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Abstract: The neural network denoising technique has achieved impressive results by being able to
automatically learn the effective signal from the data without any assumptions. However, it has been
found experimentally that the performance of the method using neural networks gradually decreases
with increasing pollution levels when processing contaminated seismic data, and how to improve
the performance will become the direction of further development of the method. As a traditional
method widely used for tainted seismic data, the wavelet transform can effectively separate the signal
from the noise. Thus, we propose a method combining wavelet transform and a residual neural
network that achieves good results in suppressing random noise data.

Keywords: wavelet transform; noise suppression; residual neural network; random noise; wavelet
decomposition level

1. Introduction

Seismic signals will inevitably be affected by instruments, environments, and other
factors, resulting in the need for seismic noise attenuation. Generally, seismic noise may be
broken down into two distinct categories: coherent noise and random noise. Coherent noise
has apparent kinematic characteristics and certain regularity. In contrast, random noise has
strong randomness, and its existence is an important factor affecting the signal-to-noise
ratio (SNR) of seismic data. To suppress the noise, scholars have proposed various denois-
ing methods, such as F-x deconvolution [1,2], empirical modal decomposition (EMD) [3,4],
Time-frequency peak filtering method [5], median filtering method [6], and so on. De-
noising seismic data in virtue of the f-x approach is hindered by the fact that it presumes
the signal to be linear and stationary, which is at odds with the nonstationary nature of
seismic records; in contrast, EMD captures the nonstationary nature of the signal since
it is data-driven, but mode mixing can cause the time-frequency distribution to be in-
correct. Owing to the nonlinearity of the signal, the frequency peak filtering based on
time-frequency analysis entails a loss of amplitude when denoising; the median filtering
method is presented as a simple method of removing noise from a nonstationary signal,
raising distortions in the signal shape related to the filter length. Subsequently, the sparse
transform emerged as a method that can distinguish between noise and valid signals and
has been extensively investigated in seismic random noise suppression. With the sparse
transform-based denoising method, it is assumed that the seismic data are sparse in some
transform domains, after transforming the seismic data to the sparse transform domain,
thresholding is applied to the coefficients, and then the processed coefficients are inverse-
transformed back to the original domain. Classic sparse transforms, including Fourier
transform [7,8] and wavelet transform [9,10], are commonly used as sensitive and effective
methods. Curvelet [11], Contourlet [12], and Shearlet [13] transforms were later advanced
to compensate for the wavelet transform’s lack of directionality and anisotropy. However,
none of the aforementioned methods are data-driven and swayed by the characteristics
of their own sparse transformation bases; furthermore, despite their increased speed, all
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methods still require estimating the noise level and choosing the filtering threshold. To
eliminate these drawbacks and better represent the sparsity of seismic data, dictionary
learning [14,15] started to play a role in seismic data denoising. Although dictionary learn-
ing eliminates the above-mentioned drawbacks to some extent, some of the overall data are
missed when learning is performed using a limited number of random patches.

The aforementioned techniques for suppressing noise in seismic data have their pros
and cons, so how to improve the SNR of noisy data with a better approach is always a
concern. In computing [16], medicine [17], and image processing [18], the machine learning
method has emerged as a leading research path since the turn of the 21st century, in tandem
with the advancement of high-performance computing capabilities. Under this influence,
the neural network has been introduced to seismic data processing and has obtained
favorable results.

Generative adversarial networks (GANs) [19], Resnet [20], and U-Net [21] are com-
monly used networks. A GAN employs a method in which generators and discriminators
contest each other, with generators generating data to cheat discriminators, and discrimina-
tors differing between generated and labeled data allowing generators to produce more
compliant data; however, subject to pattern collapse, GAN networks may struggle to de-
liver the expected data. Resnet, DnCNN, and U-net all belong to convolutional neural
networks (CNNs). The CNN-based noise suppression method for seismic data involves
recovering the effective signal by extracting features from the dataset. Compared with
traditional denoising methods, the above noise-suppression approaches avoid threshold
selection and defects of the methods themselves, achieving better denoising results. Still,
with the increase in noise level, restricted by their structures, neural networks are left with
limited denoising performances. Other authors have offered some potential answers to this
difficult problem. As an illustration, the seismic data denoising method combining U-net
and STFT has been highly successful [22,23]. However, even a simplified U-net has a much
larger number of parameters than a Resnet with fewer residual blocks [24]. This may be a
hindrance to the practical application of neural nets in seismic data denoising. Therefore,
as a simpler and more stable denoising structure, Resnet is adopted. To further enhance
neural network noise-reduction capabilities, inspired by the work of other scholars, this
paper proposes a seismic signal denoising method combining wavelet transform and a
neural network (DWT-Resnet). Utilizing the fact that a valid signal differs from noise after
the wavelet transform, the transformed signal serves as the input of the neural network, re-
moving noise from the signal with a clean signal as the labeled data. Experiments show that
the method proposed in this paper achieves superior performance in denoising compared
to the method using neural networks alone.

The main contributions of this study consist of:

• Proposing a denoising method for seismic data based on wavelet transform and
residual neural network.

• Analyzing the performance of residual neural networks for noisy removal under
different decomposition levels of different wavelet bases

• An analysis of the number of layers of the residual neural network on the noise re-
moval performance in the wavelet transform-based neural network denoising method
is presented.

The rest of the paper is organized as follows: Section 2 provides a detailed description
of the method, evaluation criteria, and model. Experimental results of our approach on sim-
ulated seismic data versus real seismic data are presented and analyzed in Sections 3 and 4.
Finally, Section 5 presents the conclusion, discusses this paper, and provides a discussion
of future directions.

2. Methods and Evaluation Index
2.1. DWT-Resnet Denoising Principle

Figure 1 shows the network structure of DWT-Resnet. The noise-bearing seismic
data were decomposed using 1D wavelets, ranking the decomposed high-frequency and
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low-frequency coefficients in order to form a dataset conforming to the 1D Resnet input,
and then the clean seismic data were taken as the training labels of the Resnet, which
were trained for denoising. The trained network was applied to the test set using the
same wavelet-based transform and decomposition levels so that the denoising results of
noise-bearing seismic data were directly obtained.
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Figure 1. The network structure of DWT-Resnet.

The mathematical principle of the DWT-Resnet method is described next.
As a transform domain analysis method similar to Fourier transform, wavelet trans-

form separates the effective signal from the noise by doing the inner product of the basis
function and signal. For a certain given wavelet Φ(x), the wavelet basis function is:

Φa,b(x) =
1√
a

Φ(
x− b

a
) (1)

where a is the scale parameter, b is the time window parameter, a, b ∈ R+. That is, the
wavelet basis function Φa,b(x) is the shift and scale transformation of the initial wavelet
function Φ(x). Therefore, for the signal f (x), its wavelet transform equation is:

WT(a, b) =
∫ +∞

−∞
f (x)Φ(

x− b
a

)dx (2)

where Φa,b(x) is the complex conjugate of the signal Φa,b(x).
The seismic data containing noise y, can be regarded as a superposition of clean data

and random noise, i.e.,
y = z + v (3)

By taking the seismic data containing noise through the wavelet transform as the
input of the neural network, the clean data z are predicted by building a mapping of
R(DWT(y); P), i.e.,

R(DWT(y); P) ≈ z (4)

where P = {W, B} is the parameter of the neural network and DWT(y) is the result of
the noise-containing data after the wavelet transform. The loss function of the neural
network is:

l(P) =
Q

∑
k=1
‖R(DWT(yk); P)− zk‖2

F (5)

where DWT(y) indicates the wavelet domain noise data yk acquired by using the one-
dimensional (1D) wavelet transform, zk represents the clean data obtained by feeding yk
into the neural network and training, Q is the batch size. Normally, the smaller the l(P),
the better the network optimization, and the higher the denoising capability. Since different



Appl. Sci. 2023, 13, 655 4 of 15

wavelet bases with different decomposition levels and different layers of Resnet have different
effects on the DWT-Resnet method, these factors will be explored in Sections 3 and 4.

2.2. Denoising Performance Evaluation Index

SNR is a popular metric for gauging the effectiveness of seismic data processing. In
this paper, the signal-to-noise ratio is applied to evaluate the noise rejection ability of
DWT-Resnet. The equation is as follows:

SNR = 10 log10

{
‖z‖2

F

‖z− z̃‖2
F

}
(6)

where z is the original seismic data used as labels and z̃ is the denoised seismic data.

2.3. Training Model and Parameter Setting

Since this paper deals with 1D seismic data, considering the amount of data and the
performance of the machine itself, Resnet18 is the chosen network, based on Resnet18,
changing the convolutional layer, pooling layer, and batchnormal to 1D, while keeping
the rest of the settings unchanged. As for the network parameter settings, according to
the amount of data to be processed, the batch size is set to 100 and the initial learning rate
range is [10−6,9× 10−6]. During the training process, the learning rate decreases to 90% of
the original rate every 10 epochs.

The experiments in this paper were run on a machine equipped with an Intel(R)
Xeon(R) CPU E5-2678 v3 @ 2.50 GHz and an NVIDIA GeForce RTX 2080 Ti.

3. Synthetic Seismic Data Processing Results

We first used synthetic seismic data to test the denoising performance of the proposed method.
For the original simulated data, we added different levels of noise to the data to test

the DWT-Resnet18 performance, forming SNRs from low to high of −7.512 dB, −5.467 dB,
−2.756 dB, 4.074 dB, and 18.074 dB, respectively. The original data consisted of 8100 seismic
traces, with 512 sample points per seismic trace and a 0.001 s sampling period. Therefore, for
the obtained noisy data and original simulated data, the corresponding first 80% of the data
were extracted, respectively, with the mirror flip and up–down flip for data enhancement,
are made into the training data, and the remaining 20% of the data 10% as the validation
set 10% as the test set.

Five commonly used wavelet bases haar, db, sym, coif, bior, rbio, were selected to
verify the noise-reducing performance of DWT-Resnet with different wavelet bases and
different numbers of decomposition levels. The related outcomes of the trials were listed in
Table 1. The red-marked data in the table represent the best denoising outcomes, while the
blue-marked data represent the second-best denoising results. As can be seen in Table 1,
except for the rbio wavelet, the best denoising results were achieved in decomposing levels
2 and 3 when processing seismic data with different SNRs. The rbio wavelet offers the best
denoising impact of all wavelets when processing seismic data with an SNR of 18,074 dB,
but only when the wavelet’s decomposition level is 5. There is a non-significant difference
between the best denoising result and the second-best denoising result in the denoised
seismic data, with a difference of 0.116 dB for decomposition level 3 and 0.108 dB for
decomposition level 4. Overall, the optimal denoising results differ from the suboptimal
denoising results when dealing with high SNR seismic data, while the optimal denoising
results are similar to the suboptimal denoising results when dealing with low SNR seismic
data. Therefore, considering this situation, it can be said that 2- and 3-level decomposition
denoising can be preferred when different wavelet basis functions are used to denoise this
synthetic seismic data.
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Table 1. DWT-Resnet18 denoising results for seismic data with different noise levels, using different
wavelet basis functions, and at different wavelet decomposition levels.

Input SNR(dB) 18.074

Wavelet decomposition level
Wavelet name haar db5 sym4 coif3 bior1.5 rbio3.1

Level 1 output SNR(dB) 26.390 26.761 26.836 27.184 26.734 27.151
Level 2 output SNR(dB) 27.679 28.551 28.608 28.229 27.791 28.418
Level 3 output SNR(dB) 26.828 26.971 27.004 26.196 26.794 28.875
Level 4 output SNR(dB) 26.218 25.899 26.236 26.558 26.622 28.991
Level 5 output SNR(dB) 26.426 26.314 26.371 26.496 26.698 28.983

Input SNR(dB) 4.074

Wavelet decomposition level
Wavelet name haar db8 sym7 coif4 bior6.8 rbio3.1

Level 1 output SNR(dB) 19.365 19.105 18.923 19.582 19.161 19.230
Level 2 output SNR(dB) 20.494 20.897 20.700 20.684 20.575 21.337
Level 3 output SNR(dB) 20.279 21.491 21.213 21.363 21.621 21.466
Level 4 output SNR(dB) 19.997 20.965 21.060 20.940 20.686 21.345
Level 5 output SNR(dB) 19.875 21.121 20.547 20.806 20.619 21.298

Input SNR(dB) −2.756

Wavelet decomposition level
Wavelet name haar db4 sym7 coif2 bior2.6 rbio6.8

Level 1 output SNR(dB) 15.734 15.572 15.712 15.448 15.618 15.795
Level 2 output SNR(dB) 17.339 17.652 17.416 17.542 17.473 17.588
Level 3 output SNR(dB) 17.086 17.899 17.882 17.943 17.751 18.035
Level 4 output SNR(dB) 15.517 16.024 16.392 16.187 16.047 16.280
Level 5 output SNR(dB) 15.221 15.920 15.998 15.826 15.704 15.799

Input SNR(dB) −5.467

Wavelet decomposition level
Wavelet name haar db7 sym7 coif3 bior1.5 rbio4.4

Level 1 output SNR(dB) 13.946 13.861 13.923 13.971 14.078 14.051
Level 2 output SNR(dB) 15.316 15.569 15.400 15.579 15.401 15.530
Level 3 output SNR(dB) 15.114 16.059 16.131 15.804 15.781 15.941
Level 4 output SNR(dB) 13.095 13.624 13.589 13.820 13.573 13.764
Level 5 output SNR(dB) 13.033 13.704 13.018 13.366 12.847 13.052

Input SNR(dB) −7.512

Wavelet decomposition level
Wavelet name haar db5 sym8 coif5 bior6.8 rbio4.4

Level 1 output SNR(dB) 13.113 12.821 12.972 13.043 13.104 12.990
Level 2 output SNR(dB) 13.743 13.903 13.943 14.014 14.015 14.037
Level 3 output SNR(dB) 13.444 14.321 14.296 14.233 14.338 14.264
Level 4 output SNR(dB) 11.240 11.896 11.792 11.756 11.424 11.995
Level 5 output SNR(dB) 11.137 11.089 10.936 11.183 10.709 11.200

Figure 2 displays the ideal denoising results of each wavelet basis with the input of
different SNRs seismic data obtained using DWT-Resnet18 denoising with multiple wavelet
bases for different SNRs seismic data, providing deeper insight into the outcomes obtained
by each wavelet. It can be seen that the denoising effects of different wavelet bases vary
widely when processing high SNR seismic data, but the denoising effect of haar wavelet
and bior wavelet is especially different from the other three. As the SNR decreases, the
denoising results of haar wavelet and other wavelets gradually decrease from 1.312 dB to
0.595 dB, while the denoising results of other wavelets tend to overlap, i.e., the denoising
effects of different wavelets will tend to be the same as the noise is further enhanced.
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Figure 2. Trend of the best denoising results of DWT−Resnet18 with varying SNRs of noisy seismic
data under different wavelet basis functions.

Previous experiments were conducted under Resnet18, but as to whether Resnet18
can achieve optimal denoising results is yet to experimented with. Therefore, taking the
seismic data with the SNR of 4.074 dB as an example, we verified the denoising effect of
the Resnet network under different layers by increasing or decreasing the number of layers
of Resnet18 with a 3-level wavelet decomposition using sym7 (Figure 3).
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Figure 3. Denoising results of seismic data with SNR of 4.074 dB for DWT−Resnet18 networks with
different numbers of layers for a fixed wavelet type and wavelet decomposition levels.

One convolutional layer and four layers of two convolutional residual blocks make
up the Resnet18 architecture shown in Figure 1. In this thesis, the increase or decrease of
the number of layers in the Resnet18 network is concentrated on the layers with residual
blocks. Resnet14 means removing any layer of Resnet18. When the number of Resnet layers
is 14, no matter which layer is removed, the denoising effect will be worse, especially the
removal of layer4, which leads to the worst denoising result, only 18.483 dB; while layer16
is the removal of one of the residual blocks in any layer when the number of Resnet layers
is 16, the removal of one residual block in layer4 has the greatest effect on the network
denoising. Inspired by the above experiments, the subsequent increase in the number of
network layers is either by adding a new layer or by increasing the number of residual
blocks in the layer. Following layer4, two further layers, layers 5 and 6, are brought in,
where layer5 includes 2 residual blocks, each with 1024 channels, and so on layer6 is a
layer composed of 2 residual blocks containing 2048 channels. Then the 20-layer Resnet
includes two cases, one is to increase the number of residual blocks of layer4, and the other
is to add a layer5 containing 1 residual block, the SNR of the latter is 22.540 dB, which
is 1.246 dB higher than the former, making the neural network denoising effect has been
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greatly improved. Inspired by the above experimental results, better results were obtained
when the number of layers of the Resnet network was increased to 26, i.e., layer5 containing
4 residual blocks linked after layer4. Although another combination of the 26-layer network
is to link layer5 and layer6 in sequence after layer4, when its denoising effect is the best, the
training time also increases due to the increase of network layers, and it takes 8251.736 s to
train the 26-layer network. However, in terms of SNR, the 26-layer network with layer6
is only 0.280 dB better than the 26-layer network with only layer5, this is obviously a less
suitable denoising solution, so the layer5 with 4 residual blocks is used as the optimal
denoising network.

Next, with the results in Table 1, the denoising performance of DWT-Resnet26 was
tested at different SNRs, choosing different wavelet bases, using the number of decompo-
sition levels for the best denoising results in DWT-Resnet18. Following denoising results
were obtained through experiments (Table 2, Figure 4).

Table 2. DWT−Resnet26 denoising results obtained by using different wavelet bases for seismic data
with different SNRs.

Input SNR(dB) 18.074

Wavelet name haar db5 sym4 coif3 bior1.5 rbio3.1

output SNR(dB) 27.657 29.694 29.574 29.443 28.1281 28.256

Input SNR(dB) 4.074

Wavelet name haar db8 sym7 coif4 bior6.8 rbio3.1

output SNR(dB) 22.251 23.473 23.202 23.465 23.304 21.331

Input SNR(dB) −2.756

Wavelet name haar db4 sym7 coif2 bior2.6 rbio6.8

output SNR(dB) 17.423 18.035 18.329 18.606 18.129 18.617

Input SNR(dB) −5.467

Wavelet name haar db7 sym7 coif3 bior1.5 rbio4.4

output SNR(dB) 15.565 16.040 15.938 15.944 15.778 16.247

Input SNR(dB) −7.512

Wavelet name haar db5 sym8 coif5 bior6.8 rbio4.4

output SNR(dB) 13.336 14.640 14.224 14.336 14.551 14.433
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From Table 2 and Figure 4, it is observed that when the number of layers of the
residual neural network is increased to 26, the denoising differences are more obvious
when different wavelet bases are processed with seismic data at high input SNR; haar
performance results have been poor, and rbio does not improve its denoising performance
significantly at low SNR, with the increase of noise level, its denoising effect is similar to
the performance of several wavelets except haar. Db and coif remain relatively stable.

Comparing the best denoising results of Resnet18 and Resnet26, DWT-Resnet18 and
DWT-Resnet26 (Figure 5), it is clear that the residual neural network denoising method
combined with wavelets performs better. DWT-Resnet26 achieves the best performance
at higher SNR, while DWT-Resnet18 and DWT-Resnet26 obtain similar denoising results
when the SNR is low. In contrast, the denoising effect of Resnet26 is conversely inferior
to that of Resnet18 when processing data without wavelet transform. A possible cause of
the conjecture is the deepening of the network model [25], which causes overfitting, but
wavelet-transformed data are not affected by overfitting.
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with different input SNRs.

To visualize the denoising effect of each method, Figure 6 shows the comparison of
single-channel clean seismic data and the corresponding single-channel data after denoising
with Resnet18, DWT-Resnet18, Resnet26, and DWT-Resnet26 at different SNRs.

Results point out that although DWT-Resnet improves the denoising ability of Resnet,
even DWT-Resnet is unable to adequately match the original seismic data when the SNRs
of the input seismic data decline.
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Figure 6. (a–e) illustrates the single−channel data compared with the clean single−channel data
after denoising with four denoising methods at SNR ranked from high to low.

4. Real Seismic Data Processing Results

Real data consists of 14,735 seismic traces, with 256 sample points per seismic trace and
a 0.002 s sampling period. The process of making the training set, test set, and validation
set is the same as making the synthetic seismic dataset. For verifying the feasibility of
the method, the results of denoising with different wavelet bases at different numbers
of decomposition layers with different input SNRs were measured. The experiments
demonstrate that in most cases, after the wavelet decomposition at level 2 or 3, optimum
denoising results can be obtained by residual neural network processing. When the input
SNR is −5.203 dB and −2.273 dB, the optimal denoising result mostly appears in the
wavelet decomposition of level 1 and 2. However, in case the optimal denoising result
appears in the wavelet decomposition of level 1, it is not much different from the result of
the level 2 or 3 wavelet decomposition, which is within 0.5 dB.

Notice that unlike the simulated data, where the optimal wavelet for each wavelet
basis is essentially fixed even at different noise levels, this property of the real data is related
to the data itself, where the simulated data have zero data except where seismic waves
are not present, while the real data still have non-zero irrelevant data where there are no
seismic waveforms, even though they are not visible to the naked eye.

Figure 7 plots the trend of the denoising capability of Table 3. Except for the substantial
discrepancies at high SNRs for haar, db, sym, coif, and bior wavelets, it is evident that the
difference between the Resnet18 denoising outcomes under various wavelets reduces as
the noise level increases. The overall denoising effect under rbio is stable, and as the input
SNR decreases, its denoising effect gradually outperforms the denoising effect of Resnet18
under other wavelet bases.
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To verify the impact of network depth on the denoising effect in the DWT-Resnet
denoising method with real seismic data. To verify the effect of the network depth of
DWT-Resnet on the real seismic data denoising results. Taking the real seismic data with a
SNR of−7.1157 dB as an example, the effect of the number of Resnet layers on the denoising
results in the case of a 2-level decomposition using haar is as follows (Figure 8). The image
shows that the DWT-Resnet26 still has a remarkable denoising capability.
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Figure 8. Denoising results of real seismic data with SNR of −7.116 dB for DWT-Resnet networks
with a different number of layers for a fixed number of wavelet bases and wavelet decomposition
levels.

When increasing the number of layers of the residual neural network to 26, the
denoising difference is obvious when different types of wavelets process the real seismic
data with high input SNR (Figure 9). Except for the db and haar wavelets, the denoising
ability of other wavelets fluctuates somewhat when processing real seismic data, db, and
haar behave more consistently when processing seismic data with different SNR compared
to other wavelets.
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Table 3. DWT-Resnet18 denoising results for real seismic data with different noise levels, using
different wavelet basis functions, and at different wavelet decomposition levels.

Input SNR(dB) 18.148

Wavelet decomposition level
Wavelet name haar db1 sym7 coif2 bior1.1 rbio1.1

Level 1 output SNR(dB) 13.364 17.096 13.581 12.616 11.950 13.781
Level 2 output SNR(dB) 17.519 17.114 15.831 16.470 17.800 17.471
Level 3 output SNR(dB) 17.461 17.365 15.099 15.414 17.496 17.543
Level 4 output SNR(dB) 16.941 16.988 16.492 16.117 17.105 17.103
Level 5 output SNR(dB) 17.096 16.952 15.616 15.806 17.342 16.849

Input SNR(dB) 3.992

Wavelet decomposition level
Wavelet name haar db1 sym5 coif1 bior1.1 rbio1.1

Level 1 output SNR(dB) 9.373 9.241 9.75 10.479 9.699 9.51
Level 2 output SNR(dB) 12.857 12.957 12.406 12.092 12.662 12.867
Level 3 output SNR(dB) 12.854 12.927 12.037 11.26 12.876 12.858
Level 4 output SNR(dB) 12.717 12.746 12.118 11.312 12.792 12.72
Level 5 output SNR(dB) 12.769 12.751 12.094 11.550 12.768 12.845

Input SNR(dB) −2.273

Wavelet decomposition level
Wavelet name haar db1 sym5 coif1 bio1.1 rbio3.1

Level 1 output SNR(dB) 9.575 9.573 9.308 8.027 9.630 8.038
Level 2 output SNR(dB) 8.592 8.977 9.812 9.462 8.942 10.076
Level 3 output SNR(dB) 9.504 9.373 8.772 8.648 9.424 9.401
Level 4 output SNR(dB) 9.373 9.307 8.675 8.801 9.091 9.490
Level 5 output SNR(dB) 9.204 9.207 8.776 8.078 9.251 9.370

Input SNR(dB) −5.203

Wavelet decomposition level
Wavelet name haar db1 sym7 coif2 bior1.1 rbio3.1

Level 1 output SNR(dB) 8.581 8.520 6.750 8.717 8.440 7.448
Level 2 output SNR(dB) 8.094 8.140 8.160 8.483 8.073 8.722
Level 3 output SNR(dB) 8.056 8.015 7.807 7.703 8.048 8.402
Level 4 output SNR(dB) 7.974 7.900 7.764 7.620 7.872 8.361
Level 5 output SNR(dB) 7.874 7.912 7.691 8.035 7.943 8.367

Input SNR(dB) −7.116

Wavelet decomposition level
Wavelet name haar db1 sym5 coif2 bior1.1 rbio3.1

Level 1 output SNR(dB) 5.469 5.603 5.270 6.081 5.670 7.573
Level 2 output SNR(dB) 6.444 6.417 6.516 6.547 6.304 6.791
Level 3 output SNR(dB) 5.920 6.015 5.004 5.410 6.032 6.05
Level 4 output SNR(dB) 5.793 5.836 4.884 5.067 5.75 5.926
Level 5 output SNR(dB) 5.726 5.780 4.419 4.503 5.821 5.877

Figure 10 shows the comparison of the denoising results under the optimal perfor-
mance of Resnet18, DWT-Resnet18, and DWT-Resnet26. From the comparison, it is clear
that the DWT-Resnet method performs well, and DWT-Resnet18 performs best at higher
SNRs, while the DWT-Resnet26 performs optimally when the SNR is low.

Figure 11 shows the comparison of single-channel seismic data with clean seismic data
after denoising by four denoising methods at different noise levels. As the noise level rises,
even the denoised data using DWT-Resnet26 is gradually failing to fit the original seismic
data well. Therefore, for high noise level data, further improvement of the denoising
performance of this method is necessary.
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5. Conclusions and Discussion

In this paper, combining traditional methods and deep learning methods, we propose
an improved deep learning denoising method for random noise denoising of seismic data,
that is DWT-Resnet. It is reflected in (1) the preliminary processing of noisy seismic data
by utilizing the ability of wavelet transform separating the effective signals from noise
in traditional denoising methods, and then feeding the processed signal into the residual
neural network. With this step, the capability of network denoising is improved. (2) By
varying the number of layers of the neural network, a deep network applied to the wavelet
domain noisy data is proposed, further improving the denoising effect of the network.

The comparison of the denoising results of the same denoising method for seismic
data with different SNRs shows that excellent denoising results can be obtained for high
SNR seismic data. As for DWT-Resnet, it can separate the effective signal from the noise
by wavelet decomposition, which initially improves the quality of the data entering the
network, and therefore improves the denoising ability of the neural network. Yet, as the
noise contaminates the data, this ability of wavelets to separate the effective signal from
the noise gradually diminishes, making DWT-Resnet subject to this limitation of wavelets.
Furthermore, with deeper neural networks, the training time of DWT-Resnet keeps growing,
therefore, it is a direction requiring further research to train the network quickly and well.
In this paper, an attempt is made to find a wavelet basis and wavelet decomposition levels
that can achieve better results for different data at different SNR levels through experiments.
However, synthetic seismic data and real seismic data show that there is no generalized
rule that can be obtained on which wavelet to choose for different data, at different neural
network depths, to obtain the best denoising effect for noisy seismic data. Iterative wavelet
base selection trials may remain necessary for applications of denoising other seismic
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data, which somewhat dissipates the advantage of just using a neural network approach
to denoising, i.e., not requiring a more manual selection of parameters. Moreover, with
high noise levels, although the DWT-Resnet26 denoising effect is improved compared to
Resnet18, the improvement is limited. Therefore, how to develop a new neural network
structure to more effectively combine the advantages of wavelet transform and the neural
network with a fixed number of wavelet-based transforms and decomposition levels to
obtain a more general DWT-Resnet method with better denoising effects will be the focus
of the next research work.
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