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Abstract: It is observed that, for some of the data in engineering and medical fields, the hazard
rates increase to a high peak at the beginning and quickly decrease to a low level. In the context
of survival analysis, such a hazard rate is called a upside-down bathtub hazard rate. In this paper,
we investigated the properties of a model named exponentiated exponential-Pareto distribution.
The model was recently proposed and applied to insurance data. We demonstrated that the model
has upside-down bathtub-shaped hazard rates with specific choices of parameters. The theoretical
properties such as moments, survival functions, and hazard functions were derived. The parameter
estimation procedures were also introduced. We then briefly discussed the goodness-of-fit tests of the
model with the simulations. Finally, we applied the model to a specific time-to-event data set along
with a comparison of the performances with previous existing models. When compared to previous
proposed models, the exponentiated exponential-Pareto model demonstrated good performance
when fitting to such data sets.

Keywords: reliability data modeling; generalized exponentiated composite distributions; exponentiated
exponential-Pareto model; upside-down bathtub hazard rate; goodness-of-fit

1. Introduction

Reliability data modeling has been an important topic in many different fields such as
engineering, biology, and medical sciences. For data sets collected in real life, the hazard
rates can show different shapes: monotone increasing, monotone decreasing, bathtub-
shaped and upside-down bathtub (UBT)-shaped. While the data sets with monotone or
bathtub hazard rates were deeply investigated with different types of parametric models,
the data sets with UBT shapes were not as well explored as the others.

In fact, data with UBT-shaped hazard rates appeared frequently in the existing lit-
erature. For instance, for the Veteran’s Administration lung cancer trial data [1–3], the
mortality rate was very low at the beginning, quickly rose to a high peak, and then slowly
decreased. This suggests that the data are associated with a UBT-shaped hazard rate. This
was also observed in several other data sets from medical and engineering fields [4–6].

To model data with UBT-shaped hazard rates, many parametric models have been
proposed in the past. For example, the transmuted Rayleigh distribution [6] was proposed
and demonstrated good performance when fitted to a reliability data set with UBT-shaped
hazard rates. For more models proposed for this type of data, readers are referred to [7–12].

The concept of the generalized composite distributions was recently proposed to
provide better options for fitting right skewed data with a high peak. It was demonstrated
that special members from this family, such as exponentiated exponential-Pareto (EEP)
distribution and exponentiated inverse-gamma Pareto (EIGP) distribution, can provide
satisfactory performances to multiple insurance data sets [13,14]. Moreover, these data sets
have very similar features to the ones with UBT-shaped hazard rates. Thus, utilizing these
distributions to fit the data sets with UBT-shaped hazard rates seems to be appropriate.
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The rest of the paper is organized as follows. Section 2 introduces the concept of the
composite distribution. Section 2.2 provides the concept and some properties of the gener-
alized exponentiated composite distribution (GEC). In Section 3, a special model named
exponentiated exponential-Pareto (EEP) model is discussed. The parameter estimation of
the EEP distribution is introduced in Section 4. In Section 5, by utilizing the goodness-of-fit
(GoF) test, a limited simulation study is given to demonstrate the performance of the model
associated with the exponent parameter. A real data analysis is presented in Section 6.
Finally, the concluding remark and future directions are provided in Section 7.

2. Related Work

We start by introducing the concepts of composite distributions and generalized
exponentiated composite distributions.

2.1. The Composite Distributions

Let Y be a random variable that only takes non-negative real numbers. Let fY(y) be
the probability density function (pdf) of Y. The formal definition of a composite pdf fY(y)
is given as follows [15]:

fY(y; α1, α2, θ) =

{
c f1(y; α1, θ) 0 ≤ y < θ

c f2(y; α2, θ) y ≥ θ,
(1)

where c stands for the normalizing constant, θ is the parameter that denotes the location of
probability density change, f1 is the pdf of Y when Y is between 0 and θ, and α1 represents
the parameters of f1; f2 is the pdf of Y when Y is greater than θ, and α2 represents the
parameters of f2. It is assumed that both f1 and f2 are smooth functions on their supports.
f1 is generally called the head pdf of fY, while f2 is referred to as the tail pdf of fY.

In real practice, fY(y|α1, α2, θ) is usually assumed to be continuous and differentiable.
Thus, the following conditions are imposed:{

limy→θ− fY(y; α1, α2, θ) = limy→θ+ fY(y; α1, α2, θ)

limy→θ−
d fY(y;α1,α2,θ)

dy = limy→θ+
d fY(y;α1,α2,θ)

dy .

In real practice, the Pareto distribution and the generalized Pareto distribution (GPD)
are commonly used for modeling highly right-skewed data at the right tail due the theoreti-
cal properties of such distributions. However, both of these distributions can only fit the
data beyond a specific threshold. Hence, they cannot be used to globally fit the data.

Many composite models with Pareto or GPD tails have been developed by utilizing
the idea of composite distributions, including lognormal-GPD [15], lognormal-Pareto [16],
exponential-Pareto [17,18], Weibull–Pareto [19–21], inverse gamma-Pareto [22], and so on.
Moreover, Grün and Miljkovic [23] explored a large number of composite distributions
with Pareto and GPD tails with a general framework of computational tools.

Composite models with a Pareto tail have been widely used in different fields such
as actuarial data and reliability data modeling. While these models were frequently used
in the literature, it was found that some of the models such as exponential-Pareto [24]
and inverse gamma-Pareto [22] do not perform well when fitting real sets with right
skewed distributions. Therefore, a new concept named generalized family of exponentiated
composite distribution (GEC) was proposed to address the issue [14].

In the next subsection, we introduce the concept of generalized family of exponentiated
composite distributions and the properties of this family.
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2.2. A Generalized Family of Exponentiated Composite Distributions

A power transformation T = Y
1
η (η > 0) on the original composite random vari-

able Y generates an exponentiated composite random variable T with an exponentiated
composite pdf. Correspondingly, T is denoted as the exponentiated composite random
variable induced by the parent composite random variable Y [14]. The pdf of T can be
expressed as follows:

fT(t; α1, α2, θ, η) =

c f1(tη ; α1, θ)ηtη−1 0 ≤ t < θ
1
η

c f2(tη ; α2, θ)ηtη−1 t ≥ θ
1
η .

(2)

The pdf fT(t) is then referred as the exponentiated composite pdf induced by the
parent composite pdf fY(y).

Subsequently, we derive the properties of the exponentiated composite random vari-
able T induced by the parent composite random variable Y.

2.2.1. Moments

Suppose that a composite random variable Y has finite k-th moment µk. The k-th
moment of an exponentiated composite random variable T induced by Y was derived
previously by Liu and Ananda [14] as follows:

E(Tk) = E(Y
k
η ) = µ

1
η

k (3)

2.2.2. Survival Function

Assume that Y is a composite random variable with the CDF FY(y), where FY(y) =
P(Y ≤ y). The CDF of the corresponding exponentiated composite random variable

T = Y
1
η can be represented:

FT(t) = P(T ≤ t)

= P(Y
1
η ≤ t)

= P(Y ≤ tη)

= FY(tη).

(4)

The survival function of Y can then be represented as follows:

ST(t) = 1− FT(t) = 1− FY(tη). (5)

Now, consider the pdf defined in Equation (1). Let F1(y; α1, θ) and F2(y; α2, θ) be the corre-
sponding CDF of f1(y; α1, θ) and f2(y; α2, θ). The CDF of a composite random variable Y can
be expressed as follows:

FY(y; α1, α2, θ) =
∫ y

0
fY(t; α1, α2, θ)dt

=

{
c
∫ y

0 f1(t; α1, θ)dt if y ∈ [0, θ)

c[
∫ θ

0 f1(t; α1, θ)dt +
∫ y

θ f2(t; α2, θ)dt] if y ∈ [θ, ∞)

=

{
cF1(y; α1, θ) if y ∈ [0, θ)

c[F1(θ; α1, θ) + F2(y; α2, θ)− F2(θ; α1, θ)] if y ∈ [θ, ∞).

(6)
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Correspondingly, the exponentiated composite random variable T induced by Y has a CDF
as follows:

FT(t; α1, α2, θ) =

cF1(tη ; α1, θ) if t ∈ [0, θ
1
η )

c[F1(θ; α1, θ) + F2(tη ; α2, θ)− F2(θ; α1, θ)] if t ∈ [θ
1
η , ∞).

(7)

The corresponding survival function of T can then be expressed as follows:

ST(t; α1, α2, θ) =

1− cF1(tη ; α1, θ) if t ∈ [0, θ
1
η )

1− c[F1(θ; α1, θ) + F2(tη ; α2, θ)− F2(θ; α1, θ)] if t ∈ [θ
1
η , ∞).

(8)

2.2.3. Hazard Function

The hazard function of a random variable T is defined as follows:

hT(t) = lim∆t→∞
ST(t + ∆t)− ST(t)

∆t · ST(t)
.

Given the assumption that T is an exponentiated composite random variable induced by
the composite random variable Y, the hazard function of T can be represented as follows,
with the pdf and CDF of its parent composite random variable Y:

hT(t) =
fT(t)
ST(t)

=
fY(tη)ηtη−1

1− FY(tη)
.

=


c f1(tη ;α1,θ)ηtη−1

1−cF1(tη ;α1,θ) if t ∈ [0, θ
1
η )

c f2(tη ;α2,θ)ηtη−1

1−c[F1(θ;α1,θ)+F2(tη ;α2,θ)−F2(θ;α1,θ)] if t ∈ [θ
1
η , ∞).

(9)

2.2.4. Quantile Function

The quantile function of a random variable Y is defined as follows:

QY(p) = inf{y ∈ R : p ≤ FY(y)},

where p ∈ (0, 1).
Thus, if Y is a composite random variable and T is the exponentiated composite

random variable induced by Y, then the quantile function of T can be represented as follows:

QT(p) = inf{t ∈ R : p ≤ FT(t)}
= inf{t ∈ R : p ≤ FY(tη)}.

If FY(y) is strictly increasing and continuous, the quantile function QY(p) is then the
inverse function of FY(y):

QY(p) = F−1
Y (p)

= {y ∈ R : FY(y) = p}.

Correspondingly, the quantile function of T can be written as follows in terms of the
pdf of its parent composite random variable Y:

QT(p) = F−1
T (p)

= {t ∈ R : FT(t) = p}
= {t ∈ R : FY(tη) = p}.

(10)
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3. Special Model: Exponentiated Exponential-Pareto Distribution (EEP)

The exponential-Pareto (EP) composite distribution was first proposed by Teodorescu
and Vernic in 2006 [17]. Suppose that Y is a EP random variable. Then, the pdf of Y is first
defined as follows:

fY(y; λ, θ) =

{
cλe−λy 0 ≤ y < θ

cα θα

yα+1 y ≥ θ,

Assuming that the continuity and differentiability conditions hold, we have the following:{
limy→θ− fY(y; λ, θ) = limy→θ+ fY(y; α1, α2, θ)

limy→θ−
d fY(y;λ,θ)

dy = limy→θ+
d fY(y;λ,θ)

dy .

This generates a system of equations in terms of θ, α, and λ:{
λe−λθ = αθ−1

−λ2e−λθ = −α(α + 1)θ−2.

By simple calculation, λ can be expressed in terms of α and θ, as follows:

λ =
α + 1

θ
.

Additionally, by utilizing the system of equations, the value of α can be determined as the
solution of the following equation:

(α + 1)e−(α+1) = α.

Since the shape parameter α of a Pareto distribution is restricted to being positive, the
above equation gives a unique solution:

α = 0.349976.

Since we assume that fY(y; λ, θ) is a valid pdf, we can also obtain the unique solution
for the normalizing constant c as follows:

c =
1

2− e−(α+1)
= 0.574464.

Thus, the pdf of Y with one parameter θ can be written as follows:

fY(y; θ) =

c( α+1
θ )e−

(α+1)y
θ y < θ

cα θα

yα+1 y ≥ θ,

where c = 0.574464, α = 0.349976.
With the power transformation T = Y

1
η , T is obtained as an exponentiated exponential-

Pareto (EEP) composite random variable. The pdf of T can be expressed as follows:

fT(t; θ, η) =

c( α+1
θ )e−

(α+1)tη
θ ηtη−1 0 < t < θ

1
η

cα θα

(tη)α+1 ηtη−1 t ≥ θ
1
η ,

(11)

Figure 1 shows the pdf of EEP distributions with different parameters. Notice that,
when η > 1, the pdf of EEP distribution is hump-shaped; we discuss this in detail in the
next subsection.
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Figure 1. The pdf of an EEP distribution with different parameters.

3.1. Mode

Since both exponential distribution and Pareto distribution are associated with mono-
tonically decreasing pdf, the pdf of the original EP distribution is also monotonically
decreasing. Thus, as an composite distribution, EP still does not have the ability to model
the data with hump-shaped frequency distributions. One of the advantages of the EEP
distribution against the original EP distribution is that the EEP can have a pdf with a hump
shape, or equivalently, the EEP distribution has a mode under certain conditions. We
explore the conditions for such hump-shaped distributions in the following part:

Proposition 1. Suppose that T is an EEP composite random variable. Assume that fT(t; θ, η) is
the pdf associated with T. Then, the mode of T exists if and only if η > 1. When η > 1, the mode of

T is [ θ(η−1)
η(α+1) ]

1
η .

Proof of Proposition 1. First, suppose t ≥ θ
1
η ; then, fT(t; θ, η) = cα θα

(tη)α+1 ηtη−1.

Correspondingly, d fT(t;θ,η)
dt = (−αη − 1)cαθαηt−αη−2 < 0 for all t ≥ θ

1
η .

Therefore, when t ≥ θ
1
η , fT(t; θ, η) is monotonically decreasing.

Since fT(t; θ, η) is continuous, this implies that the maximum of fT(t; θ, η) must occur

when t < θ
1
η if the maximum exists.

Assume t < θ
1
η , then fT(t; θ, η) = c( α+1

θ )e−
(α+1)tη

θ ηtη−1.
When fT(t; θ, η) is a positive real-valued function, maximizing fT(t; θ, η) is equivalent

to maximizing ln fT(t; θ, η). Thus, we use ln fT(t; θ, η) for the rest of the derivations.
Then, ln fT(t; θ, η) = ln(c) + ln( α+1

θ )− (α+1)tη

θ + ln(η) + (η − 1)ln(t).
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Correspondingly, d ln fT(t;θ,η)
dt = − (α+1)ηtη−1

θ + η−1
t

Let dln fT(t;θ,η)
dt = 0. Then, we have the equation of t: η − 1 = η( α+1

θ )tη .
Notice that t > 0. Hence, the above equation has a solution only when η > 1.

Therefore, the mode of T exists if and only if η > 1.

When η ≥ 1, the equation has a unique solution: t = [ θ(η−1)
η(α+1) ]

1
η . It can be shown that

d2 fT(t;θ,η)
dt2 < 0 when t = [ θ(η−1)

η(α+1) ]
1
η . Thus, t = [ θ(η−1)

η(α+1) ]
1
η is the mode of T.

Therefore, the addition of the exponent parameter η in the EEP model definitely
improves the flexibility of the original EP model since it can model the data with a hump-
shaped distribution.

3.2. Moments

The k-th moments of the EEP distribution was derived by Liu and Ananda [13]
as follows:

E(Tk) = c(
θ

α + 1
)

k
η

[
Γ(

k
η
+ 1)− Γ(

k
η
+ 1, α + 1)

]

+
cαθ

k
η

α− k
η

,
(12)

where Γ(α) represents the Gamma function, namely Γ(α) =
∫ ∞

0 uα−1e−udu. Γ(., .) When
k
η < α, the k-th moment is finite. Correspondingly, the mean of the EEP distribution is as
follows:

E(T) = c(
θ

α + 1
)

1
η

[
Γ(

1
η
+ 1)− Γ(

1
η
+ 1, α + 1)

]

+
cαθ

1
η

α− 1
η

.

The mean of the EEP distribution is plotted in Figure 2. The figure shows that the mean is
an increasing function of θ and a decreasing function of η for selected θ and η values.

3.3. Survival Function and Tail Properties

Since (11) is a continuous differentiable pdf, the cumulative distribution function
(CDF) can be derived. By the definition of CDF, we have the following:

FT(t; θ, η) =


c
(

1− e−
(α+1)tη

θ

)
t < θ

1
η

c
(

2− e−(α+1) − θα

tηα

)
t ≥ θ

1
η .

(13)

Notice that the development of EP distribution guarantees that c(2− e−(α+1)) = 1. There-
fore,

FT(t; θ, η) =


c
(

1− e−
(α+1)tη

θ

)
t < θ

1
η

1− c
(

θα

tηα

)
t ≥ θ

1
η .

(14)

Since T is a continuous random variable, the survival function of T is provided correspond-
ingly as follows:

ST(t; θ, η) = 1− FT(t; θ, η),
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that is,

ST(t; θ, η) =


1− c

(
1− e−

(α+1)tη
θ

)
t < θ

1
η

c
(

θα

tηα

)
t ≥ θ

1
η .

(15)

Now, given that we derived the formula of CDF and the survival function of T, we can
further discuss the tail properties of the EEP distribution.

Proposition 2. If T follows an EEP distribution with a CDF F, then the distribution of T has a
heavy tail.

Proof of Proposition 2. We only prove that limt→∞eλtST(t) = limt→∞

(
cθαeλt

tηα

)
= ∞ for all

λ > 0.
Notice ηα > 0 based on our assumption. Denote dηαe as the smallest integer greater

than ηα.
Then, since limt→∞cθαeλt = ∞ and limt→∞tηα = ∞, apply L’Hospital rule dηαe times.

We have limt→∞eλtST(t) = limt→∞

(
cλdηαeθαeλt

∏
dηαe
i=1 (ηα−i)tηα−dηαe

)
= ∞.

Therefore, the distribution of T has a heavy tail.

Furthermore, we could also specify the conditions that an EEP distribution has a fat
tail. Suppose that the survival function of a random variable X satisfies the following:

S(x) ∼ x−β as x → ∞, α > 0

Notice that a distribution is said to have a fat tail when the tail index β < 2. Notice that,
for an EEP random variable T, ST(t) ∼ t−ηα. Therefore, only when ηα < 2, the EEP
distribution is considered to have a fat tail.

3.4. Hazard Function

For a continuous random variable T, the hazard function is defined as follows:

hT(t) =
fT(t)
ST(t)

.

Therefore, by utilizing the pdf and survival function of Y, the hazard function of a EEP
random variable T can be derived as follows:

hT(t; θ, η) =


c( α+1

θ )e−
(α+1)tη

θ ηtη−1

1−c+ce−
(α+1)tη

θ

t < θ
1
η

αηt−1 t ≥ θ
1
η

(16)

Notice that hT(t; θ, η) is monotonically decreasing when t ≥ θ
1
η . For some selections of θ

and η values, the hazard function hT(t : θ, η) could be UBT. Figure 3 shows the hazard
functions of EEP distributions with different parameters.
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3.5. Quantile Function

The quantile function of a continuous random variable T is defined as the inverse
function of its CDF FT . Since the explicit form of FT is derived in (10), we have the quantile
function an EEP random variable T as follows:

F−1
T (p; θ, η) =


[ln( c

c−p )
θ

α+1 ]
1
η p < c[1− e−(α+1)]

(
c

1−p

) 1
αη

θ
1
η p ≥ c[1− e−(α+1)].

(17)

In fact, given that the values of c and α are fixed, the value of c[1− e−(α+1)] could
be obtained. Notice that c[1− e−(α+1)] < 0.5. Hence, the median (0.5 quantile) of an EEP
random variable could be expressed as follows, in terms of θ and η:

M(θ, η) = F−1
T (p = 0.5; θ, η)

= (2c)
1

αη θ
1
η

The median of EEP distribution is plotted in Figure 4. Similar to what we observed in
Figure 2, the median of an EEP distribution is an increasing function in θ and a decreasing
function in η.
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Figure 4. Median plot of EEP distribution with different parameters.



Appl. Sci. 2023, 13, 645 11 of 21

3.6. Median Residual Lifetime

For a random variable T, the median residual life time is denoted as MERL(t):

ST(t + MERL(t))
ST(t)

=
1
2

, (18)

where ST(t) is the survival function of T. Therefore, by utilizing Equation (15), we have the
following:

MERLT(t|θ, η) =


(

2cθα

1−c−ce−
α+1

θ
tη

) 1
αη

− t t < θ
1
η

2
1

ηα t− t t ≥ θ
1
η .

(19)

MERL is a very important dynamic measure for distributions with heavy tails. The
median residual lifetime functions for selected values of parameters are illustrated in
Figure 5. Essentially, if two EEP models have the same value for the parameter η, they will
have the same median residual lifetime if t is large.
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Figure 5. The median residual lifetime function plot of EEP distribution with different parameters.

4. Parameter Estimation
Parameter Search for Two-Parameter EEP Distributions

Suppose that t = (t1, t2, . . . , tn) is an independent identically distributed (i.i.d.) EEP
sample with parameters θ and η. Without loss of generality, assume t1 < t2 < . . . < tn.
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Assume that there exists a positive integer m such that tm < θ
1
η < tm+1. The corresponding

log-likelihood of t can be written as follows:

l(θ, η; t) = nln(c) + nln(η) + mln(α + 1)

+ (n−m)ln(α) + (η − 1)
m

∑
i=1

ln(ti)

− (αη + 1)
n

∑
j=m+1

ln(tj) + αnln(θ)

− [(α + 1)m]ln(θ)− α + 1
θ

m

∑
i=1

tη
i

(20)

Due to the existence of the location parameters (θ and η) in the EEP model, the
maximum likelihood estimates (MLE) of the model parameters cannot be obtained directly
by maximizing the log-likelihood function l(θ, η; t). Liu and Ananda [13,14] introduced a
grid-search algorithm to find the estimates of the model parameters. In fact, the estimates
can also be obtained by utilizing the ’optim’ function in R. The steps for finding MLE of the
model parameters are as follows:

1. Arrange the observations in the sample in increasing order such that t(1) ≤ t(2) ≤
. . . ≤ t(n).

2. For m = 1, 2, . . . , n− 1, maximize the objective function l(θ, η; t) and obtain (θ̂1, η̂1), (θ̂2, η̂2),
. . . , (θ̂n−1, η̂n−1) correspondingly.

3. Start from m = 1, check the condition t(1) < (θ̂1)
1

η̂1 < t(2). If this is true, then θ̂1 and
η̂1 are the estimates for θ and η. If not, go to the next step.

4. For m = 2, check the condition t(2) < (θ̂2)
1

η̂2 < t(3). If this is true, then θ̂2 and η̂2 are
the estimates for θ and η. Repeat this procedure until the correct m is detected. With
the correct m, the corresponding θ̂m and η̂m are the estimates for θ and η.

The above algorithm is used to compute the parameter estimates of EEP in the
next section.

5. Goodness-of-Fit Tests with Simulation Studies

In this section, we introduce two goodness-of-fit (GoF) tests to assess the GoF of
the EEP distribution against its parent distribution, EP distribution. The corresponding
hypothesis to be tested is as follows:{

H0 : η = 1 i.e., data follow an EP(θ)
H1 : η 6= 1 i.e., data follow an EEP(θ, η).

(21)

The MLE of θ and η of an EEP distribution can be obtained numerically using the proposed
algorithm. Thus, the likelihood ratio test (LRT) could be utilized to test the above hypothesis.
Assume that the likelihood function l(θ, η|t) takes the form in (17). The LRT statistic λ for
the given hypothesis is as follows:

λ = 2supθ∈R+ l(θ, η = 1; t)− 2supθ∈R+ ,η∈R+ l(θ, η|t), (22)

where λ follows a χ2 distribution with a degree of freedom 1.
As an alternative procedure, the asymptotic Wald’s test could also be used to test the

hypothesis, given the Fisher information matrix and MLE of θ and η. Consider Θ = (θ, η).
The Fisher information matrix was derived by Liu and Ananda [13,14] as follows:
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I(Θ) =

− ∂2l(θ,η;t)
∂θ2 − ∂2l(θ,η);t

∂θ∂η

− ∂2l(θ,η;t)
∂θ∂η − ∂2l(θ,η;t)

∂η2


=

(
I11 I12
I21 I22

)
,

where 
I11 = αn−(α+1)m

θ2 + 2(α+1)
θ3 ∑m

i=1 tη
i

I12 = − α+1
θ2 ∑m

i=1 tη
i ln(ti)

I21 = − α+1
θ2 ∑m

i=1 tη
i ln(ti)

I22 = n
η2 +

α+1
θ ∑m

i=1 tη
i [ln(ti)]

2.

Essentially, the expected value E(I(θ)) is the Fisher information matrix I(Θ).
Consider Θ̂ = (θ̂, η̂) as the MLE for Θ = (θ, η). By the asymptotic property of MLE,

we have the following under appropriate regularity conditions:

(Θ̂−Θ)
D−→ N (02, I−1(Θ)), as n→ ∞,

where I(Θ) stands for the Fisher information matrix of Θ, D represents convergence in
distribution, andN (02, I−1(Θ)) is the bivariate normal distribution with covariance matrix
I−1(Θ).

However, in reality, I(Θ) = E(I(θ)) cannot be easily evaluated. Therefore, the
observed Fisher information matrix I(Θ̂) is used as a substitute.

I(Θ̂) =

(
Î11 Î12
Î21 Î22

)
,

where, 
Î11 = αn−(α+1)m

θ̂2 + 2(α+1)
θ̂3 ∑m

i=1 tη̂
i

Î12 = − α+1
θ̂2 ∑m

i=1 tη̂
i ln(ti)

Î21 = − α+1
θ̂2 ∑m

i=1 tη̂
i ln(ti)

Î22 = n
η̂2 +

α+1
θ̂

∑m
i=1 tη̂

i [ln(ti)]
2.

(23)

Correspondingly, I−1(Θ̂) can be obtained as follows:

I−1(Θ̂) =
1

Î11Î22 − Î12Î21

(
Î22 −Î12
−Î21 Î11

)
(24)

Since the hypothesis of interest is only involved with the parameter η, we could carry
out the Wald’s test procedure easily with the following test statistic:

√
W =

η̂ − 1√
Var(η̂)

, (25)

where, from (16) and (17), Var(η̂) = Î11
Î11Î22−Î12Î21

.
We conducted the simulations to assess the type 1 error performances and the power

performances of both tests under different scenarios. For all the simulation scenarios,
r = 10,000 samples were generated from the EEP density provided in (11). The R package
‘mistr’ [25] was utilized to generate the random samples.

To evaluate the Type 1 error rates of the two GoF tests, we designed twelve different
simulation scenarios with different θ values and sample sizes. The details of the simulation
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scenarios are listed in Table 1. Table 1 shows the type 1 error performance of both tests
under twelve different scenarios. We noticed that both tests can control the type 1 error
rate well for all the simulation scenarios.

To assess the power performances of the two GoF tests, we designed various simulation
scenarios. The simulation scenarios are described as follows:

• Three different sample sizes: n = 50, 100, 200.
• Four different true θ values: θ = 0.01, 0.1, 1, 10.
• Eleven true η values: η = 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5.

In total, we generated 132 simulation scenarios.
The power comparison of two tests are provided in Figure 6. It can be observed that

the power of the tests drops when η increases from 0.5 to 1 and rises when η increases from
1 to 1.5. When the sample size becomes larger, the power of the tests increases. It is also
noteworthy that, when the sample size is 50 or 100, the power of the LRT was slightly better
than Wald’s test. When the sample size increases to 200, both tests demonstrated similar
performance. However, the value of θ did not affect the power of both tests significantly,
under all the simulation scenarios.
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Figure 6. Power comparison of the Likelihood ratio test and asymptotic Wald’s test (the red line
represents the asymptotic Wald’s test, and the black line represents the LRT).
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Table 1. Type 1 error rates for likelihood ratio test and asymptotic Wald’s test.

θ
Sample
Size (n)

LRT Wald’s Test

α = 0.01 α = 0.05 α = 0.01 α = 0.05

0.01

n = 50 0.0110 0.0536 0.0107 0.0484

n = 100 0.0125 0.0496 0.0105 0.0477

n = 200 0.0095 0.0499 0.0101 0.0503

0.1

n = 50 0.0094 0.0514 0.0087 0.0443

n = 100 0.0108 0.0529 0.0104 0.0519

n = 200 0.0112 0.0495 0.0113 0.0517

1

n = 50 0.0116 0.0537 0.0111 0.0469

n = 100 0.0120 0.0542 0.0121 0.0523

n = 200 0.0100 0.0484 0.0113 0.0508

10

n = 50 0.0120 0.0544 0.0095 0.0490

n = 100 0.0104 0.0523 0.0103 0.0495

n = 200 0.0121 0.0518 0.0127 0.0523

6. Application to Real Data

In this section, we applied the EEP model to three real data sets to assess its ability
in fitting reliability data. For comparison, we choose two models with Pareto tails. The
first one is the modified heavy-tailed Pareto model [26]. This is a model that was recently
developed to fit the data with UBT-shaped hazard rates. The other one is the Weibull–Pareto
composite model [20,23]. This model was previously used to model unimodal survival and
reliability data.

We compared the performance of the proposed EEP model against the original EP
model, generalized in terms of Akaike information criterion (AIC) [27], AIC3 [28], corrected
Akaike information criterion (AICc) [29], and consistent Akaike information criterion
(cAIC) [30]. In addition, to justify that the EEP model is proper compared to its parent EP
model, LRT and Wald’s test were conducted with the hypothesis in (18). In addition, the
Kolmogorov–Smirnoff (KS) test was used to assess the goodness-of-fit of the EEP and the
EP model.

6.1. Second Reactor Pump Data

We utilized a data set that describes the time between failure of secondary reactor
pumps [31]. The data set is illustrated in Table 2. It was used by previous researchers [6],
and it is considered to be a data set that has a upside-down bathtub-shaped hazard rate.
The TTT plot and the box plot are presented in Figure 7. The box plot suggests that the data
are heavily right-skewed. The TTT plot suggests that the data are associated with a UBT
hazard function.

Table 2. Second reactor pump failure time data.

2.160, 0.150, 4.082, 0.746, 0.358, 0.199, 0.402, 0.101, 0.605, 0.954,
1.359, 0.273, 0.491, 3.465, 0.070, 6.560, 1.060, 0.062, 4.992, 0.614,

5.320, 0.347, 1.921

Table 3 presented the estimates with corresponding standard errors, LRT test statistic,
Wald test statistic, and corresponding p-values from both tests. We were able to reject
the null hypothesis for both of the tests at the significance level α = 0.05. Thus, we
concluded that EEP is more proper compared to EP when fitting to the data set. The KS
test also suggested that we could not reject the null hypothesis of the data being from an
EEP distribution.
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Figure 7. TTT plot (left) and box plot (right) of the second reactor pump data set.

Table 3. Summary of the EEP and EP fit to the second reactor pump data set.

Model Estimates LRT Statistic
(p-Value)

Wald Statistic
(p-Value)

KS Statistic
(p-Value)

EEP θ = 0.25516
η = 1.73300

6.32602
(0.01190)

4.45271
(0.03485)

0.13043
(0.9924)

EP θ = 0.60707 - - 0.26087
(0.4218)

A comparisons of the four different models is presented in Table 4. In terms of all GoF
measures, the EEP model demonstrated better performances compared to the original EP
model. Moreover, the EEP model presented comparable performances against the heavy-
tailed Pareto model and the Weibull–Pareto model, with less parameters. This essentially
suggests that the EEP model is capable of explaining the data features with only two
parameters. Figure 8 contains the plot-fitted EEP hazard function and the histogram with
the fitted pdf. The fitted hazard function possesses a UBT shape. Figure 9 demonstrates a
comparison of the empirical survival function and the fitted EEP survival function. It can
be clearly seen that EEP provided great performance when fitting to the second reactor
pump data set.

Table 4. Comparison of the four models in terms of the five GoF measures.

Model p AIC AIC3 AICc CAIC

EEP 2 72.29528 74.29528 72.89528 76.56627

EP 1 76.62130 77.62130 76.81178 78.75679

Generalized Heavy-Tailed Pareto 3 69.86288 72.86288 71.12604 76.26936

Weighted Weibull–Pareto Composite 4 69.71532 73.73368 71.95590 78.27566
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Figure 8. Fitted hazard function of EEP distribution for secondary reactor pumps data set.
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Figure 9. Fitted EEP survival curve for secondary reactor pumps data set.

6.2. Electrical Breakdown of An Insulating Fluid

We also utilized the time to electrical breakdown of insulating fluid data [32] to assess
the performance of the EEP model. In our analysis, we chose the data set with a test voltage
30 kV. Table 5 illustrates the time to electrical breakdown in terms of hours. Figure 10
consists of the TTT plot and the box plot of the data set. The box plot suggests that the data
are right-skewed. The TTT plot confirms that the data are associated with a UBT hazard
function.

Table 5. Time to electric breakdown data.

7.74, 17.05, 20.46, 21.02 22.66, 43.40,
47.30, 139.07 144.12, 175.88, 194.90

The estimates, LRT test statistic, Wald test statistic, and corresponding p-values from
both tests are presented in Table 6. We were able to reject the null hypothesis for both of the
tests at the significance level α = 0.05. Thus, we concluded that EEP is better compared to
EP when fitting to the data set. In addition, the KS test also suggested that we could not
reject the null hypothesis of the data being from an EEP distribution at the level of α = 0.05,
while we rejected the null hypothesis of the data being from an EP distribution.
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Figure 10. TTT plot (left) and box plot (right) of the time to electric breakdown data set.

Table 6. Summary of the EEP and EP fit to the time to electric breakdown set.

Model Estimates LRT Statistic
(p-Value)

Wald Statistic
(p-Value)

KS Statistic
(p-Value)

EEP θ = 3326.133
η = 2.473841

4.08993
(0.04314)

7.090596
(0.008)

0.54545
(0.0758)

EP θ = 41.39566 - - 0.90909
(0.0002254)

Table 7 summarizes the comparison of the four models in terms of all GoF measures.
Compared to the original EP model, the EEP model performed better in terms of all the
measures. Moreover, the EEP model demonstrated better performance compared to the
three-parameter generalized heavy-tailed Pareto model and the four-parameter Weibull–
Pareto model. This implies that the EEP model has better abilities to explain the data with
only two parameters. Figure 11 consists of the plot-fitted EEP hazard function and the his-
togram with the fitted pdf. The fitted hazard function has a UBT shape. Figure 12 presents
the comparison of the empirical survival function and the fitted EEP survival function.
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Figure 11. The fitted hazard function of EEP distribution for the time to electric breakdown data set.
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Table 7. Comparison of the four models in terms of the five GoF measures.

Model p AIC AIC3 AICc CAIC

EEP 2 121.6466 123.6466 123.1466 124.4424

EP 1 126.7372 127.7372 127.1816 128.1351

Generalized Heavy-Tailed Pareto 3 123.4848 125.2912 125.7197 126.4848

Weighted Weibull–Pareto Composite 4 125.2129 129.2129 131.8795 130.8045
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Figure 12. Fitted EEP survival curve for time to electric breakdown data set.

7. Concluding Remark and Future Work

In this paper, we introduced a special member from the generalized family of expo-
nentiated composite distributions, named exponentiated exponential-Pareto distribution.
We derived the properties of this distribution including the moments, the survival function,
the hazard function, and the quantile function. We also discussed the parameter estimation
and the goodness-of-fit tests for this distribution against its parent distribution. Limited
simulations were conducted to compare the performances of the goodness-of-fit tests. In
the section with a real data analysis, the proposed distribution demonstrated great perfor-
mance when fitted to specific reliability data sets with hazard rates being upside-down
bathtub-shaped. We hope that this new model can provide different insights into reliability
data modeling. Since we only studied one special distribution from the family of general-
ized exponentiated composite distributions in this paper, the exploration of more special
distributions from this family is warranted.
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Abbreviations
The following abbreviations are used in this manuscript:

UBT Upside-down bathtub-shaped
GEC Generalized exponentiated composite distributions
pdf Probability density function
CDF Cumulative distribution function
EP Exponential-Pareto distribution
EEP Exponentiated exponential-Pareto distribution
LRT Likelihood ratio test
MLE Maximum likelihood estimates
AIC Akaike information criterion
BIC Bayesian information criterion
AICc Corrected Akaike information criterion
cAIC Consistent Akaike information criterion
KS Kolmogorov–Smirnoff
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