575
1141 0.57766 0.90258 0.18310 0.40838 0.99991 0.29033 0.56573
1142 0.56500 0.89858 0.13482 0.38229 0.99987 0.24598 0.54701
1143 0.56495 0.89858 0.14440 0.38370 0.99949 0.25112 0.55377
1144 0.57760 0.90258 0.13786 0.38086 0.99955 0.24335 0.54738
1145 0.57336 0.90127 0.14519 0.37995 1.00000 0.24640 0.55225



Appl. Sci. 2023, 13, 447 18 of 28

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 28 
 

1108 0.57335 0.90127 0.13439 0.38217 0.99851 0.24458 0.54638 
1109 0.57754 0.89215 0.18423 0.40866 0.99843 0.29020 0.56635 
1110 0.56487 0.89858 0.13218 0.38417 0.99867 0.24414 0.54494 
1111 0.57752 0.90258 0.14120 0.38847 0.99901 0.25906 0.55138 
1112 0.56902 0.89993 0.13411 0.38971 0.99940 0.25478 0.54643 
1113 0.60694 0.91139 0.16184 0.40234 0.99955 0.28113 0.56222 
1114 0.56900 0.89993 0.13398 0.39623 0.99997 0.26640 0.54818 
1115 0.58582 0.90517 0.13849 0.40093 0.99960 0.27724 0.55031 
1116 0.58584 0.90517 0.13491 0.40621 0.99885 0.28810 0.55000 
1117 0.58169 0.89350 0.15796 0.42220 0.99843 0.31262 0.56130 
1118 0.58603 0.90517 0.13985 0.42119 0.99813 0.31692 0.55634 
1119 0.60320 0.91018 0.14516 0.43215 0.99713 0.33761 0.55992 
1120 0.60339 0.91018 0.14191 0.44263 0.99662 0.35726 0.56085 
1121 0.63727 0.91953 0.15370 0.46147 0.99601 0.39707 0.57700 
1122 0.62035 0.91496 0.14898 0.47962 0.99615 0.42268 0.57586 
1123 0.63299 0.91841 0.15725 0.51080 0.99643 0.47718 0.59181 
1124 0.80171 0.95558 0.16425 0.58135 0.99707 0.57332 0.64581 
1125 1.00000 1.00000 1.00000 1.00000 0.99703 1.00000 1.00000 
1126 0.78902 0.95326 0.16353 0.58082 0.99725 0.56847 0.64176 
1127 0.64129 0.92065 0.15858 0.51102 0.99749 0.47550 0.59170 
1128 0.62862 0.91727 0.15249 0.48096 0.99735 0.42839 0.58010 
1129 0.64968 0.92284 0.15407 0.46193 0.99789 0.39447 0.57593 
1130 0.58637 0.90517 0.14125 0.44246 0.99751 0.35709 0.56039 
1131 0.58636 0.89483 0.14507 0.43175 0.99705 0.33826 0.56026 
1132 0.56944 0.89993 0.13790 0.42055 0.99786 0.31653 0.55444 
1133 0.59473 0.90770 0.15950 0.42232 0.99807 0.31523 0.56187 
1134 0.59050 0.90645 0.13854 0.40677 0.99832 0.29376 0.55238 
1135 0.57357 0.90127 0.13832 0.40079 0.99887 0.27779 0.55003 
1136 0.58200 0.90389 0.13431 0.39567 0.99878 0.26565 0.54704 
1137 0.61572 0.91378 0.16145 0.40153 0.99865 0.28136 0.56207 
1138 0.56508 0.89858 0.13339 0.38904 0.99916 0.25475 0.54625 
1139 0.56929 0.88941 0.14100 0.38781 0.99910 0.25648 0.55012 
1140 0.56924 0.89993 0.13318 0.38434 0.99964 0.24651 0.54575 
1141 0.57766 0.90258 0.18310 0.40838 0.99991 0.29033 0.56573 
1142 0.56500 0.89858 0.13482 0.38229 0.99987 0.24598 0.54701 
1143 0.56495 0.89858 0.14440 0.38370 0.99949 0.25112 0.55377 
1144 0.57760 0.90258 0.13786 0.38086 0.99955 0.24335 0.54738 
1145 0.57336 0.90127 0.14519 0.37995 1.00000 0.24640 0.55225 

 

  

(a) (b) 

Figure 14. Images reconstructed from the revealing emission signal measured at the frequency
fo = 200 MHz for the number of lines of this image determined in accordance with the criterion of the
maximum value of the measures presented in Figure 13: (a) the number of image lines determined
in accordance with method V (B = 1114, the number of lines smaller than required), (b) number of
image lines determined in accordance with methods I, II, III, IV, VI, and VII (BCorr = 1125, correct
number of lines).

4.2. VGA Standard as a Source of Reveal Emissions—Sample Image
Primary Image in the Form of the Text Presented in Figure 7c (BEntr = 809, d =259,256,078)

Figure 15 (Table 3) shows the changes in the values of the adopted measures (methods)
calculated as a function of the number lines of the image reconstructed from the recorded
revealing emission signal. The criterion for which the correct number of image lines is
indicated is the maximum value of the calculated measure (method, Figure 16).
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Figure 15. Normalized values (in relation to the maximum value) of the variability of measures as a
function of the number of image lines, supporting the determination of the correct number of lines of
the image reproduced for the source image in the form of a picture from Figure 7c—VGA graphic
standard, computer monitor operating mode 1024 × 768/60 Hz, frequency of the reveal emission
signal fo = 558 MHz, reception bandwidth BW = 10 MHz, correct number of lines BCorr = 806.
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Table 3. Normalized values (in relation to the maximum value) of the variability of measures as a
function of the number of image lines, supporting the determination of the correct number of lines of
the image reproduced for the source image in the form of a picture from Figure 7c.

Number
Lines

Method
I

Method
II

Method
III

Method
IV

Method
V

Method
VI

Method
VII

786 0.93999 0.97422 0.26164 0.47097 0.99740 0.23701 0.38126
787 0.94417 0.95911 0.26043 0.47252 0.99787 0.23726 0.38127
788 0.96437 0.97559 0.26232 0.47590 0.99821 0.23882 0.38134
789 0.97254 0.96849 0.25853 0.47973 0.99855 0.24275 0.38286
790 0.98066 0.96898 0.26950 0.48486 0.99885 0.24939 0.38696
791 0.98467 0.96922 0.25915 0.48867 0.99928 0.24873 0.38618
792 0.99664 0.98480 0.26338 0.49419 0.99961 0.25065 0.38699
793 0.98871 0.97689 0.26055 0.49995 1.00000 0.25727 0.39192
794 0.99687 0.98480 0.26599 0.50633 0.99950 0.26268 0.39543
795 0.98504 0.96922 0.25906 0.51268 0.99933 0.26891 0.39989
796 0.98895 0.96946 0.26829 0.52101 0.99867 0.27769 0.40571
797 0.99670 0.98480 0.26246 0.52815 0.99800 0.27694 0.40438
798 0.98889 0.97689 0.26738 0.53642 0.99678 0.28178 0.40657
799 0.99298 0.97710 0.26344 0.54652 0.99590 0.29121 0.41451
800 0.99302 0.98462 0.26974 0.56238 0.99541 0.30410 0.42369
801 0.98905 0.96946 0.26764 0.58427 0.99517 0.32538 0.44039
802 0.98495 0.96922 0.27374 0.61365 0.99477 0.35233 0.46085
803 0.99260 0.97710 0.27272 0.65206 0.99423 0.38692 0.48712
804 0.99624 0.98480 0.28593 0.69870 0.99429 0.41795 0.51159
805 0.99599 0.98480 0.25964 0.75836 0.99476 0.46916 0.55245
806 1.00000 0.99256 1.00000 1.00000 0.99502 1.00000 1.00000
807 0.99208 0.97710 0.25951 0.75794 0.99526 0.47048 0.55397
808 0.99224 0.97710 0.28464 0.69811 0.99581 0.41896 0.51203
809 0.99234 0.97710 0.27025 0.65184 0.99613 0.38386 0.48466
810 0.99217 0.97710 0.27400 0.61508 0.99651 0.34956 0.45882
811 0.99596 0.98480 0.26738 0.58638 0.99687 0.32565 0.44042
812 0.99572 0.98480 0.27156 0.56520 0.99729 0.30617 0.42559
813 0.98782 0.97689 0.26211 0.54867 0.99753 0.29101 0.41444
814 0.99198 0.98462 0.26691 0.53803 0.99794 0.28382 0.40821
815 0.99215 0.97710 0.26269 0.52874 0.99835 0.27632 0.40388
816 0.99234 0.97710 0.26782 0.52114 0.99861 0.27423 0.40329
817 0.99645 0.98480 0.25994 0.51272 0.99890 0.26746 0.39883
818 0.99245 0.97710 0.26489 0.50592 0.99929 0.26227 0.39476
819 0.98845 0.96946 0.25954 0.49942 0.99955 0.25620 0.39169
820 0.98856 0.97689 0.26432 0.49381 0.99993 0.25080 0.38745
821 0.98877 0.97689 0.25971 0.48806 0.99920 0.24887 0.38690
822 0.98492 0.96922 0.26583 0.48423 0.99943 0.24802 0.38685
823 0.99273 1.00000 0.25788 0.47910 0.99857 0.24196 0.38314
824 0.96461 0.96799 0.26365 0.47488 0.99815 0.24043 0.38228
825 0.94880 0.97468 0.26036 0.47078 0.99704 0.23810 0.38149
826 0.93688 0.96619 0.26205 0.46914 0.99625 0.23997 0.38255
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Figure 16. Images reconstructed from the revealing emission signal measured at the frequency 𝑓௢ =558 MHz for the number of lines of this image determined in accordance with the criterion of the Figure 16. Images reconstructed from the revealing emission signal measured at the frequency
fo = 558 MHz, for the number of lines of this image determined in accordance with the criterion of
the maximum value of the measures presented in Figure 15: (a) the number of image lines determined
in accordance with method V (B = 803, the number of lines smaller than required), (b) number of
image lines determined in accordance with method II (B = 823, the number of lines bigger than
required), (c) number of image lines determined in accordance with method I, III, IV, VI, and VII
(BCorr = 806, correct number of lines).

4.3. Display of Multifunctional Device as a Source of Reveal Emissions—Sample Image
Primary Image in the Form of Menu Presented in Figure 7d (BEntr = 294, d =93,127,351)

Figure 17 (Table 4) shows the changes in the values of the adopted measures (methods)
calculated as a function of the number lines of the image reconstructed from the recorded
revealing emission signal. The criterion for which the correct number of image lines is
indicated is the maximum value of the calculated measure (method, Figure 18).
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Figure 17. Normalized values (in relation to the maximum value) of the variability of measures as a
function of the number of image lines, supporting the determination of the correct number of lines
of the image reproduced for the source image in the form of a picture from Figure 7d—menu of
multifunctional device, frequency of the reveal emission signal fo = 235 MHz, reception bandwidth
BW = 10 MHz, correct number of lines BCorr = 288.
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Table 4. Normalized values (in relation to the maximum value) of the variability of measures as a
function of the number of image lines, supporting the determination of the correct number of lines of
the image reproduced for the source image in the form of a picture from Figure 7d.

Number
Lines

Method
I

Method
II

Method
III

Method
IV

Method
V

Method
VI

Method
VII

268 0.39560 0.72202 0.12345 0.13999 0.99729 0.17261 0.40321
269 0.38852 0.71628 0.11724 0.14128 0.99798 0.17480 0.40424
270 0.39586 0.72202 0.14957 0.16084 1.00000 0.20340 0.42164
271 0.39601 0.72202 0.10712 0.14628 0.99764 0.18310 0.40894
272 0.43179 0.76403 0.18302 0.17021 0.99415 0.22722 0.43696
273 0.41748 0.73856 0.13408 0.14586 0.99272 0.18691 0.41091
274 0.40313 0.72765 0.12056 0.14146 0.99411 0.17916 0.40655
275 0.41022 0.73316 0.13212 0.15153 0.99541 0.19758 0.41777
276 0.41721 0.73856 0.13409 0.15019 0.99722 0.19331 0.41593
277 0.39557 0.72202 0.12329 0.14326 0.99789 0.18120 0.40812
278 0.38845 0.71628 0.12115 0.13882 0.99803 0.17339 0.40374
279 0.36698 0.69831 0.12118 0.13987 0.99757 0.17336 0.40317
280 0.40309 0.72765 0.12922 0.14519 0.99934 0.18086 0.40614
281 0.42473 0.74386 0.11886 0.14716 0.99716 0.18588 0.40893
282 0.46779 0.78828 0.12500 0.15619 0.99354 0.19800 0.41511
283 0.44629 0.75913 0.12259 0.16599 0.99310 0.20466 0.41936
284 0.47511 0.79286 0.13992 0.18488 0.99487 0.22232 0.42804
285 0.46765 0.77355 0.12281 0.20281 0.99739 0.22925 0.43367
286 0.48921 0.80176 0.12755 0.24332 0.99752 0.26242 0.45277
287 0.55386 0.83804 0.10737 0.33133 0.99783 0.32414 0.49738
288 1.00000 1.00000 1.00000 1.00000 0.99721 1.00000 1.00000
289 0.54696 0.83428 0.10242 0.32685 0.99902 0.31612 0.49262
290 0.53273 0.82658 0.12042 0.24105 0.99907 0.25682 0.45063
291 0.46780 0.77355 0.13092 0.20498 0.99497 0.23382 0.43644
292 0.48941 0.78718 0.12532 0.18139 0.99280 0.21495 0.42547
293 0.46072 0.76883 0.11976 0.16428 0.99501 0.20192 0.41816
294 0.45344 0.77886 0.12064 0.15489 0.99647 0.19389 0.41349
295 0.46756 0.78828 0.12516 0.14966 0.99661 0.19051 0.41226
296 0.42435 0.75888 0.12496 0.14412 0.99943 0.18124 0.40757
297 0.37405 0.70442 0.12349 0.14030 0.99826 0.17469 0.40336
298 0.38852 0.71628 0.13211 0.14151 0.99718 0.18221 0.40808
299 0.43900 0.75414 0.12677 0.14409 0.99981 0.18282 0.40906
300 0.41032 0.73316 0.14947 0.15865 0.99753 0.21579 0.42951
301 0.40298 0.72765 0.11964 0.14368 0.99453 0.18400 0.40913
302 0.40303 0.72765 0.12215 0.14211 0.99284 0.18291 0.40781
303 0.41749 0.73856 0.12221 0.14278 0.99513 0.18106 0.40706
304 0.41013 0.73316 0.14081 0.15519 0.99662 0.20144 0.42054
305 0.43161 0.76403 0.10783 0.14623 0.99809 0.18605 0.41077
306 0.40996 0.73316 0.17973 0.17243 0.99893 0.22547 0.43573
307 0.40284 0.72765 0.13659 0.14814 0.99804 0.18706 0.41017
308 0.38140 0.71041 0.12275 0.14026 0.99934 0.17604 0.40453



Appl. Sci. 2023, 13, 447 22 of 28

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 28 
 

285 0.46765 0.77355 0.12281 0.20281 0.99739 0.22925 0.43367 
286 0.48921 0.80176 0.12755 0.24332 0.99752 0.26242 0.45277 
287 0.55386 0.83804 0.10737 0.33133 0.99783 0.32414 0.49738 
288 1.00000 1.00000 1.00000 1.00000 0.99721 1.00000 1.00000 
289 0.54696 0.83428 0.10242 0.32685 0.99902 0.31612 0.49262 
290 0.53273 0.82658 0.12042 0.24105 0.99907 0.25682 0.45063 
291 0.46780 0.77355 0.13092 0.20498 0.99497 0.23382 0.43644 
292 0.48941 0.78718 0.12532 0.18139 0.99280 0.21495 0.42547 
293 0.46072 0.76883 0.11976 0.16428 0.99501 0.20192 0.41816 
294 0.45344 0.77886 0.12064 0.15489 0.99647 0.19389 0.41349 
295 0.46756 0.78828 0.12516 0.14966 0.99661 0.19051 0.41226 
296 0.42435 0.75888 0.12496 0.14412 0.99943 0.18124 0.40757 
297 0.37405 0.70442 0.12349 0.14030 0.99826 0.17469 0.40336 
298 0.38852 0.71628 0.13211 0.14151 0.99718 0.18221 0.40808 
299 0.43900 0.75414 0.12677 0.14409 0.99981 0.18282 0.40906 
300 0.41032 0.73316 0.14947 0.15865 0.99753 0.21579 0.42951 
301 0.40298 0.72765 0.11964 0.14368 0.99453 0.18400 0.40913 
302 0.40303 0.72765 0.12215 0.14211 0.99284 0.18291 0.40781 
303 0.41749 0.73856 0.12221 0.14278 0.99513 0.18106 0.40706 
304 0.41013 0.73316 0.14081 0.15519 0.99662 0.20144 0.42054 
305 0.43161 0.76403 0.10783 0.14623 0.99809 0.18605 0.41077 
306 0.40996 0.73316 0.17973 0.17243 0.99893 0.22547 0.43573 
307 0.40284 0.72765 0.13659 0.14814 0.99804 0.18706 0.41017 
308 0.38140 0.71041 0.12275 0.14026 0.99934 0.17604 0.40453 

 

  

(a) (b) 
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The images presented in Figure 7 are only examples. The authors carried out several 
statistical tests for which other images were used (Figure 19). Obtained results for men-
tioned images only confirmed the conclusions stated below. 

Figure 18. Images reconstructed from the revealing emission signal measured at the frequency
fo = 235 MHz, for the number of lines of this image determined in accordance with the criterion of
the maximum value of the measures presented in Figure 17: (a) the number of image lines determined
in accordance with method V (B = 273, the number of lines smaller than required), (b) number of
image lines determined in accordance with method I, II, III, IV, VI, and VII (BCorr = 288, correct
number of lines).

4.4. The Analysis of Obtained Results

The analyses were carried out on the basis of test images presented in Figure 7, which
were the sources of undesirable emissions during their processed in the graphic tracks
of IT devices. Signals corresponding to these emissions were recorded and used in the
rasterization process, i.e., their reconstruction also in the form of images.

The images presented in Figure 7 are only examples. The authors carried out sev-
eral statistical tests for which other images were used (Figure 19). Obtained results for
mentioned images only confirmed the conclusions stated below.

During conducted tests, different scenarios were adopted. DVI, HDMI, and VGA
graphic standards, printer displays, and display of terminal VoIP were tested (Table 5).
These allowed us to check proposed methods and conventional methods from the viewpoint
of suitability for determination of the number lines of reconstructed images. Results of
detailed analyses are presented for images from Figure 7.

For the process to be successful, however, the basic raster parameters are necessary,
which are the length d of the image lines (image width) and the B number of image lines
(image height). At the beginning, an assumption was made about the knowledge of the
image line length d and the pre-estimated number BEntr of the image line, which was carried
out on the basis of the analysis of amplitude time variability of the revealing emission signal.
The authors’ experience shows that the accuracy of the rough calculation of the number of
lines in the image is ±20 lines. The rough estimation of the BEntr parameter allowed for the
estimation of BCorr based on the methods of contrast evaluation (methods I, II, III, and IV)
and the methods proposed by the authors of the article (methods V, VI, and VII). Taking
into account the accuracy of the rough estimation of BEntr quantity, the maximum value
of the measure, calculated in the variability range (BEntr ± n), where n = 0, 1, 2, . . . , 20,
was adopted as the criterion for the correctness of determining the number of image lines.
This means that the image height was decreased and increased in increments of 1, up to a
maximum of 20 lines. As a result of the performed calculations of the values of the adopted
measures (methods I to VII), the appropriate number of BCorr lines for each reproduced
image was determined (Table 6).
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Figure 19. Images for which statistical analyses were conducted (images reconstructed on base
on reveal emissions for thirty times summation without colorization): (a) DVI standard, receive
frequency fo = 365 MHz, BW = 50 MHz, number lines Bcorr = 525, resolution 640 × 480/60 Hz;
(b) DVI standard, receive frequency fo = 1334 MHz, BW = 50 MHz, number lines Bcorr = 1066,
resolution 1280 × 1024/60 Hz; (c) DVI standard, receive frequency fo = 1805 MHz, BW = 100 MHz,
number lines Bcorr = 1066, resolution 1280 × 1024/60 Hz; (d) DVI standard, receive frequency
fo = 1775 MHz, BW = 100 MHz, number lines Bcorr = 1125, resolution 1920 × 1080/60 Hz;
(e) laser printer HP M507, menu with icons, receive frequency fo = 392 MHz, BW = 10 MHz,
number lines Bcorr = 266; (f) VGA standard, receive frequency fo = 450 MHz, BW = 20 MHz,
number lines Bcorr = 628, resolution 800 × 600/60 Hz; (g) laser printer, menu with text, receive
frequency fo = 235 MHz, BW = 10 MHz, number lines Bcorr = 288; (h) DVI standard, receive
frequency fo = 740 MHz, BW = 50 MHz, number lines Bcorr = 628, resolution 1280 × 1024/60 Hz;
and (i) display of terminal VoIP, receive frequency fo = 800 MHz, BW = 20 MHz, number lines
Bcorr = 528.

Considering the effectiveness of the adopted methods, however, a discussion should
be held on the dynamics of changes in the calculated values of the adopted measures in
accordance with the relationships (2), (8), (11), (14), (22), (26), and (29). Value of differences
between the maximum and minimum value (example notation for method I):

Di f f erenceI = maximumI −minimumI (38)

where
minimumI = min

B
(ContrastI(B)), (39)
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may testify that the method is resistant to possible disturbances in the reproduced images
(Table 2). The second important parameter of the assessment is the variance σ2 (example
notation for method I):

σ2 =
1

41∑
B

(
ContrastI_Un(B)− ContrastI_Un

)2, (40)

where
ContrastI_Un =

1
41∑

B

ContrastI_Un(B). (41)

Table 5. Parameters of sources of reveal emissions used in the tests.

Source of Reveal Emission Duration of
Displayed Image

Frequency of
Reveal Signal

Emission
Bandwidth Number Lines

Display of VoIP terminal—menu in form
of icons Unknown 800 MHz 20 MHz 528

Display of HP laser printer
M477fdn—menu in form of text Unknown 235 MHz 10 MHz 288

Display of HP laser printer
M477fdn—menu in form of text Unknown 235 MHz 10 MHz 288

Display of HP laser printer M507—menu
in form of icons Unknown 392 MHz 10 MHz 266

HDMI standard
1280 × 1024/60 Hz 1334 MHz 50 MHz 1066
1280 × 1024/60 Hz 200 MHz 100 MHz 1125
1280 × 1024/60 Hz 1334 MHz 50 MHz 1066

DVI standard

1280 × 1024/60 Hz 740 MHz 50 MHz 628
1920 × 1080/60 Hz 1775 MHz 100 MHz 1125
1280 × 1024/60 Hz 1805 MHz 100 MHz 1066

640 × 480/60 Hz 365 MHz 50 MHz 525

VGA standard
800 × 600/60 Hz 450 MHz 20 MHz 628
1024 × 768/60 Hz 558 MHz 10 MHz 806

Table 6. BEntr input data and the determined BCorr values for the adopted criterion of maximizing
the value of the calculated measure for the example images shown in Figure 7.

Figure 7a Figure 7b Figure 7c Figure 7d

BEntr BCorr BEntr BCorr BEntr BCorr BEntr BCorr

Method I

1069

1066

1125

1125

809

806

294

288
Method II 1066 1125 823 288
Method III 1066 1125 806 288
Method IV 1066 1125 806 288
Method V * 1062 1145 793 270
Method VI * 1066 1125 806 288
Method VII * 1066 1125 806 288

*—method used to estimate the length d line of the reconstructed image [28].

The preliminary analysis of the obtained results shows that method II, and in particular
method V, are not measures allowing for the correct determination of the BCorr number of
the image line (Tables 7 and 8). For each of the analysed images, method V indicated the
wrong number of image lines. Method II turned out to be ineffective only in the case of the
image presented in Figure 7c, which allows for its rejection anyway. The other methods, i.e.,
method I, III, IV, VI, and VII and the accepted criteria of acceptability, correctly indicated the
BCorr number of the lines of the reproduced images. However, due to the values presented
in Tables 2 and 3 and the analysis of the sensitivity of the methods to the poor quality of the
reproduced images (σ2 < 0.01, Di f f erence < 0.5), methods III and VI can be indicated as
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effective in determining the number of lines of the image obtained in the electromagnetic
infiltration process.

Table 7. Differences between the maximum and minimum values calculated according to (2), (8), (11),
(14), (22), (26), and (28).

Figure 7a Figure 7b Figure 7c Figure 7d

Method I 0.51890 0.44351 0.06312 0.63302
Method II 0.33632 0.11059 0.04089 0.30169
Method III 0.88059 0.86782 0.74212 0.89758
Method IV 0.62317 0.62085 0.53086 0.86118
Method V 0.00488 0.00399 0.00577 0.00728
Method VI 0.68045 0.75682 0.76299 0.82739
Method VII 0.28928 0.45506 0.61874 0.59683

Table 8. Values of the variance of the differences between the maximum and minimum values
calculated according to (2), (8), (11), (14), (22), (26), and (28).

Figure 7a Figure 7b Figure 7c Figure 7d

Method I 0.0114988 0.0063718 0.0002526 0.0096783
Method II 0.0067733 0.0003845 0.0000599 0.0026803
Method III 0.0182098 0.0174844 0.0128797 0.0183419
Method IV 0.0129926 0.0104123 0.0109060 0.0184546
Method V 0.0000013 0.0000012 0.0000029 0.0000043
Method VI 0.0221255 0.0183717 0.0158086 0.0162905
Method VII 0.0039669 0.0050373 0.0101824 0.0084351

The choice of an effective method in the determining the number BCorr of lines in
the image reconstructed in the electromagnetic infiltration process was based on calculat-
ing the differences between the maximum and minimum values of individual measures
calculated for images with the number of lines equal to B (Table 7). In order to improve
the correctness of the selection, the assessment of the analysed methods was also based
on the variance σ2 values of individual measures calculated as a function of parameter B
(Table 8). The obtained results allowed to indicate methods III and VI as effective methods
in the determining the correct BCorr number. When analyzing the values of the variance σ2

and the mentioned differences of the maximum and minimum values, one may wonder
whether the methods I, IV, and VII cannot also be used to determine the number of lines in
the image. The values of the measures under consideration clearly indicate, through the
maximum value, the correct number BCorr. However, the distance between the minimum
values and the maximum may, according to the authors, be insufficient in practice for other
images reconstructed from the emission revealing signals.

5. Conclusions

This article presented the issue related to the correct determination of the number
BCorr of the reproduced image lines on the basis of the recorded revealing emission signal.
Determining the correct BCorr value is very important when it is necessary to further
process the image using the coherent summation method in order to improve its quality,
i.e., improve the signal-to-noise (SNR) parameter. An incorrectly determined number BCorr
of lines of the reproduced image causes the summing up of several dozen repetitions of the
same image, reproduced from a sufficiently long implementation of the revealing emission
signal, resulting in blurring and not sharpening the data contained in the image.

Four methods of contrast assessment and three methods proposed by the authors of
the article were used in the analyses. The latter were successfully used in determining the
line length of the reconstructed image.

In the conducted analyses, recorded, real emission signal revealing and reconstructed
images on their basis were used (Figure 7). The sources of these emissions were the
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graphic lines (HDMI/DVI and VGA standards) of the computer system, the display of the
multifunctional devices and the display a of VoIP terminal. Images with different graphic
structures were displayed on a computer monitor, which allowed for the assessment of the
considered methods in terms of their effectiveness for various scenarios.

Analysing the considered methods from I to VII, one can notice the usefulness of
methods III and VI in the process of determining the number of lines for the reproduced
image. Method III is a typical method of determining image contrast; method VI is the
method proposed by the authors of the article (Table 9). Is it therefore necessary to present
new methods, since the known method used in determining the contrast of the image is
effective in the process of determining the correct number of lines in the image? There
is only one answer to this question. Yes. It is enough to analyse the complexity of the
calculations necessary to be carried out by all abovementioned methods and thus the time
required to perform the necessary calculations. Method III is based on calculating the
squares of the differences of the relevant quantities, which then must be summed up many
times. Method VI requires the calculation of only the sums of the given maximum values.
Hence, undoubtedly, the proposed method VI has an advantage over the conventional
method, and it is proposed to be used in the process of electromagnetic infiltration, in
which time plays a very important role.

Table 9. Evaluation of methods.

Method Useless
Useless Due to
Sensitivity to
Disturbances

Useful

Useful Due to
Low

Computational
Complexity

Conventional methods
Method I X
Method II X
Method III X
Method IV X

Method proposed by authors
Method V X
Method VI X X
Method VII X

Further work in this area will focus on the software implementation of the algorithms
of the proposed methods, allowing for the automation of the process of determining the
BCorr number of lines of the reproduced image. This process is to be associated with algo-
rithms for estimating the line length d of the image, which should ultimately accelerate the
activities related to the correct reproduction of graphic data and making correct decisions
on the classification of electromagnetic emissions.
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