
Citation: Malamas, V.; Palaiologos,

G.; Kotzanikolaou, P.; Burmester, M.;

Glynos, D. Janus: Hierarchical

Multi-Blockchain-Based Access

Control (HMBAC) for Multi-

Authority and Multi-Domain

Environments. Appl. Sci. 2023, 13,

566. https://doi.org/10.3390/

app13010566

Academic Editors: Konstantinos

Demertzis, Hui Li and Shancang Li

Received: 29 November 2022

Revised: 20 December 2022

Accepted: 26 December 2022

Published: 31 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Janus: Hierarchical Multi-Blockchain-Based Access Control
(HMBAC) for Multi-Authority and Multi-
Domain Environments
Vangelis Malamas 1,* , George Palaiologos 2, Panayiotis Kotzanikolaou 1 , Mike Burmester 3

and Dimitris Glynos 2

1 Department of Informatics, University of Piraeus, 185 34 Pireas, Greece
2 CENSUS S.A., I. Gkoura 16, 54352 Thessaloniki, Greece
3 Computer Science Department, Florida State University, Tallahassee, FL 32306, USA
* Correspondence: bagmalamas@unipi.gr

Abstract: Although there are several access control systems in the literature for flexible policy
management in multi-authority and multi-domain environments, achieving interoperability and
scalability, without relying on strong trust assumptions, is still an open challenge. We present
HMBAC, a distributed fine-grained access control model for shared and dynamic multi-authority and
multi-domain environments, along with Janus , a practical system for HMBAC policy enforcement.
The proposed HMBAC model supports: (a) dynamic trust management between different authorities;
(b) flexible access control policy enforcement, defined at the domain and cross-domain level; (c) a
global source of truth for all entities, supported by an immutable, audit-friendly mechanism. Janus
implements the HMBAC model and relies on the effective fusion of two core components. First, a
Hierarchical Multi-Blockchain architecture that acts as a single access point that cannot be bypassed
by users or authorities. Second, a Multi-Authority Attribute-Based Encryption protocol that supports
flexible shared multi-owner encryption, where attribute keys from different authorities are combined
to decrypt data distributedly stored in different authorities. Our approach was implemented using
Hyperledger Fabric as the underlying blockchain, with the system components placed in Kubernetes
Docker container pods. We experimentally validated the effectiveness and efficiency of Janus, while
fully reproducible artifacts of both our implementation and our measurements are provided.

Keywords: access control; blockchain; multi-blockchain; multi-authority; multi-domain; Attribute-
Based Encryption

1. Introduction

In recent years, the continuous integration of new communication and computing
technologies, along with the rapid adoption of new IoT devices, has led to an enormous
increase in generated data. According to Statista [1], the amount of data recorded world-
wide is expected to reach 181 ZB (zettabytes) in 2025, from 79 ZB in 2021. This huge amount
of data are generated and processed by multiple authorities that belong to different, and
sometimes critical, domains.

Complex and critical ecosystems, such as healthcare, civil aviation, or the energy
sector, must integrate the operational, functional, security, and privacy requirements of
many types of user and at the same time reconcile the conflicting interests of stakeholders.
In addition, in many cases, users belonging to one authority need to access data maintained
by other authorities, within the same or in a different domain. Access to the underlying
data should be granted based on the access control policy of the corresponding resource
owner and on other restrictions that may be imposed at an inter- or cross-domain level.

For example, in the health sector, users may be doctors, patients, medical and adminis-
trative personnel of healthcare providers (e.g., hospitals) or technical operators and remote

Appl. Sci. 2023, 13, 566. https://doi.org/10.3390/app13010566 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010566
https://doi.org/10.3390/app13010566
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9238-6796
https://orcid.org/0000-0002-8771-9020
https://orcid.org/0000-0001-5094-5668
https://orcid.org/0000-0002-0581-2265
https://doi.org/10.3390/app13010566
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010566?type=check_update&version=2

Appl. Sci. 2023, 13, 566 2 of 27

administrators for connected medical devices. In these ecosystems, granular access to data
and interoperability of services are two basic prerequisites that greatly impact the privacy
and security aspects of these systems.

Traditionally, access control systems have been implemented within enterprises. The
initial methods for domain-specific access control were based on centralized cloud so-
lutions [2]. Such solutions require centralized data centers to store and handle various
types of data, including user identities, cryptographic keys, and access rights, as well as a
trusted cloud system administration to control the user’s access rights and authorization.
Although these systems offer interoperability, fundamental challenges of data security
and management persisted. Specifically, there are three major concerns with this design
approach. First, an attack on the centralized data center might result in a single point of
failure, leading to massive data compromise [3]. Second, strong trust assumptions persist
for the cloud infrastructure [4], e.g., cloud administrators are trusted not to abuse their
position to gain unauthorized access to resources or interfere with the access privileges of
legitimate users. Finally, it is not possible to maintain a globally trusted and immutable
access log to allow auditing for possible data access privacy violations.

Motivation. As a result of the preceding discussion, more emphasis is required on
innovative, decentralized, interoperable and adaptable trust management systems. The
following are two motivating examples.

Example 1: Fine-grained access to healthcare data. The medical sector includes a variety
of domains, such as regulators, hospitals, manufacturers and insurance providers. At
the same time, privacy-sensitive, health-related data may be created by various medical
IoT devices, such as health monitoring devices (e.g., glucose level, blood pressure, or
sleep monitoring systems), or treatment devices (e.g., medical infusion pumps). Users
of one authority may require granular access to data maintained by multiple authorities
(stakeholders) and domains. For example, while a doctor is on duty, they may require
access to the full medical history data maintained in multiple hospital databases, for a
patient under emergency treatment, or an administrator of a medical device manufacturer
may require access to the configuration data of connected medical devices installed in
different hospitals. In addition, regulators may require that the data be accessible from
a single entrance platform, in order to log all data access requests and monitor privacy
violations. At the same time, new sectors or stakeholders can dynamically join or leave
the system. Note that users who are simultaneously members of multiple authorities may
require special access. For example, a doctor in a hospital may also be a researcher at a
university. This doctor would also require access to (statistical) health data maintained in
all hospitals, for research purposes.

Example 2: Fine-grained access to data in a multi-domain supply chain. Consider a dis-
tributed supply chain tracking system, collectively used by supply chain stakeholders for
collecting, integrating and analyzing data from a variety of sources. The various stakehold-
ers have different requirements for data access. For example, a container shipping company
requires access to data on cargo weight and quantity, while a retail end-user requires
access to data on product provenance, storage, and transportation conditions (especially
for sensitive merchandise). These systems must be interoperable, but also provide granular
access to data. In addition, authorities such as customs or other governmental agencies
may also require a single point of access for all queries to data, for global access verifiability,
i.e., it must be possible for any entity, either inside or outside the system, to verify all access
attempts to the data (either successful or not).

Contribution. The main contribution of this paper is to design and implement a
secure and efficient access control model specifically targeted to dynamic, multi-domain
and multi-authority environments. In particular:

• We formally define Hierarchical Multi Blockchain-Based Access Control (HMBAC), a novel
access control model for multi-domain and multi-authority environments (see Section 4.1).
HMBAC supports: dynamic trust management between different authorities; granular

Appl. Sci. 2023, 13, 566 3 of 27

and flexible domain-level access control policy enforcement; a global source of truth for all
entities, allowing for an immutable and forensics-by-design auditing mechanism.

• We describe the architecture design of HMBAC (Section 4.2), which in turn is im-
plemented by Janus [5], an artifact and reproducible implementation of HMBAC for
large-scale setup environments (Section 4.3). Our implementation uses Hyperledger
Fabric [6] as the underlying blockchain technology. To support system orchestration,
we develop APIs to allow controlled user interaction with the blockchain and inter-
blockchain synchronization. User interaction with the API occurs through an Electron
application, while global system orchestration is achieved through Docker containers
and Kubernetes.

• Based on our implementation, we have conducted extensive efficiency analysis (Section 5)
to actually verify the practicality and efficiency of the proposed system.

• Finally, we formally analyze Janus security (Section 6). Our system enforces a single
point of entry that cannot be bypassed by users or authorities. This is achieved by
modifying the well-known Multi-Authority Attribute-based Encryption (MA-ABE)
scheme of [7] in a distributed two-step decryption procedure. Part of the ABE decryption
is performed by the multichain system itself by generating an attribute key linked to
the requesting user on the fly. The user will be able to fully decrypt the data, provided
that they obtained the relevant attribute keys which are required by the access policy.
We developed a Go library as an add-on for Hashicorp Vault [8] and integrated it into
Hyperledger Fabric. Secure attribute key storage is supported by embedding the keys
in different Vault instances.

We note that although Janus utilizes the hierarchical multichain of [9] as a build-
ing block, the proposed HMBAC model is independent of the actual underlying multi-
blockchain used; it is possible to implement HMBAC based on other underlying
multi-blockchains.

2. Related Work

During the last few years, several research attempts have tried to provide fine-grained
access control in the dynamic multi-authority and multi-domain setting, while maintaining
interoperability [10]. Some of these works have focused on decentralization and privacy-
preserving encryption [11–13]. Such targeted solutions enable adequate compatibility and
fine-grained access control; however, they fail to combine credentials issued by independent
authorities. Other solutions rely on privacy-preserving encryption, such as Attribute-Based
Access Control (ABAC). For example, Ref. [14] proposes a decentralized MA-ABAC (DMA-
ABAC) scheme for multi-domain healthcare ecosystems. Despite the fact that authorities
can independently control their security settings and enforce cross-domain policies, the
lack of a mechanism obliging users to use the system for accessing the data, in combination
with the absence of global verifiability, leads to strong trust assumptions. In [15], an ABAC
solution is designed for the shared multi-owner setting, assuming a distributed setting
with multiple authorities. The authorities own pieces of data and may issue attribute keys
that users may combine to access data belonging to different authorities. Even though
the proposed solution strengthens the restrictions for accessing data, it falls short on
addressing the challenge of inter- and cross-domain policy enforcement, i.e., dynamically
defining access policies both to control access for all authorities within a domain or for all
authorities belonging in different domains. Many works try to solve this problem by using
Multi-Authority Ciphertext Policy Attribute-Based Encryption (MA-CP-ABE) schemes.
For example, the authors of [9] present a hierarchical multichain access model suitable
for multi-owner setting specifically for healthcare environments. With the use of MA-CP-
ABE, in encrypting the data, the proposed model achieves both inter- and cross-domain
policy management. However, since multi-domain and multi-authority environments are
inherently large scale, the lack of an end-to-end implementation makes it hard to actually
assess the efficiency and practicality of [9] in actual applications.

Appl. Sci. 2023, 13, 566 4 of 27

In [16], a MA-CP-ABE scheme is proposed that supports range policy, which, however,
maintains the need for a trusted central authority. In [17], authors adopt the idea of hybrid
encryption to reduce the computational overhead of data encryption, using a symmetric key
to encrypt data and a MA-CP-ABE mechanism to encrypt the symmetric key. The authors
in [18], also propose a MA-CP-ABE scheme combined with an outsourced decryption
and zero knowledge proof for the Internet of mobile things. In [19], another MA-CP-ABE
scheme is proposed suitable for IoT applications and devices with low computational
capabilities. Decryption operations are outsourced to fog for efficiency reasons, but no
policy management is supported. The authors of [20] introduce a token-based access
control scheme which uses smart contract and blockchain to generate decryption keys
according to verified user attributes. In [21], Elliptic Curve Cryptography (ECC) and
MA-CP-ABE are combined to create an access control system that supports the setting
of multiple authorities, but the addition or removal of authorities remains inefficient.
In [22], the authors propose a privacy-preserving MA-CP-ABE scheme for blockchain-
based applications in the supply chain. This model achieves fine-grained access control and
versatile authorization and also protects user’s private key from leakage even when some
attributes authorities fail. However, in most of the above solutions, trust expectations about
global transaction verifiability persist. Strong trust assumptions are required to ensure that
all access transactions to encrypted data are immutably logged and may be globally verified
by all entities. In [23], the authors also suggest an access model based on CP-ABE for IoT
in healthcare, and although they achieve the collaboration of independent authorities,
they do not solve the need for inter- and cross-domain policy management. In [24], an
Attribute-based Signcryption (ABSC) scheme is proposed that relies on a central certificate
authority to verify the attribute authorities and thus maintains strong trust assumptions.

Other works use hierarchical attribute-based access models, e.g., [25–29]. For example,
Ref. [25] presents a hierarchical Multi-Dimensional Access Control (MD-AC) model for
the authorization of multiple participants in the cloud. Furthermore, Ref. [26] relies on a
trusted third party (TTP) and an attribute mapping center (MC) that incorporate CP-ABE to
provide granular access to users. Both works use the cloud for efficiency reasons, assuming
strong trust. In general, although hierarchical attribute-based access models are flexible
and scalable, they are not suitable for multi-authority, multi-domain environments, where
roles may not have a global and strict hierarchy.

The current state-of-the-art leverages blockchain technology to provide a variety of
fully autonomous and hybrid solutions [30,31]. Although blockchain technology is more
difficult to administer and may introduce efficiency issues, it provides, by design, global
verifiability of data access transactions. An immutable ledger can ensure the integrity of
transactions and data while also enforcing trust among multiple untrustworthy parties [32].
For example, in [33], the authors propose a fine-grained access control scheme for trans-
portation ecosystems based on blockchain, that embraces the multi-owner setting with
the use of CP-ABE. The system provides global verifiability and data integrity, but cannot
support dynamic joins and leaves of nodes, or a dynamic policy management. Hybrid solu-
tions move some of the services previously supported by cloud providers to the blockchain.
While this approach resolves some of the issues (e.g., data integrity), others problems,
such as strong trust assumptions for the cloud operator, still remain [34–36]. Although
autonomous solutions are entirely based on blockchain, they are still limited by the level
of efficiency that can be supported [13,33,37,38]. In addition, practical implementations of
schemes such as the ones discussed above hardly exist in the literature.

In conclusion, as shown in Table 1, the proposed HMBAC model is capable of sup-
porting fine-grained access control for any multi-authority and multi-domain (M-A&M-D)
environment, and it also supports flexible inter- and cross-domain policy management and
enforcement. At the same time, our HMBAC implementation, Janus, is one of the few fine-
gained M-A&M-D access control models that are supported by an artifact implementation.

Appl. Sci. 2023, 13, 566 5 of 27

Table 1. Comparative assessment of the various characteristics prevalent in the relevant literature.

Relevant Access Application Multi-Owner Dynamic Trust Inter-Domain & Cross-Domain Enforces Single Global Source Implementation
Literature Model Environment Setting 1 Management 2 Policy Management Point of Access 3 of Truth 4 (Artifact)

[9] Hierarchical Multichains Healthcare Yes (MA-CP-ABE) Yes Inter & Cross-Domain Yes Yes No
[11] Token-based IoT No Yes Inter-Domain Yes Yes WAVE [39]
[12] Token & Crypto-based IoT No Yes No (user-based) No Yes Droplet [40]
[14] DMA-ABAC Healthcare Yes (ABGS) Yes Cross-Domain No No No
[15] CP-ABKS M-A Yes (ABKS-SM) Yes No No No No
[16] Hierarchical M-A Yes (MA-CP-ABE) No Inter-Domain No No No
[17] Hybrid encryption WBAN Yes (MA-CP-ABE) Yes Inter-Domain Yes No No
[18] Attribute-based Mobile Things Yes (MA-CP-ABE) Yes Inter-Domain Yes No No
[25] Hierarchical M-A Yes (MD-AC) Yes No No No No
[26] Tree structure Smart City Yes (CP-ABE) Yes Inter & Cross-Domain No No No
[23] SEMAAC IoT & Healthcare Yes (CP-ABE) Yes No Yes No No
[19] Attribute-based IoT Yes (MA-CP-ABE) Yes No (user-based) No No No
[20] Token-based M-A Yes (MA-CP-ABE) Yes Inter-Domain No Yes No
[21] ECC IoT & Healthcare Yes (MA-CP-ABE) No Inter-Domain Yes No No
[22] Attribute-based Supply Chain Yes (MA-CP-ABE) Yes No (user-based) Yes Yes No
[37] Attribute-based IIoT Yes (CP-ABE) Yes No (user-based) Yes No No
[24] ABSC M-A Yes (MA-CP-ABSC) No No (user-based) Yes No No
[33] FADB Transportation Yes (CP-ABE) No No Yes Yes No
[38] Credential-based IoMT No Yes No (user-based) Yes Yes No
[13] EACMS Healthcare No Yes No (user-based) No Yes No

Our approach HMBAC M-A & M-D Yes (MA-CP-ABE) Yes Inter & Cross-Domain Yes Yes Janus [5]

1 Combines credentials issued by independent authorities. 2 Dynamic join and leave of authorities in an efficient way. 3 Data can be accessed only through the system. 4 All data access
attempts are immutably recorded and globally verified.

Appl. Sci. 2023, 13, 566 6 of 27

3. Background

This section briefly describes the two fundamental components of our model: the
MA-CP-ABE scheme and the Hierarchical Multi-Blockchain architecture.

3.1. MA-CP-ABE

Multi-Authority Ciphertext-Policy Attribute-Based Encryption (MA-CP-ABE) was
initially proposed by [41] as an application of Attribute-Based Encryption in which any
party can become an authority with no global coordination requirements. However, the
scheme required a trusted central authority to collect all master private keys from all
Attribute Authorities (AA) to compute the collective secret terms for system initialization.
MA-CP-ABE was later extended by [7] introducing fully decentralized CP-ABE systems
for both composite-order and prime-order groups by utilizing the user’s Global Identifier
(GID) in the key to resist collusion attempts. Several other works have extended the
characteristics of the scheme to allow fine-grained data access with attribute revocation
for cloud data storage [42], improved efficiency [43] and storage space saving by using
hierarchical attributes to compress redundant ciphertext information ([44,45]).

With an MA-CP-ABE scheme, multiple authorities agree on a set of global parameters
GP and, based on these parameters, each authority X generates a public/secret key pair
PKX , SKX . Data m can then be encrypted based on a mutually agreed access policy P (in the
form of a matrix), using the public keys of all the authorities, i.e., ct = Enc(m,P, GP, {PK}).
With MA-CP-ABE schemes, any party can become an authority, and there is no requirement
for a global root authority. More importantly, users can combine attributes issued by
different authorities, provided that each user has a unique global identity GID. Any
authority X may issue to any user U, attribute keys for an attribute attr, using its private
key, the global parameters and the user identifier:

KU,attr = KeyGen(GIDU, GP, attr, SKX).

Finally, users can combine their attribute keys, issued by multiple authorities, to
decrypt an ABE-encrypted ciphertext ct, provided that their set of attributes satisfies an
access rule within P, i.e., m = Dec(ct, GP, {KU,attr}). Although the scheme enables a
combination of attributes issued by different authorities, it remains collision resistant,
meaning that different users cannot combine their attributes, since each attribute key is
assigned to a different GID.

An example of MA-CP-ABE is illustrated in Figure 1. Several organizations belonging
to different domains may agree on inter-domain or cross-domain access policies. A domain-
wise policy for hospitals may be, for example, to allow access to patient health for doctors
at any hospital, if the patient is under emergency treatment. A cross-domain policy for the
hospital domain may be to allow access to anonymized data to researchers, or, access the
configuration data of medical devices to authorized manufacturer admins. Users may be
given attribute keys from different organizations (authorities) and combine them, since
each attribute key is linked to the global identifier of a user. However, keys issued to
different users cannot be combined. The challenge, from an implementation perspective, is
to create an architecture that supports efficient MA-ABE decentralization and distribution
of the decryption functionality, without compromising security.

In our system, we will utilize and properly modify the MA-CP-ABE scheme of [7]
since: (i) It is a well recognized multi-authority ABE scheme which supports collision
resistance, i.e., although the users may acquire attribute keys from different authorities, it is
not possible to combine attribute keys that were issued to different users. (ii) It is supported
by actual implementations. (iii) Its decryption process can be executed sequentially, where
some attribute keys are applied first, for partial decryption. The partially decrypted data
can then be fully decrypted in a second phase, possibly by another entity. In our system,
we will exploit this to cryptographically enforce a single point of access for all users.
Note that although Janus applies the MA-CP-ABE scheme of [7], other MA-ABE schemes

Appl. Sci. 2023, 13, 566 7 of 27

which satisfy the above requirements could be applied to support additional functionality.
For example, in scenarios where data deletion is required, it is possible to extend the
Janus implementation by applying the MA-CP-ABE scheme of [46] which supports data
deletion assurance.

CBA D

User 1 (GID1) User 2 (GID2) User 3 (GID3)

KGID2, B_Doctor
KGID2, Researcher

KGID1, A_Doctor KGID3, RemoteAdmin

Hospitals Research
Institutes

Medical Device
Manufacturers

Figure 1. MA-ABE attribute binding and key generation.

3.2. Hierarchical Multi Blockchain

A Hierarchical Multi-Blockchain was proposed in [9] as a solution for fine-grained
access to data in medical environments, with multiple participants (e.g., hospitals, medical
device manufacturers, insurance companies, etc.) and multiple types of users (e.g., doctors,
technical staff, etc.). This architecture was intended to enable autonomous administration
of trusted medical data and transactions between mutually untrustworthy stakeholders,
while at the same time providing a built-in forensic mechanism optimized for granular
auditing. End users from a variety of health care domains can access and securely exchange
medical data, provided that a domain-specific access policy is adhered to.

Figure 2 illustrates the architecture of a Hierarchical Multi-Blockchain. At the first
level, a Proxy Blockchain is the single access point for participating users. This provides
interoperability between independently managed trust authorities and also acts as an im-
mutable single source of truth for all transactions. At the second level, one or more Domain
Blockchains enable each domain (e.g., hospitals, device manufacturers, insurance providers)
to enforce their policies and provide fine-grained access control via Attribute-Based En-
cryption (ABE). Databases are handled locally by each entity and data are encrypted with
attribute keys based on the access policy of the corresponding domain. Services at all levels
are implemented by smart contracts published on the relevant blockchain.

Other studies have also adapted hierarchical multi-blockchain for secure data storage
and sharing in various environments. For example, in [47], the authors propose such a
model as a solution for massive data traffic in IoT environments, while in [48,49] a similar
multi-domain blockchain architecture is presented as an answer to scalability issues. In [50],
the authors propose an architecture to minimize IoT information loss by using multiple
blockchain groupings, linking them in hierarchical chains. A similar scheme is used in [51]
for fine-grained audit capability using sensor values to strengthen confidence. The authors
in [52] use sidechains to ensure hierarchical fine-grained data access, but the proposed
architecture lacks domain isolation and cannot be used for flexible, manageable domain-
wise and cross-domain access policy enforcement. Other applications of hierarchical
multi-blockchains involve domain level supervision systems [53].

Appl. Sci. 2023, 13, 566 8 of 27

Proxy
Blockchain

Domain
Blockchain A

Domain
Blockchain B

Domain
Blockchain C

Local Databases

Figure 2. Hierarchical Multi Blockchain architecture [9].

Despite the growing evolution of Hierarchical Multi-Blockchain applications, numer-
ous open challenges remain. These mainly concern the aspect of security (e.g., strong trust
assumptions) and implementation (e.g., synchronization between multiple blockchains
and inter-blockchain communication).

4. HMBAC Design and Implementation

First, we formally define the HMBAC model (Section 4.1) and, on the basis of it, we de-
scribe an HMBAC architecture design (Section 4.2), based on the underlying building blocks.
The architecture is eventually translated into Janus, an actual HMBAC implementation
(Section 4.3).

4.1. HMBAC Access Model

At a high level, the goal of HMBAC is to allow users belonging to different stakeholders
(authorities) from different domains to have controlled access to data owned by multiple
stakeholders. Moreover, the model must support interoperable use of credentials issued
by different authorities, while the inter- and cross-domain policy management must be
controlled at a domain level.

Hierarchical multiblockchains (Section 3.2) play a central role in the HMBAC model.
The Proxy Blockchain layer answers the first goal by allowing the interoperable use and
verification of credentials issued and managed independently by different authorities and
domains. Then, the various Domain Blockchains answer the second goal by allowing
authorities belonging in different domains to define inter- and cross-domain policies for
their data and to manage the authority membership in their domain, without affecting
other domains.

Following the approach of [54], we define the HMBAC mo-del by representing the
logical relations among the access control components, as shown in Figure 3. A user (U)
belonging to one or more authorities (Au) (for example, a hospital) is assigned attributes
from a pool of attributes (UA). One or more authorities may issue attributes to users, which
is depicted as the attribute authority (AA) relation in Figure 3. Each authority is associated
with a single domain (D) and each domain contains multiple Au. A key element in the
HMBAC model is the hierarchical multi-blockchain presented in Section 3.2. All domains,
and thus all authorities, constitute the proxy blockchain (PBc), i.e., these are the stakeholders
for the first layer of the multi-blockchain. Then, at the second layer, various domain block-
chains (DBc) may be constructed. Each group of authorities with similar characteristics

Appl. Sci. 2023, 13, 566 9 of 27

form a different DBc (e.g., one DBc is constructed by the hospital stakeholders, while
another DBc is constructed by the manufacturers). Objects (OB), representing data or
services accessible by users and operated by subjects (S), are encrypted with attribute keys
(AK) created by the UA pool. With the terms user attribute authorities (UAA) and subject
attributes (SA), we represent the logical connection between users and subjects with the
UA pool.

For a user to gain access to encrypted data, three checkpoints must be met. First, an
attribute verification function (AVF) executed on the PBc will verify the validity of the user
attributes. Then, the authorization function (AF), placed on the DBc, will verify whether the
presented user’s attributes are sufficient, based on the relevant inter-domain (IDP) and
cross-domain (CDP) policies, to authorize the access request. Finally, the decryption function
(DF) also executed in the relevant DBc of the data owner, will partially decrypt the data,
which will be fully decrypted by the user, with the proper user attribute keys.

Au

UA

SA

U

AK

OB

CDP

PBc

OP

UA S

D

DBc

IDP

Authorization
Function

Decryption
Function

DAS

Attribute
Verfication
Function

OA

K

DA

OP

OP

UAA

AA

one to one relation

one to many relation

many to many relation

Figure 3. HMBAC access model: element sets and relations.

Table 2, summarizes the basic sets and functions of the proposed HMBAC model, as
well as a formal analysis of the three functions specified for data access and decryption.
Users, objects, and keys can be assigned attribute values directly from an attribute function
att from a set of values in the range, denoted Range(attu), Range(attOB), Range(attK),
respectively. Users are assigned to multiple authorities (defined by many to many func-
tions directUAu) and also authorities are assigned to one domain (defined by one to many
functions directDAu).

4.2. HMBAC Architecture Design

The system architecture is designed with real-world requirements in mind, notably
those of the medical sector. Note, however, that other digital environments can easily
be supported.

Appl. Sci. 2023, 13, 566 10 of 27

Table 2. Basic sets and functions of the HMBAC model.

Basic Sets and Functions

-U, Au, S, K, D: finite sets of users, authorities, subjects, keys, domains
-UA, OA, AK: finite sets of user, object and keys attribute functions

- PBc, DBc: fine sets of Proxy and Domain blockchain services
-IDP, CDP: fine sets of inter and cross domain policies

-OB, OP, DAS: fine sets of objects, operations and data services
-attType : UA = {set}, defines user attributes to be set valued only.
-attType : AK = {set}, defines keys attributes to be set valued only

Each attribute attU in UA maps users or authorities to a set of attribute
values in Range(attU). Formally, attu : U ∪ Au→ 2Range(attU)

Each attribute attOB in OA maps objects in OB to attributes values.
Formally, attOB : OB→ 2Range(attOB)

Each attribute attK in AK maps keys in K to attribute values.
Formally, attK : K → 2Range(attK)

Direct UAu : U → 2Au , mapping each user to a set of authorities.
Direct DAu : D → 2Au , mapping each domain to a set of authorities.

Effective Attributes of Users, Subjects and Keys

For each attribute attU in UA, e f f ectiveAu attU : Au→ 2Range(attU)

For each attribute attU in UA, e f f ectiveU attU : U → 2Range(attU)

US : S→ U , mapping each subject to a user
For each attribute attU in UA, e f f ectiveS attU : S→ 2Range(attU) ,

mapping each subject to a set of values for its e f f ectiveU attU .
For each attribute attK in AK, e f f ectiveK attK : K → 2Range(attK) .

Attribute verification function (AVF)

A subject s ∈ S is allowed to perform op ∈ OPAVF on a service
sr ∈ PBc if the e f f ectiveS attU ∈ UA. Formally,

OPAVF(s : S, sr : PBc) = True

Authorization function (AF)

A subject s ∈ S is allowed to perform op ∈ OPAF on a service
sr ∈ DBc if the e f f ectiveS attU satisfy policies stated in

AuthDBc(s : S, sr : IDP ∪ CDP). Formally,
AuthDBc(s : S, sr : IDP ∪ CDP) = True

Decryption function (DF)

A subject s ∈ S is allowed to perform an operation op ∈ OPDF
on an object ob ∈ OB in data access services ds ∈ DAS, if

{OPAVF(s : S, sr : PBc) ∩ AuthDBc(s : S, sr : IDP ∪ CDP)} = True
and has keys k ∈ K such as OPDF(ob ∈ OB|obk ∈ K|sk ∈ K) = True.

In our implementation, we consider two domains: hospitals and medical device man-
ufacturers. Hospitals may involve users with various roles such as doctors, emergency
doctors, or researchers. Similarly, manufacturers may support various roles, such as device
technicians. According to the access control policies that may be defined within a domain
or cross-domain, granular access may be allowed. For example:

• Access Rule 1: A doctor on duty may access all medical records in all hospitals of a patient
under emergency treatment (hospital domain access rule).

• Access Rule 2: A manufacturer’s support technician may read or update the firmware of
supported medical devices installed in any hospital (cross-domain access rule).

Figure 4 describes the proposed HMBAC architecture, as well as its mapping to the
generic HMBAC model (presented in Figure 3). The architecture is comprised of three
building blocks. The Frontend Layer, is a web application which allows authorized users to
interact with the system and post data access queries. It consists of a web user interface
(UI) and front-end services that support the communication between the front-end and the
rest of the system.

Appl. Sci. 2023, 13, 566 11 of 27

UI Frontend
Services

Proxy Blockchain Domain Blockchains Data Layer
Inter-BC

API
Database

API

TMSC PSC LSC ACSC KSSCFrontend
API

Hierarchical Blockchain Infrastructure

Frontend
Layer

<implements>
<implements>

<implements>

<implements>

<managed by the DBc>

Figure 4. The proposed HMBAC architecture with the HMBAC model of Figure 3.

The Blockchain Infrastructure is a middleware that implements all system services and
provides controlled access to data, which are maintained off-chain individually by each
stakeholder. It implements the hierarchical multi-blockchain, which consists of one Proxy
Blockchain (PBC) and one or more Domain Blockchains (DBCs). As described in Section 3.2,
the PBC acts as a single access point for users, while the DBCs enable the management,
implementation and enforcement of flexible and granular access policies at the domain
level. The integration of the blockchain components is supported by special-purpose APIs
both for inter-blockchain synchronization (Inter-BC API), user interaction (Frontend API),
and data (Database API).

Finally, Data Layer contains the individually managed databases that store all data off-
chain and ABE encrypted. As the data are encrypted with ABE and the decryption process
requires partial decryption through the corresponding DBC, the system enforces data
access through the HMBAC system. Note that CA management at the stakeholder level is
managed outside our system and our main goal is to offer credential interoperability, i.e.,
credentials issued from independent authorities are mutually trusted, without assuming
a globally trusted root authority. In the following subsection, we describe in detail the
services provided by each building block.

4.2.1. Frontend Layer

A web interface enables users to log in to the system and post data access queries. To
access the system, two-factor authentication is enforced: the user must provide valid login
credentials (e.g., a password) and a valid attribute certificate issued by a stakeholder. We
assume that user credentials are managed individually and stored securely by each user.
The communication between the front-end layer and the blockchain infrastructure services
is realized by endpoints implemented as Frontend Services and Frontend API. Finally,
when the user eventually receives the partially decrypted response data via the Frontend
API, the Frontend Services will grant access to the user of the attribute keys needed to fully
decrypt the data.

4.2.2. Data Layer

Stakeholders manage their data off-chain. Recall that data are MA-ABE encrypted
on the basis of predefined domain or cross-domain policies. To enforce access to data

Appl. Sci. 2023, 13, 566 12 of 27

only through HMBAC, for each domain a distinct domain attribute key pair is assigned.
During the ABE data encryption, all policies are modified by applying an additional ‘AND’
rule with the corresponding domain attribute key. For example, encrypted data based on
access Rule 1 defined in Section 4.2, for decryption, would require the following attribute
keys: Kdoctor, KonDuty, and Khospitals. The key Kdoctor corresponds to a long-term attribute
and KonDuty to a temporal attribute. Finally Khospitals is the hospital domain attribute key,
generated using the hospital domain’s attribute key pair PKH , SKH .

4.2.3. Hierarchical Blockchain Infrastructure

The Proxy Blockchain (PBC) receives user requests through the Frontend API and
implements three main services through smart contracts. User requests along with the
provided attribute certificate(s) are handled by Proxy Smart Contract (PSC). The PSC will
first trigger a certificate validation process, executed by Trust Management Smart Contract
(TMSC). The TMSC will validate the long-term (and possible temporal) attributes assigned
to users via a typical challenge-response signature verification process. Note that users can
access the HMBAC services only via an authenticated channel (the Frontend API) and after
successful attribute authentication (by the PBC). If user attributes are verified, the PSC will
then forward the request to the relevant Domain Blockchain for further processing and
wait to receive the response via Inter-BC API. The response will eventually be sent back to
the user via the Frontend API. The transaction history is recorded on the PBC. The Logging
Smart Contract (LSC) creates a log for each incoming user request until the transaction
is completed.

Domain Blockchains (DBC) may receive user requests only from the PBC via the Inter-
BC API and implement the following services. Each DBC contains an Access Control
Smart Contract (ACSC) that enforces the access control policy of the particular domain.
This includes both intra-domain and cross-domain access policies that control access to
data maintained by the domain’s stakeholders. The ACSC checks if the user attributes
(already validated in the PBC) are sufficient for the specific request, according to the
predefined access policy. In this case, the request is forwarded to the relevant database(s)
via Database API. Note that depending on the request, the API can retrieve ABE-encrypted
data from multiple sources, for example, when a user is requesting data from multiple
stakeholder databases.

When the encrypted data return from the Data Layer, the Database API passes them
to Key Store Smart Contract (KSSC), which has access to the relevant domain’s attribute
public/private key pair (e.g., PKH , SKH in the case of the Hospital DBC). The KSSC will
first use the private key SKH to generate the hospital domain attribute key (Khospitals) based
on the GID of the requesting user, to partially decrypt the data. The partially decrypted
data will be forwarded to the PBC (via the Inter-BC API) and eventually to the user (via the
Frontend API). The user must finally apply his attribute keys to fully decrypt and access
the data (i.e., the attribute keys Kdoctor and KonDuty in our example).

4.3. Janus Implementation

The implementation of the system relies on the integration of various technologies.
For implementing the Frontend component, an Electron [55] application was developed,
while blockchains (PBC and DBCs) were developed on the Hyperledger Fabric platform,
with Raft [56] as the underlying consensus mechanism. The functionality is implemented
through Smart Contracts developed in Javascript (the full open-source implementation can
be found in [5] as a reproducible artifact).

Janus orchestration is based on Kubernetes [57]. For security and design modularity,
all the components of the multi-blockchain infrastructure were developed in distinct Ku-
bernetes Pods, thus providing software isolation and containerization. In particular, each
smart contract, as well as the Frontend, the Inter-BC and the Database APIs are executed
as separate Pods. To secure the interaction between Pods, an Ingress API supports TLS
termination between the Pods.

Appl. Sci. 2023, 13, 566 13 of 27

To support the deployment of independent certificate infrastructures, each partici-
pating stakeholder establishes and maintains a Certificate Authority (CA), responsible for
issuing and revoking certificates for their users who interact with the system. To sim-
plify the deployment, one CA is considered to be a mutually trusted authority and is
responsible for issuing certificates used by the system components (e.g., for Pods’ TLS
connections). Although this is not a strong requirement (e.g., it can be removed by applying
cross-certification between the stakeholders), it simplifies the deployment process and it is
a reasonable assumption for multi-domain environments. For example, in the healthcare
sector, the ministry of health could play the role of mutually trusted authority. In our sys-
tem, we use Hyperledger Fabric Certificate Authority (provided by the Hyperledger platform)
to implement the CAs of the stakeholders. Each CA runs as an instance for each entity in a
separate Kubernetes Pod.

Hashicorp Vault [8] is used as an external application to issue, manage and store user
and authority credentials and keys. Although it is an off-the-shelf solution, we designed
an ABE plugin for Vault, written in Golang, to implement a two-step ABE decryption and
support the partial decryption process via the KSSC. Additionally, we run different Vault
instances, one for simulating user-side attribute key Vault storage and another for storing
domain attribute keys, which is accessible only by the KSSC of each Domain blockchain.

Finally, the Frontend and the Inter-BC APIs use an instance of RabbitMQ [58] software,
also executed in a separate pod, to temporarily store requests that remain pending in
queues. The Janus implementation design is depicted in Figure 5 and is described in detail
in the following subsections.

Client-Related
Authorization Mechanisms

Ticket
Manager

Queue
Handler

Main
Queue

Routes

Stakeholder’s
Instance

Peer Information
(Proxy)

HF BC Gateway
(Proxy)

CA Instance

Frontend API

Proxy BC

TMSC

PSC

LSC

Inter-Blockchain API

Queue
Supervisor

Queue Manager

Proxy Queue
(PBC)

Domain Queues
(HDBC, MDBC)

Stakeholder’s Instance

Peer Information
(Proxy & Domain)

HF BC Gateways
(Proxy & Domain)

CA Instance

Events Manager Instance

Voting Manager Instance

Manages

Hospital BC

ACSC

KSSC

Manufacturer BC

ACSC

KSSC

Database
API

.

.

.

Stakeholder 0

Stakeholder 1

Stakeholder N

HF CERTIFICATE
AUTHORITY

(per Stakeholder)

HASHICORP VAULT
ABE PLUGIN

(per User)

One of

Listens to
Events

Emitted by
the HF CCs

Frontend Application

UI Blockchain-Related
Mechanisms

Endpoints

Authentication
Mechanisms

Frontend Blockchain Infrastructure Encrypted Data

Kubernetes Pods

Electron Web App

Stakeholders’ databases

HASHICORP VAULT
ABE PLUGIN
(per Domain)

Figure 5. Janus implementation design based on the HMBAC architecture.

4.3.1. Frontend Application

This is a client-side Electron application, running locally by each user. The User
Interface (UI) implements the presentation layer through a web-based interface developed
in React.js. enables users to log into the system using their appropriate credentials and,
upon successful validation, to submit their requests.

In addition, the Electron app implements various support frontend services, devel-
oped in Node.js and running in the background at the client side. The Blockchain-Related
Mechanisms, encompass all the functionality required for a user to communicate with the
middleware. These mechanisms enable a user to create and sign a query and commit it to
generate a new transaction.

The Authentication Mechanisms supports user authentication to the system. To authen-
ticate the credentials (attribute certificates) of a user, the Certificate Authority (CA) of the
relevant stakeholder must be involved. The frontend authentication mechanisms pass the
credentials along with a signed challenge to the Frontend API, which communicates with
the relevant CA in order to issue a token for the user and establish communication. The

Appl. Sci. 2023, 13, 566 14 of 27

authentication mechanisms also support communication with the user’s Vault instance,
securely storing the user-side attribute keys.

Finally, Endpoints represent the communication points between the UI and the Fron-
tend API. Any traffic towards the API will be handled by Kubernetes and the Ingress
web server.

4.3.2. Frontend API

The main challenge of the Frontend component, is to implement a secure and authen-
ticated communication channel per stakeholder, allowing users to communicate with the
PBC via the Frontend application. In this way, users with valid credentials may login to
the Janus services, only via the organisation’s authenticated channel. To achieve this, for
each stakeholder, an instance is created including information about the node (Peer Informa-
tion), the corresponding stakeholder’s gateway (HF BC Gateway) and the instance of the
CA (HF Certificate Authority) where the stakeholder’s certificates are stored. Furthermore,
Client-related Authorization Mechanisms, generate the authentication token issued by the CA
to which the user belongs. This token is used to establish connections between the user
and the PBC.

When a user submits a request, it is received by the Routes module and then queued in
the Main Queue until served. The Queue Handler is responsible for the storage and retrieval
of data to and from the Main Queue. When the Queue Handler authorizes the request to
be forwarded, the request is retrieved from the Main Queue, and Ticket Manager generates
a ticket for the user. Note that the Ticket Manager constantly checks for expired tickets.

The Frontend API is a RESTful API developed in Node.js using the Express framework.
Since the Frontend API is running on a distinct Kubernetes Pod, its services are accessible
to other Pods via the Kubernetes-exposed ports. In order to expose services on the web,
an Ingress controller is used, and the communication is TLS encrypted. For increased
security, the TLS session is encrypted end-to-end between the Frontend application and the
Frontend API. Thus, TLS is terminated on the Frontend Pod itself instead of the Ingress
controller of the API.

4.3.3. Inter-Blockchain API

The goal of the Inter-Blockchain API is to enable the interaction between the Proxy and
the Domain Blockchains. This however raises performance and management challenges at
the implementation level. Handling and prioritizing requests between different blockchains
is a difficult task, as it may result in a significant performance decrease or even system
failure. To deal with this issue we have implemented a novel queuing mechanism for
Request Handling and Prioritization. In addition, reaching management decisions for
blockchain actions that require the agreement of stakeholders at a domain or at a global level
(e.g., adding/removing stakeholders or domains) requires a distributed and asynchronous
decision support mechanism. To achieve this, we have implemented an efficient voting
management mechanism, integrated into this layer. The implementation of these key
Inter-Blockchain mechanisms is described below. Note that the Inter-Blockchain API is
also developed in Node.js. Each stakeholder runs a different instance, executed on a
distinct Kubernetes Pod, while its services are accessible to other Pods via the Kubernetes-
exposed ports.

(a) Request Handling and Prioritization

To manage requests, the Inter-BC API, utilizes two general types of queue. The Proxy
Queue, for every request that needs to be forwarded to the PBC and Domain Queues, for
requests that need to be forwarded to one or more DBCs. Every DBC has its own Domain
Queue, and thus their number depends on the number of DBCs. The request handling flow
is illustrated in Figure 6 and is described below.

Appl. Sci. 2023, 13, 566 15 of 27

Step 1. Listen and Acquire

ORG 0

ORG 1

ORG N

.

.

.

Listens to PBC

Listens to PBC

Listens to PBC

Queue Manager

Stakeholder’s
Instances

(1)
Request: 𝑄𝑄𝑖𝑖

(2)

RabbitMQ

Send 𝑄𝑄𝑖𝑖
to Domain Queue

(3)

Step 3. Get response 𝑹𝑹𝒊𝒊 and forward to Proxy BC

Proxy BC

ORG 0

ORG 1

Step 2. Get request 𝑸𝑸𝒊𝒊

RabbitMQ

Queue Manager

Receive 𝑄𝑄𝑖𝑖
(Domain Queue)

(1)

Define message
owner

ORG 0

ORG 1

ORG N

Stakeholder’s
Instances

(2)
(6)

Domain BC
(e.g. Medical)

𝑄𝑄𝑖𝑖

Response: 𝑅𝑅𝑖𝑖
(5)

ACK 𝑄𝑄𝑖𝑖 and send
𝑅𝑅𝑖𝑖 to Proxy Queue(7)

.

.

.

Databases

(4)(3)

𝑄𝑄𝑖𝑖

𝑅𝑅𝑖𝑖

(4)

(3)

.

.

.

ORG N

Stakeholder’s
Instances

Queue Manager

Define message
owner

(2)

RabbitMQ

Queue Supervisor

Calculate current congestion
every X seconds

ACK 𝑅𝑅𝑖𝑖(5)Receive 𝑅𝑅𝑖𝑖
(Proxy Queue)

(1)
Listens to Proxy’s

Queue(s)

Throttle
(when needed)

𝑅𝑅𝑖𝑖
𝑅𝑅𝑖𝑖

Figure 6. Inter Blockchain API Flow.

Step1: Listen and acquire. When an organization (Stakeholder instance in the Inter-
Blockchain API) receives an event, it first verifies if it is the intended recipient. Next, it
forwards the user query, say Qi, to Queue Manager in order to temporarily save the message
and process it later when it is ready for consumption.

Step2: Get the request Qi and forward it to the relevant DBC. When it is time for a
request Qi to be consumed by the appropriate DBC, the Queue Manager receives it (from
the relevant Domain Queue of the Inter-BC API) and forwards it to the instance of the
organization to which the requesting user belongs. The organization instance then forwards
Qi to the DBC of which the organization is a member. Upon completing the request, the
response that was received from the DBC is then, again, sent to the Queue Manager in order
to queue the new message and consume it, i.e., forward the response to the PBC when
ready. The Queue Manager also sends an Acknowledgment message (ACK) to RabbitMQ
to inform it that the message was successfully consumed. RabbitMQ receives the ACK and
removes the message from the Domain Queue.

Step3: Get the response Ri and forward it to the PBC. When the response Ri to
the query Qi is received from the relevant DBC, it is ready to be consumed. The Queue
Manager receives it through Proxy Queue and forwards it to the appropriate organization
instance. The organization then receives the response and forwards it to the PBC to continue
processing the response. When forwarding Ri back to the PBC, the Queue Manager sends
an ACK to RabbitMQ to inform it that the message was successfully consumed. RabbitMQ
receives the ACK and removes the message from the Proxy Queue. To maintain the flow
healthy and avoid Denial-of-Service errors or attacks on the Proxy BC, a Queue Supervisor is
utilized. The Queue Supervisor constantly monitors the Proxy Queue for spikes/congestion
in the network. As shown in Table 3, we define five types of congestion, each of which is
chosen based on the current level of congestion (CL).

Appl. Sci. 2023, 13, 566 16 of 27

Table 3. Types of congestion.

Congestion Types

Scale Congestion Level (CL) Monitor Interval Throttle Multiplier

Normal 2 ≤ CL 5 s 1

Low 1 ≤ CL < 2 4 s 0.7

Medium 0.5 ≤ CL < 1 3 s 0.4

High 0.3 ≤ CL < 0.5 2 s 0.1

Extreme CL < 0.3 1 s 0.01

Depending on the type of congestion, the system adjusts, in order to handle requests,
avoiding DoS, and assuring that all requests will be served. The Congestion Level CL is
calculated using the formula:

CL =
max#ConcurrentRequests

#QueuedRequests

This means that, for example, if the PBC receives 1500 requests and accepts 400
concurrent requests, then 1100 of them will be pending in queue. The congestion level is
then: CL = 400/1100 = 0.36, which is High according to Table 3. The system willlower
monitor interval from 5 s to 2 s, and throttle requests sent from IBC-API to PBC will be
recalculated with multiplier 0.1. If the default value is 400, then 40 concurrent requests will
be sent until the PBC is discongested.

(b) Voting Management

To reach management decisions that require agreement between stakeholders, an
asynchronous voting mechanism is implemented through smart contracts (described in
Section 4.3.4 below). The Inter-Blockchain API enables the execution of this asynchronous
model through the following components. As each stakeholder runs an instance of the
Inter-Blockchain API, it deploys an instance of an Event Manager and a Voting Manager.
The Event Manager continuously checks for new events related to active voting processes
and expired elections. The Voting Manager fetches all the active elections related with
the relevant stakeholder running the Inter-Blockchain instance, and it constantly awaits to
receive relevant data (e.g., new votes). It also keeps a log of the submitted votes for each
Election ID, and communicates with the PSC chaincode when majority is reached or time
expiration occurs for a particular election.

4.3.4. Smart Contracts

As described in Section 4.2.3, the blockchain services are implemented through smart
contracts. Five smart contracts utilize all system’s functionality, at both the global and
domain level. The PSC, TMSC, and LSC are stored at the Proxy Blockchain and shared
among all stakeholders, while the ACSC and KSSC are stored at each Domain Blockchain
and provide domain-specific functionality (see the relevant artifacts provided in [5] for
details). Following the system design, smart contracts are able to interact with each
other through the relevant APIs, as depicted in Figure 5. In particular, a logical connection
between users and the PSC is achieved through the Frontend API while a similar connection
among the Proxy BC’s smart contracts and the Domain BCs is achieved through the Inter-BC
API. In the following paragraphs we present the technical analysis for each smart contract
along with the main services supported.

Proxy Smart Contract (PSC), integrates the functions for user validation, stakeholders’
voting and request forwarding. For user validation, the validateUser() function takes as input
an array of userCerts provided by the user at login, and triggers the getUserValidation()

Appl. Sci. 2023, 13, 566 17 of 27

function stored on the TMSC, in order to validate the certificate(s) provided. Based on
the outcome of the validation, the PSC returns the validated user’s roles (short- and
long-term). The voting mechanism is a crucial component of the system. Through this
mechanism, stakeholders can reach management decisions including: (a) adding/removing
domains (and the relevant DBCs); (b) adding/removing stakeholders to an existing DBC;
(c) modifying a (cross-) domain access policy; and (d) giving access to logs for external
auditors. Other processes that require broader consent can also be supported. For each
stakeholder, the stakeholder administrator or a delegated external auditor may invoke the
majorityConsentInit() function to propose a new election. It first checks if another election
with the same payload is active and then calculates the ElectionID based on the provided
payload. A new Election instance is created and added to the ledger and also a ballot for
each stakeholder. With majorityClientVote(), the administrator of each stakeholder votes
in an Election by signing with the organizations’ private key. The updateElection() function
checks if the Election has been finalized based either on the predefined majority rules or
the timeout set. The requestAccess() function handles two processes. First, it constructs the
requestDetails, which is sent to the LSC for logging. Then, sends a requestForward event to
the Inter-BC API to complete the request.

Trust Management Smart Contract (TMSC), contains the functions that support trust
management services. The initLedger() function is responsible for handling the certificates
and revocation lists of each stakeholder. It takes an initPayload argument and appends the
corresponding data to the PBC. Additionally, it creates empty Access Control List (ACL)
files for each organization. The getUserValidation() function takes as input either an ACL
file (to verify temporal roles assigned to users) or a certificate (to verify long-term user
roles). Note that users may have obtained certificates issued by different stakeholders,
provided that all certificates of a user include the same unique global identifier (GID). In
addition, it allows for the efficient revocation of user access through attribute certificate
revocation lists issued by the relevant authorities, instead of applying costly attribute
key revocation techniques. Finally, it communicates with the LSC in order to record the
transaction on the blockchain. To allow for interoperability of credentials issued by different
stakeholders, all root certificates of all stakeholders are stored in the PBC. For the addition
or removal of CAs, the functions addCA() and removeCA() are triggered accordingly. Note
that both functions require agreement between current stakeholders through the voting
mechanism. Only after agreement has been achieved through the voting mechanism, the
function updateTrustAnchors() will update the stakeholders’ certificates in the PBC. The
majorityUpdate(), invoked by the PSC, is called when an election ends (either by majority
agreement or by timeout) to inform the TMSC.

Access Control Smart Contract (ACSC) main function is to enforce the predefined
access policy when users request access to data stored within the domain. The Inter-BC
API forwards the request and triggers the policyEn f () function. Using the data_ID and the
roles provided in the payload, it determines whether or not to grant access and forward the
request to the KSSC.

Logging Smart Contract (LSC), enforces single source of truth in our system. For each data
access request, the requestLog() function is automatically triggered by the requestAccess()
function of the PSC. Two main processes are supported by the LSC, registration and retrieval
of the logs. Log registration is utilized with the functions: updateLog(), for updating the
details of uploaded stakeholders’ certificates and temporal ACLs; updateRequestLog() for
updating existing request records; and majorityUpdate() for updating election records. The
getUserRequestLog() function implements log retrieval for users who want to access their
request record. The retrieveLogInit() and retrieveLogs() functions are utilized for starting
an access-granting Election, when an auditor requests access to the logs stored on PBC and
the log retrieval accordingly.

Key Store Smart Contract (KSSC), enforces the single point of access property in our
system in the following way. As described in Section 4.2.3, data are MA-CP-ABE encrypted,
based on predefined access policies, which are modified to additionally require decryption

Appl. Sci. 2023, 13, 566 18 of 27

with the domain attribute key. The KSSC is the only component that may access the
domain’s attribute private key. The requestData() function is invoked by the ACSC to
initiate the process, only after the user’s roles have been verified and connects to the
Database API to forward the data_ID of requested data.

4.3.5. Distributed ABE Decryption Implementation

As described in Section 4.2.2, our goal is to cryptographically enforce a single point
of entry for the system users; which means that even if a user has all the roles required
for accessing some data, an extra layer of encryption will prevent access to the data
outside the Janus system. The challenge, from an implementation perspective, is to create
a cryptographic mechanism that will force users to access the data only through the
application while ensuring fined-grained access according to predifined access policies
and at the same time will remain resistant to collissions. To achieve this, we modified
the implementation of the MA-CP-ABE scheme of [7], by distributing the decryption
functionality between the user and the domain blockchain. We used as a basis the Python
implementation of the original scheme in the Charm encryption library.

Since directly applying ABE encryption and decryption is not efficient, we have
applied a hybrid encryption approach, where the data are symmetrically encrypted, while
the symmetric keys are ABE encrypted. In each stakeholder database, each data item, say
di, is initially encrypted with a distinct symmetric (AES) key ki as: ci = AES(di, ki). Then,
each data encryption key ki is encrypted by ABE, based on all access policies that allow
access to the particular item, which are extended to include the domain attribute key of the
relevant domain. For example, assume that personal information di of a patient should be
available to the patient’s family doctor or any doctor in the case of emergency treatment of
the patient. In that case, the key ki would be encrypted by ABE as follows:

e1=Enc
(
ki,P, GP, {PKdoctor, PK f Doctor, PKH}

)
e2=Enc

(
ki,P, GP, {PKdoctor, PKonDuty, PKH}

)
Each symmetrically encrypted data item ci is sent to the DBC through the Database

API, along with all ABE encryptions of ki, in this example e1, e2. The KSSC has access to the
domain’s vault, where the hospital domain attribute key pair PKH , SKH is stored. Using
SKH it will generate on-the-fly, the hospital domain attribute key for the requesting user,
i.e., KU, hospitals = KeyGen(GIDU, GP, attr: hospitals, SKH) and use it to partially decrypt
the data. The user will be able to actually decrypt the data, only if: (i) the KSSC has
partially decrypted the data with the domain attribute key and (ii) the user has the relevant
attribute keys for (at least) one of the above access policies, i.e., {KU, doctor, KU, f Doctor} or
{KU, doctor, KU, onDuty}.

We implemented the MA-ABE decryption scheme of [7] in Go as a Hashicorp Vault
plug-in and integrated this into KSSC. The KSSC may trigger sysDecrypt(), executed in
the domain’s Vault instance, which generates the domain attribute key for a given GID
and uses it to perform partial ABE decryption. In this way, the domain attribute key is
accessible only for requests that have already been authorized by ACSC. At the same time,
it is never given to users, to prevent off-system data access.

5. Efficiency Analysis

Since HMBAC is targeted to fine-grained access for multi-auhority, multi-domain
environments, a practical implementation must be scalable to the number of authorities and
domains. First, we analyze the scalability of the system in terms of system management.
Then, we benchmark the performance of Janus for different configurations and access
request rates. All measurements can be reproduced through the Janus github repository
(Benchmarks are fully reproducable via an automated script – see the ‘System Benchmark’
section of the ‘readme’ document on Janus repository [5]).

Appl. Sci. 2023, 13, 566 19 of 27

5.1. System Scalability and Management

The modular design of the HMBAC architecture allows for scalable and efficient
system management. Adding or removing users in Janus is handled independently by
each organization (stakeholder). Each organization is able to issue attribute certificates and
give access to the corresponding attribute keys to allow its users to: (i) post queries that
will be accepted by the ACSC, based on the user’s roles; and (ii) fully decrypt a response
that has been partially decrypted by the KSSC. Adding/removing stakeholders within an
organization, or changing the access policy of the domain, is handled at the domain level.
Due to the use of independent DBCs per domain, managing functions within a domain will
not cascade to affect the other domains. The use of the voting mechanism enables setting
up elections at a domain level and in addition to define a majority threshold at the domain
level for decisions affecting a particular DBC. Finally, adding new DBCs will require a
majority vote by all stakeholders and will affect all domains, as this will require updating
the smart contracts in the PBC.

5.2. Benchmarks

We conducted our evaluation on two different hardware configurations with varying
resources, using the Linode cloud infrastructure. As depicted in Table 4, in the first
H/W setup (S1), an AMD EPYC 7501 32-core processor @2GHz with 64 GB RAM is
used. The second H/W setup (S2) is an environment with higher resources, based on
an AMD EPYC 7702 64-core processor running at @2GHz with 512 GB RAM. As our
implementation Janus utilizes eight (8) Kubernetes pods, where each Pod corresponds to
an independently managed server, setup S1 (resp. S2) corresponds to four cores/8GB RAM
(resp. 8 cores/64GB RAM) per server.

Table 4. H/W specs for testing.

CPU (# Cores) RAM (GB)

Total Per Pod Total Per Pod

Setup S1 32 4 64 8

Setup S2 64 8 512 64

Both sets of configuration run Ubuntu 20.04.1 LTS OS and Kubernetes 1.20.11 was
used for container orchestration. The multi blockchain components were developed in
Hyperledger Fabric 2.4 beta with Raft as the underlying consensus algorithm and also fabric-
ca-client 2.2.6, fabric-network 2.2.9 and fabric-gateway 0.1.0 were used for establishing
communications.

Following the two access rule examples mentioned in Section 4, we created both
inter-domain queries (e.g., “Retrieve the medical record for patient P from all hospital databases")
and cross-domain queries (e.g., “Update the firmware for medical device D of manufacturer M at
all hospitals"). Each database was running on a separate Pod and data were ABE encrypted.
The initial ABE decryption was performed by the KSSC running in the relevant BC domain
of the requesting user, as described in Section 4.3.5.

We measured the average end-to-end query response time for various sizes of queries,
ranging from 2 up to 300 concurrent queries (req/s), with an approximately even portion of
inter-domain and cross-domain queries. Table 5 shows the average execution time for all
scenarios tested. In addition, the table presents the time needed for the main subprocesses
of the query–response process.

Appl. Sci. 2023, 13, 566 20 of 27

Table 5. Detailed performance evaluation for various scenarios of concurrent requests and h/w
setups (time in s).

of Concur. Requests 2 10 20 40 60 80 100 200 300

H/W Setups S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Ticketing 0.004 0.002 0.003 0.002 0.002 0.002 0.002 0.003 0.003 0.005 0.025 0.008 0.018 0.015 0.015 0.024 0.032 0.02
Endorse 0.08 0.07 0.25 0.12 0.24 0.17 0.16 0.23 0.22 0.15 0.48 0.55 0.44 0.18 0.55 0.3 0.82 1.44
Commit 0.006 0.007 0.006 0.004 0.005 0.005 0.006 0.005 0.005 0.005 0.008 0.008 0.008 0.025 0.010 0.010 0.014 0.020
BC_RTT 2.19 2.2 2.41 2.22 2.47 2.07 2.95 2.49 3.19 2.76 3.33 2.74 4.22 3.76 6 4.63 8.09 5.62
Average 2.27 2.27 2.67 2.35 2.72 2.25 3.12 2.73 3.43 2.92 3.85 3.32 4.69 3.98 6.58 4.97 8.96 7.12

Min 2.26 2.27 2.58 2.28 1.88 2.1 2.02 2.92 1.62 1.61 1.88 1.98 2.04 2.45 1.74 1.54 1.65 2.33
Max 2.29 2.27 2.72 2.39 2.91 2.58 3.88 4.05 4.86 3.66 5.14 5.31 5.71 5.22 9.2 7.84 12.77 10.39

Ticketing, refers to the time required by the system to issue a ticket for a user. Endorse,
is the time it takes for peers to receive a request and sign the result. Commit, is the time
required by the orderer nodes to create a new block. Finally, BC_RTT is the time needed
to execute all the required BC functions (smart contracts) and inter-BC communication.
In addition, the minimum and maximum time required for a query is presented in each
scenario, to exhibit the deviation from the average time. As expected, the most resource-
intensive process is BC_RTT, which encompasses all subsystems, from Proxy BC up to
the retrieval of encrypted data from the independently managed databases, as well as the
partial decryption process using the domain keys.

However, the overall time increase is linear (see Figure 7), which indicates the scalabil-
ity of the HMBAC design.

0 50 100 150 200 250 300
0

2

4

6

8

10

Concurrent requests

Av
ge

xe
cu

tio
n

tim
e(

sec
)

Setup 1
Setup2

Figure 7. System Efficiency.

Adding new authorities will increase the number of users and, consequently, the
number of requests. At the same time, it will also increase the overall system resources,
as the new authorities will devote resources to become stakeholders of the Proxy and of
their Domain blockchain. The system’s performance is linearly dependent on the available
resources, which means that as resources increase, the overall time decreases. Note that
in both system setups the system presents zero errors per requests, due to the queuing
module integration.

6. Security Analysis

Threat model. We consider both internal and external attackers. Internal attackers
may be compromised nodes of the HMBAC system or compromised users. Compromised
nodes may attempt to illegally modify the access policies or the domain’s stakeholders’ set.
Compromised users may attempt to bypass access control policies and gain unauthorized
access. External attackers may attempt to gain unauthorized access to the system.

Assumptions. We shall assume in our analysis that the underlying software compo-
nents such as the orchestration engine (Kubernetes) and the isolation mechanisms (Pods
and Hashicorp Vault) are trusted. Instead of requiring a fully trusted authority, we relax
our trust assumptions to a majority of trusted stakeholders for each domain. We assume

Appl. Sci. 2023, 13, 566 21 of 27

that the majority of the participants in the consensus and voting protocols behave in a
trusted way. We assume that the encryption and authentication mechanisms used (AES
and MA-ABE) are secure (cannot be compromised by a probabilistic polynomial-time
Turing machine). Finally, we assume that the user credentials are securely managed on the
user side. As the main goal of HMBAC is to provide access control, we will first examine
security against unauthorized access attacks and then other security characteristics of the
proposed system.

6.1. Secure Data Access

The security of HMBAC controlled data access is based on several security building
blocks (as detailed in Section 4.2). First, data are encrypted with ABE with the keys assigned
to users based on their roles, by applying the MA-ABE scheme in [7]. Then, an additional
layer of ABE encryption is performed, with an attribute key assigned to the Key Store Smart
Contract (KSSC). This is implemented by applying an additional ‘AND’ rule on top of the
predefined encryption policy. This forces all requests to be performed via the HMBAC
system; otherwise, the data retrieved by users will still be partially encrypted. The BC-side
attribute keys are securely stored in a Vault and are accessible only by the KSSC.

Besides the encryption layer, the user must be authenticated by the system in order
to send queries, and also by the user-side Vault to access the attribute keys, in order
to decrypt the received partially encrypted data. System authentication is performed
through the proxy blockchain using the Trust Management Smart Contract (TMSC). An
authenticated user may then send a data access request, which in turn will be validated at
the domain blockchain layer, via the Access Control Smart Contract (ACSC), in order to
verify that the user has the required roles based on the access policy. The KMSC performs
the required partial decryption. Finally, users need access to their attribute certificates,
issued by the relevant stakeholders/authorities, to verify their roles with the ACSC (Note
that the attribute certificates may also be stored in a user-side Vault for protection).

To formalize our analysis of unauthorized access attacks, we use attack trees as in [59].
Attack trees [60] are a conceptual design used to describe attacks on system assets. We
distinguish two types of attack nodes, and-nodes and or-nodes: the children of an and-node
should all be executed to reach the goal of their parent, while any one of the children of an
or-node needs to be executed to reach the goal of its parent. An attack on the system is then
modeled by a multi-set of compromised nodes.

Definition 1 ([59]). Let C be a set of attack components of a system. An attack is a finite non-
empty multi-set of C and an attack suite is a finite set of attacks. Denote the universe of attacks by
A =M+(C) and the universe of attack suites by S = P(A).

The attack tree for unauthorized data access attacks in HMBAC is shown in Figure 8.
Our goal is to analyze all possible attack paths for an adversary, external and/or internal, to
compromise the access control mechanism and gain unauthorized data access. As defined
in our threat model, accessing the data in ways that are outside the HMBAC system are out
of scope, e.g., accessing the data before they are ABE encrypted or before their entry into
the system.

To construct the attack tree, first we observe that unauthorized data access requires
an adversary to concurrently bypass the security mechanisms that: validate a data access
query posted to the PBC (denoted by node A), and access all the attribute keys used to
encrypt the data (denoted by node B). Note that despite the actual attack that may be
applied to achieve the above conditions, simultaneously achieving the attack components
A and B are necessary and sufficient conditions for any successful attack on unauthorized
data access against an HMBAC system. Then for each level-1 node we continue our analysis
of identifying all possible sets of system components that must be successfully attacked
to achieve each the goal of the relevant parent node. The same holds for all nodes of the
attack trees, including the leaf nodes.

Appl. Sci. 2023, 13, 566 22 of 27

Unauthorized
data access

(E) Access
user attrribute keys

(F) Access
BC-side attribute keys

(J) Compromise
BC-side Vault

(H) Compromise
user-side Vault

(G) Get credentials
for user-side Vault

(A) Post query to PBC

(I) Access keys
via DBC

(B) Decrypt response

(D) Compromise
PBC (TMSC)

(C) Get user blochchain
service credentials

(L) Compromise
DBC (ACSC & KSSC)

(K) Get user
Attribute certificates

and

and

Figure 8. Unauthorized data access attack tree for the HMBAC architecture.

Note that for all nodes, including leaf nodes, we did not examine the actual attack
techniques that may be used to achieve the relevant goal. For example, for node C there exist
various implementations of attacks to obtain user credentials for the HMBC service, such
as phishing, spoofing, or brute force. The goal of the attack tree analysis is to exhaustively
list all possible sets of necessary attack steps (i.e., concurrently compromised security
components) to succeed in the attack.

For this tree, the set of identified attack components (nodes) is:
C = {A, B, C, D, E, F, G, H, I, J, K, L}, with seven leaf nodes (for clarity, the leaf nodes

are underlined).
Leaf nodes are vulnerable components that an attacker can exploit to initiate an attack.

Any attack suite must contain such nodes, as well as the target node T.
We examine the attack suites of the unauthorized data access attack tree of the HM-

BAC, with respect to the successful attack steps required by an adversary. We consider the
following cases:

Case 1. Fully compromised user: all user credentials (BC credentials or PBC access (C or D),
user-side Vault credentials (G or H) and attribute certificates (K)) are compromised. We get
the attacks: {C, A}, {D, A}, {G, E, B}, {H, E, B} and {K, I, F, B}, that when combined give
us the attack suites:

S1cgk = {C, A, G, E, K, I, F, B, T},
S1dgk = {D, A, G, E, K, I, F, B, T},
S1chk = {C, A, H, E, K, I, F, B, T},
S1dhk = {D, A, H, E, K, I, F, B, T}.

The attacker will then be able to post to the system all queries available to the target user.
However, this attack does not leak data from other users.

Case 2. Partially compromised user: at least one of the required user credentials C, D, G, H
and K is secure. In this case, from the attacks: {C, A, G, E}, {D, A, G, E}, {C, A, H, E},
{D, A, H, E}, and {K, I, F}, {L, I, F}, {J, F}, we obtain the attack suites:

S2cgk = {C, A, G, E, K, I, F, B, T},
S2cgl = {C, A, G, E, L, I, F, B, T},
S2cgj = {C, A, G, E, J, F, B, T},
S2dgk = {D, A, G, E, K, I, F, B, T},
S2dgl = {D, A, G, E, L, I, F, B, T},
S2dgj = {D, A, G, E, J, F, B, T},
S2chk = {C, A, H, E, K, I, F, B, T},
S2chl = {C, A, H, E, L, I, F, B, T},
S2chj = {C, A, H, E, J, F, B, T},
S2dhk = {D, A, H, E, K, I, F, B, T}.
S2dhl = {D, A, H, E, L, I, F, B, T},
S2dhj = {D, A, H, E, J, F, B, T}.

Appl. Sci. 2023, 13, 566 23 of 27

Again, these attacks only affect the data of the compromised users.

Case 3. Fully compromised PBC (D) and DBC (L). Here, unauthorized queries are posted
due to a compromised Proxy BC (bypassing the TMSC), while access to the BC-side keys
assumes a compromised domain BC (bypassing the ACSC control and utilizing the BC-side
attribute keys via the KSSC). However, a successful attack suite requires additionally access
to the user attribute keys, either by compromising the user-side Vault (H) or by getting the
user credentials (G). We obtain the attack suites:

S3dhl = {D, A, H, E, L, I, F, B, T},
S3dgl = {D, A, G, E, L, I, F, B, T}.

Case 4. Fully compromised Vault. Here both the user- side and BC-side Vaults (H and J) are
compromised. Again, a successful attack requires additionally a partially compromised
user (C) or Proxy BC (D). We obtain the attack suites:

S4chj = {C, A, H, E, J, F, B, T},
S4dhj = {D, A, H, E, J, F, B, T}.

Case 5. All entities partially compromised. Here the user credentials/certificates (C, K),
blockchains (D, L) and vault storage (G, H, J) are all partially compromised. We get the
attack suites:

S5chl = {C, A, H, E, L, I, F, B, T},
S5dgj = {D, A, G, E, J, F, B, T},
S5dhk = {D, A, H, E, K, I, F, B, T}.

We now have:

Proposition 1. Compromised user credentials (either fully or partially) cannot affect the data
access of other users.

Proof. This follows directly from Cases 1 and 2.

Proposition 2. The system can resist unauthorized data access even if both the proxy and the
domain blockchains are compromised, provided that the user attribute keys are secure.

Proof. This follows directly from Case 3.

Proposition 3. The system can resist unauthorized data access if at least one of the system entities
(users, blockchains, key Vaults) are secure.

Proof. This follows directly from Cases 4 and 5.

6.2. Secure Blockchain Management

The security of critical management decisions that could compromise the system’s secu-
rity relies on: (i) the voting mechanism implemented on the Proxy blockchain,
(ii) the blockchain consensus mechanism, (iii) the transaction replication implemented
by all the blockchains, and (iv) the execution isolation supported by the use of Kubernetes
and independently managed Pods. As explained in Section 5.1 the voting mechanism,
implemented by the PSC, enables stakeholders to make management decisions. Any stake-
holder may start an election. Voters’ eligibility and vote integrity are ensured, since the
private key of a stakeholder is required to sign a vote for an election. Different thresholds
and eligible voters can be defined for different elections.

The blockchain consensus mechanism is also related to secure system management.
Since smart contracts in both blockchain layers implement critical functionality of the
system, modifying those smart contracts either at the PBC or at the DBCs could compromise

Appl. Sci. 2023, 13, 566 24 of 27

the security of policy enforcement. However, since smart contracts are implemented in the
initial blocks of each blockchain, their integrity is strongly protected.

Since the underlying consensus mechanism of Fabric (Raft) does not support Byzantine
tolerance, a malicious leader might attempt to forge the blockchain(s) logic by adding
modified smart contracts, e.g., to compromise the access policy. However, such an attack
would be easily detected by the other stakeholders because of the blockchain replication
mechanism and the lack of integrity (valid signatures by the stakeholders’ majority) of
the modified smart contracts. Finally, the encapsulation of all the distributed components
in replicated independent Pods, executed by different stakeholders and orchestrated by
Kubernetes, also protects system integrity.

6.3. Secure Key Storage/Management

The use of Hashicorp Vault provides secure key storage. For each DBC, an independent
vault instance is used to store and securely access the domain’s attribute key. In addition,
users may also deploy vault instances to protect their attribute keys and attribute certificates.
Finally, certificate management at the stakeholder level is implemented by independent
instances of Hyperledger Fabric CA running on different Pods. These are accessible by the
TMSC through encrypted and authenticated Kubernetes ports.

7. Discussion and Conclusions

Hierarchical multichains, when coupled with Attribute-Based Encryption, provide a
flexible and secure distributed access controls mechanism for multi-domain, multi-authority
environments. Its modular architecture supports various properties of blockchains, such
as interoperabilty, by providing a single point of access for multiple domains and single
source of truth, via block-chain replication and integrity. The use of a hierarchical struc-
ture supports fine-grained access control and flexible management. At the same time,
the integration of distributed MA-ABE enables the combined use of credentials issued by
multiple authorities without introducing a high management overhead. In this paper, we
have defined HMBAC, a novel access control model along with Janus, an actual imple-
mentation of an HMBAC system, and we have analyzed the security and efficiency of our
implementation.

In the future, we intend to explore the integration of different consensus mechanisms
to extend the applicability in environments that require strong Byzantine tolerance. Ad-
ditionally, since user credential management is at the stakeholder level and is managed
outside our system, it is possible that inefficient user credential management can affect the
overall efficiency of the system. Possible ways to minimize this risk can also be examined
in the future.

Author Contributions: Conceptualization, V.M. and P.K.; data curation, G.P.; formal analysis, V.M.,
P.K. and M.B.; funding acquisition, P.K.; investigation, G.P. and D.G.; methodology, V.M., G.P.,
P.K., M.B. and D.G.; project administration, D.G.; resources, V.M. and G.P.; software, V.M. and G.P.;
validation, P.K., M.B. and D.G.; visualization, V.M. and G.P.; writing—original draft, V.M., G.P. and
P.K.; writing—review and editing, V.M., G.P., P.K., M.B. and D.G. All authors have read and agreed to
the published version of the manuscript.

Funding: This research has been co-financed by the European Union and Greek national funds
through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCH-CREATE-INNOVATE (project code: T1EDK-01958 and T2EDK-02836).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 566 25 of 27

References
1. Statista. Volume of Data Created, Captured, Copied, and Consumed Worldwide from 2010 to 2020. Available online:

www.statista.com/statistics/871513 (accessed on 22 January 2022).
2. Zhang, P.; Chen, Z.; Liang, K.; Wang, S.; Wang, T. A cloud-based access control scheme with user revocation and attribute update.

In Proceedings of the Australasian Conference on Information Security and Privacy, Melbourne, VIC, Australia, 4–6 July 2016;
pp. 525–540.

3. Lo, C.C.; Huang, C.C.; Ku, J. A cooperative intrusion detection system framework for cloud computing networks. In Proceedings
of the 2010 39th International Conference on Parallel Processing Workshops, San Diego, CA, USA, 13–16 September 2010;
pp. 280–284.

4. Li, J.; Chen, X.; Chow, S.S.; Huang, Q.; Wong, D.S.; Liu, Z. Multi-authority fine-grained access control with accountability and its
application in cloud. J. Netw. Comput. Appl. 2018, 112, 89–96. [CrossRef]

5. Malamas, V.; Palaiologos, G.; Kotzanikolaou, P.; Burmester, M.; Glynos, D. Janus. Available online: https://census-labs.com/
news/2022/06/21/janus-hmbac/ (accessed on 12 September 2022).

6. Hyperledger Fabric. Available online: https://www.hyperledger.org/use/fabric (accessed on 29 November 2022).
7. Lewko, A.; Waters, B. Decentralizing attribute-based encryption. In Proceedings of the Annual International Conference on the

Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, 15–19 May 2011; pp. 568–588.
8. Hashicorp. Hashicorp Vault. Available online: https://www.vaultproject.io/ (accessed on 29 November 2022).
9. Malamas, V.; Kotzanikolaou, P.; Dasaklis, T.K.; Burmester, M. A hierarchical multi blockchain for fine grained access to medical

data. IEEE Access 2020, 8, 134393–134412. [CrossRef]
10. Al Nuaimi, K.; Mohamed, N.; Al Nuaimi, M.; Al-Jaroodi, J. A survey of load balancing in cloud computing: Challenges and

algorithms. In Proceedings of the 2012 Second Symposium on Network Cloud Computing and Applications, London, UK,
3–4 December 2012; pp. 137–142.

11. Andersen, M.P.; Kumar, S.; AbdelBaky, M.; Fierro, G.; Kolb, J.; Kim, H.S.; Culler, D.E.; Popa, R.A. WAVE: A decentralized
authorization framework with transitive delegation. In Proceedings of the 28th USENIX Security Symposium (USENIX Security
19), Santa Clara, CA, USA, 14–16 August 2019; pp. 1375–1392.

12. Shafagh, H.; Burkhalter, L.; Ratnasamy, S.; Hithnawi, A. Droplet: Decentralized Authorization and Access Control for Encrypted
Data Streams. In Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), Boston, MA, USA, 12–14 August
2020; pp. 2469–2486.

13. Rajput, A.R.; Li, Q.; Ahvanooey, M.T.; Masood, I. EACMS: Emergency access control management system for personal health
record based on blockchain. IEEE Access 2019, 7, 84304–84317. [CrossRef]

14. Shahraki, A.S.; Rudolph, C.; Grobler, M. A dynamic access control policy model for sharing of healthcare data in multiple
domains. In Proceedings of the 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and
Communications/13th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), Rotorua,
New Zealand, 5–8 August 2019; pp. 618–625.

15. Miao, Y.; Liu, X.; Choo, K.K.R.; Deng, R.H.; Li, J.; Li, H.; Ma, J. Privacy-preserving attribute-based keyword search in shared
multi-owner setting. IEEE Trans. Dependable Secur. Comput. 2019, 18, 1080–1094. [CrossRef]

16. Xu, Y.; Dong, X.; Shen, J. Multi-authority attribute-based encryption supporting hierarchal access policy and range policy. In
Proceedings of the 2020 International Conference on Computer Communication and Network Security (CCNS), Xi’an, China,
21–23 August 2020; pp. 81–86.

17. Xiao, M.; Hu, X. Multi-authority attribute-based encryption access control scheme in wireless body area network. In Proceedings
of the 2018 3rd International Conference on Information Systems Engineering (ICISE), Shanghai, China, 4–6 May 2018; pp. 39–45.

18. Zhang, Z.; Zhou, S. A decentralized strongly secure attribute-based encryption and authentication scheme for distributed Internet
of Mobile Things. Comput. Netw. 2021, 201, 108553. [CrossRef]

19. Sarma, R.; Kumar, C.; Barbhuiya, F.A. MACFI: A multi-authority access control scheme with efficient ciphertext and secret key
size for fog-enhanced IoT. J. Syst. Archit. 2022, 123, 102347. [CrossRef]

20. Guo, H.; Meamari, E.; Shen, C.C. Multi-authority attribute-based access control with smart contract. In Proceedings of the 2019
International Conference on Blockchain Technology, Honolulu, HI, USA, 15–18 March 2019; pp. 6–11.

21. Das, S.; Namasudra, S. Multi-Authority CP-ABE-Based Access Control Model for IoT-Enabled Healthcare Infrastructure. IEEE
Trans. Ind. Inform. 2022, 19, 821–829. [CrossRef]

22. Liu, C.; Xiang, F.; Sun, Z. Multiauthority Attribute-Based Access Control for Supply Chain Information Sharing in Blockchain.
Secur. Commun. Netw. 2022, 2022, 8497628. [CrossRef]

23. Li, Q.; Zhu, H.; Xiong, J.; Mo, R.; Ying, Z.; Wang, H. Fine-grained multi-authority access control in IoT-enabled mHealth. Ann.
Telecommun. 2019, 74, 389–400. [CrossRef]

24. Xu, Q.; Tan, C.; Fan, Z.; Zhu, W.; Xiao, Y.; Cheng, F. Secure multi-authority data access control scheme in cloud storage system
based on attribute-based signcryption. IEEE Access 2018, 6, 34051–34074. [CrossRef]

25. Riad, K.; Huang, T.; Ke, L. A dynamic and hierarchical access control for IoT in multi-authority cloud storage. J. Netw. Comput.
Appl. 2020, 160, 102633. [CrossRef]

26. Bai, L.; Fan, K.; Bai, Y.; Cheng, X.; Li, H.; Yang, Y. Cross-domain access control based on trusted third-party and attribute mapping
center. J. Syst. Archit. 2021, 116, 101957. [CrossRef]

www.statista.com/statistics/871513
http://doi.org/10.1016/j.jnca.2018.03.006
https://census-labs.com/news/2022/06/21/janus-hmbac/
https://census-labs.com/news/2022/06/21/janus-hmbac/
https://www.hyperledger.org/use/fabric
https://www.vaultproject.io/
http://dx.doi.org/10.1109/ACCESS.2020.3011201
http://dx.doi.org/10.1109/ACCESS.2019.2917976
http://dx.doi.org/10.1109/TDSC.2019.2897675
http://dx.doi.org/10.1016/j.comnet.2021.108553
http://dx.doi.org/10.1016/j.sysarc.2021.102347
http://dx.doi.org/10.1109/TII.2022.3167842
http://dx.doi.org/10.1155/2022/8497628
http://dx.doi.org/10.1007/s12243-018-00702-6
http://dx.doi.org/10.1109/ACCESS.2018.2844829
http://dx.doi.org/10.1016/j.jnca.2020.102633
http://dx.doi.org/10.1016/j.sysarc.2020.101957

Appl. Sci. 2023, 13, 566 26 of 27

27. Wang, G.; Liu, Q.; Wu, J. Hierarchical attribute-based encryption for fine-grained access control in cloud storage services. In
Proceedings of the 17th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 4–8 October 2010;
pp. 735–737.

28. Wan, Z.; Deng, R.H. HASBE: A hierarchical attribute-based solution for flexible and scalable access control in cloud computing.
IEEE Trans. Inf. Forensics Secur. 2011, 7, 743–754. [CrossRef]

29. Ali, M.; Mohajeri, J.; Sadeghi, M.R.; Liu, X. A fully distributed hierarchical attribute-based encryption scheme. Theor. Comput. Sci.
2020, 815, 25–46. [CrossRef]

30. Gai, K.; Guo, J.; Zhu, L.; Yu, S. Blockchain meets cloud computing: A survey. IEEE Commun. Surv. Tutor. 2020, 22, 2009–2030.
[CrossRef]

31. Riabi, I.; Ayed, H.K.B.; Saidane, L.A. A survey on Blockchain based access control for Internet of Things. In Proceedings of the
2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC) Tangier, Morocco, 24–28 June 2019;
pp. 502–507.

32. Casino, F.; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification
and open issues. Telemat. Inform. 2019, 36, 55–81. [CrossRef]

33. Li, H.; Pei, L.; Liao, D.; Chen, S.; Zhang, M.; Xu, D. FADB: A fine-grained access control scheme for VANET data based on
blockchain. IEEE Access 2020, 8, 85190–85203. [CrossRef]

34. Sukhodolskiy, I.; Zapechnikov, S. A blockchain-based access control system for cloud storage. In Proceedings of the 2018 IEEE
Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow and St. Petersburg,
Russia, 29 January–21 February 2018; pp. 1575–1578.

35. Wang, S.; Zhang, Y.; Zhang, Y. A blockchain-based framework for data sharing with fine-grained access control in decentralized
storage systems. IEEE Access 2018, 6, 38437–38450. [CrossRef]

36. Yang, C.; Tan, L.; Shi, N.; Xu, B.; Cao, Y.; Yu, K. AuthPrivacyChain: A blockchain-based access control framework with privacy
protection in cloud. IEEE Access 2020, 8, 70604–70615. [CrossRef]

37. Banerjee, S.; Bera, B.; Das, A.K.; Chattopadhyay, S.; Khan, M.K.; Rodrigues, J.J. Private blockchain-envisioned multi-authority
CP-ABE-based user access control scheme in IIoT. Comput. Commun. 2021, 169, 99–113. [CrossRef]

38. Malamas, V.; Dasaklis, T.; Kotzanikolaou, P.; Burmester, M.; Katsikas, S. A forensics-by-design management framework for
medical devices based on blockchain. In Proceedings of the 2019 IEEE World Congress on Services (SERVICES), Milan, Italy, 8–13
July 2019; Volume 2642, pp. 35–40.

39. Andersen, M.; Kumar, S. WAVE. 2019. Available online: https://github.com/immesys/wave (accessed on 17 September 2022).
40. Shafagh, H.; Burkhalter, L.; Ratnasamy, S.; Hithnawi, A. Droplet. 2020. Available online: https://dropletchain.github.io/

(accessed on 18 September 2022).
41. Chase, M. Multi-authority attribute based encryption. In Proceedings of the Theory of Cryptography Conference, Amsterdam,

The Netherlands, 21–24 February 2007; pp. 515–534.
42. Qian, H.; Li, J.; Zhang, Y.; Han, J. Privacy-preserving personal health record using multi-authority attribute-based encryption

with revocation. Int. J. Inf. Secur. 2015, 14, 487–497. [CrossRef]
43. Rouselakis, Y.; Waters, B. Efficient statically-secure large-universe multi-authority attribute-based encryption. In Proceedings

of the International Conference on Financial Cryptography and Data Security, San Juan, Puerto Rico, 26–30 January 2015;
pp. 315–332.

44. Ramesh, D.; Priya, R. Multi-authority scheme based CP-ABE with attribute revocation for cloud data storage. In Proceedings
of the 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), Durgapur, India,
23–25 January 2016; pp. 1–4.

45. Zhang, Z.; Li, C.; Gupta, B.B.; Niu, D. Efficient compressed ciphertext length scheme using multi-authority CP-ABE for
hierarchical attributes. IEEE Access 2018, 6, 38273–38284. [CrossRef]

46. Li, J.; Zhang, R.; Lu, Y.; Han, J.; Zhang, Y.; Zhang, W.; Dong, X. Multiauthority Attribute-Based Encryption for Assuring Data
Deletion. IEEE Syst. J. 2022. [CrossRef]

47. Oktian, Y.E.; Lee, S.G.; Lee, H.J. Hierarchical multi-blockchain architecture for scalable internet of things environment. Electronics
2020, 9, 1050. [CrossRef]

48. Lee, N.Y. Hierarchical Multi-Blockchain System for Parallel Computation in Cryptocurrency Transfers and Smart Contracts. Appl.
Sci. 2021, 11, 10173. [CrossRef]

49. Tong, W.; Dong, X.; Shen, Y.; Jiang, X. A Hierarchical Sharding Protocol for Multi-Domain IoT Blockchains. In Proceedings of the
ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [CrossRef]

50. Sim, S.H.; Jeong, Y.S. Multi-Blockchain-Based IoT Data Processing Techniques to Ensure the Integrity of IoT Data in AIoT Edge
Computing Environments. Sensors 2021, 21, 3515. [CrossRef]

51. Ma, M.; Shi, G.; Li, F. Privacy-oriented blockchain-based distributed key management architecture for hierarchical access control
in the IoT scenario. IEEE Access 2019, 7, 34045–34059. [CrossRef]

52. Chang, J.; Ni, J.; Xiao, J.; Dai, X.; Jin, H. SynergyChain: A Multichain-based Data Sharing Framework with Hierarchical Access
Control. IEEE Internet Things J. 2021, 9, 1476–14778. [CrossRef]

53. Tao, Q.; Cui, X.; Huang, X.; Leigh, A.M.; Gu, H. Food safety supervision system based on hierarchical multi-domain blockchain
network. IEEE Access 2019, 7, 51817–51826. [CrossRef]

http://dx.doi.org/10.1109/TIFS.2011.2172209
http://dx.doi.org/10.1016/j.tcs.2020.02.030
http://dx.doi.org/10.1109/COMST.2020.2989392
http://dx.doi.org/10.1016/j.tele.2018.11.006
http://dx.doi.org/10.1109/ACCESS.2020.2992203
http://dx.doi.org/10.1109/ACCESS.2018.2851611
http://dx.doi.org/10.1109/ACCESS.2020.2985762
http://dx.doi.org/10.1016/j.comcom.2021.01.023
https://github.com/immesys/wave
https://dropletchain.github.io/
http://dx.doi.org/10.1007/s10207-014-0270-9
http://dx.doi.org/10.1109/ACCESS.2018.2854600
http://dx.doi.org/10.1109/JSYST.2022.3208149
http://dx.doi.org/10.3390/electronics9061050
http://dx.doi.org/10.3390/app112110173
http://dx.doi.org/10.1109/ICC.2019.8761147
http://dx.doi.org/10.3390/s21103515
http://dx.doi.org/10.1109/ACCESS.2019.2904042
http://dx.doi.org/10.1109/JIOT.2021.3061687
http://dx.doi.org/10.1109/ACCESS.2019.2911265

Appl. Sci. 2023, 13, 566 27 of 27

54. Gupta, M.; Patwa, F.; Sandhu, R. An attribute-based access control model for secure big data processing in hadoop ecosystem. In
Proceedings of the Third ACM Workshop on Attribute-Based Access Control, Tempe, AZ, USA, 21 March 2018; pp. 13–24.

55. Electron. Electronjs. Available online: https://www.electronjs.org/ (accessed on 29 November 2022).
56. Ongaro, D.; Ousterhout, J. In Search of an Understandable Consensus Algorithm. In Proceedings of the 2014 USENIX Annual

Technical Conference (Usenix ATC 14), Philadelphia, PA, USA, 17–20 June 2014; pp. 305–319.
57. Kubernetes. Available online: https://kubernetes.io/ (accessed on 29 November 2022).
58. RabbitMQ. Available online: https://www.rabbitmq.com/ (accessed on 29 November 2022).
59. Mauw, S.; Oostdijk, M. Foundations of attack trees. In Proceedings of the International Conference on Information Security and

Cryptology, Seoul, Republic of Korea, 1–2 December 2005; pp. 186–198.
60. Schneier, B. Attack trees. Dr. Dobb’s J. 1999, 24, 21–29.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.electronjs.org/
https://kubernetes.io/
https://www.rabbitmq.com/

	Introduction
	Related Work
	Background
	MA-CP-ABE
	Hierarchical Multi Blockchain

	HMBAC Design and Implementation
	HMBAC Access Model
	HMBAC Architecture Design
	Frontend Layer
	Data Layer
	Hierarchical Blockchain Infrastructure

	Janus Implementation
	Frontend Application
	Frontend API
	Inter-Blockchain API
	Smart Contracts
	Distributed ABE Decryption Implementation

	Efficiency Analysis
	System Scalability and Management
	Benchmarks

	Security Analysis
	Secure Data Access
	Secure Blockchain Management
	Secure Key Storage/Management

	Discussion and Conclusions
	References

