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Abstract: Most existing deep image clustering methods use only class-level representations for
clustering. However, the class-level representation alone is not sufficient to describe the differences
between images belonging to the same cluster. This may lead to high intra-class representation
differences, which will harm the clustering performance. To address this problem, this paper proposes
a clustering model named Deep Image Clustering based on Label Similarity and Maximizing Mutual
Information Across Views (DCSM). DCSM consists of a backbone network, class-level and instance-
level mapping block. The class-level mapping block learns discriminative class-level features by
selecting similar (dissimilar) pairs of samples. The proposed extended mutual information is to
maximize the mutual information between features extracted from views that were obtained by using
data augmentation on the same image and as a constraint on the instance-level mapping block. This
forces the instance-level mapping block to capture high-level features that affect multiple views of
the same image, thus reducing intra-class differences. Four representative datasets are selected for
our experiments, and the results show that the proposed model is superior to the current advanced
image clustering models.

Keywords: image clustering; extended mutual information; unsupervised learning

1. Introduction

Clustering is one of the basic tasks in machine learning, computer vision and other
fields. It aims to assign unlabeled samples to different clusters so that samples in the
same cluster are similar to each other while samples in different clusters are as dissimilar
as possible [1]. With the development of deep learning, the need for large-scale labeled
datasets is a major obstacle to the application of deep learning in many scenarios. However,
manually labeling these datasets is costly and time-consuming. To make better use of
unlabeled data, unsupervised clustering has gradually attracted widespread attention.
The main research directions of clustering at this stage can be divided into image, text [2],
multi-view clustering [3,4] and so on. Among these data, the simplest and most intuitive
feeling is image data. Traditional clustering methods, such as k-means [5], Gaussian mix-
ture model [6], density peak clustering [7] and other methods are limited when they meet
high-dimensional data, such as images. The reason is the failure of their similarity measures.
With the help of fuzzy set theory and its extensions, such as intuitionistic fuzzy sets [8] and
others, many novel similarity measures have emerged and made some progress compared
to conventional similarity measures. However, a more intuitive solution attracts attention.
These methods [9,10] map high-dimensional data into a low-dimensional representation
space and perform clustering in the low-dimensional space. These low-dimensional rep-
resentations are not informative enough, resulting in no significant improvement in the
clustering performance. Therefore, image clustering is still a challenging task.

Deep learning has been gradually combined with computer vision. Due to the pow-
erful representation extraction ability of deep neural networks, it has achieved success
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in the fields of classification [11,12], object recognition [13–15] and image retrieval [16].
Many scholars turn their attention to deep clustering [17]. Deep clustering refers to the
process of automatically learning the data representations and guiding clustering through
neural networks. Widely used network architecture includes Convolutional Neural Net-
works [12,18], Autoencoders [19] and Variational Autoencoders [20]. Following the success
of Generative Adversarial Networks [21], many works [22–25] introduced the idea of GANs
into representation learning and achieved good results. Combining neural networks with
traditional clustering algorithms is an effective solution, which consists of two stages.
In the first stage, the neural network captures the low-dimensional representations of the
samples. In the second stage, the learned low-dimensional representations are served as
the input for traditional clustering methods. Some progress has been made compared to
traditional methods.

Recently, many unsupervised deep learning methods have been proposed to learn
clustering. By introducing data augmentation, most of the latest methods look into deep
clustering from the perspective that the original image and its transformation should
share similar semantic clustering assignments [26–28]. These methods have achieved
some progress on complex natural image datasets. However, the above methods have
some limitations: (1) Since generative networks based on autoencoders require pixel-level
reconstruction. It is easy to capture redundant image information, such as background,
color and other trivial information; (2) These methods only learn class-level representation.
However, the instance-level representation could be quite different even if they are assigned
to the same cluster since the softmax function is only sensitive to the maximum value.
In other words, class-level representation alone is not enough to describe the differences
between images belonging to the same cluster.

In order to solve the above limitations, this paper proposes a new image clustering
model, DCSM. Based on the class-level mapping block (C-block), DCSM adds an instance-
level mapping block (IR-block). The two blocks share the same backbone network, and the
backbone network acts as an information transmission channel between the two blocks.
First, the C-block learns discriminative class-level representation by selecting pairwise
similar (dissimilar) samples. Second, errors will occur when constructing similar labels
of sample pairs, so select high-confidence cluster-standard samples to correct network
parameters because samples with high-confidence predictions are often already assigned to
the proper cluster. Third, the proposed extended MI maximizes the MI between the global-
local and local-local features of multiple views, forcing the IR block to capture the essential
information. This can narrow the intra-class diversities in the representation feature space.
Fourth, by introducing the theory of entropy maximization, the probability distribution of
clusters is pushed closer to a uniform distribution to solve the trivial solution problem.

In summary, the major contributions of this paper are:

1. An end-to-end clustering network model is proposed to jointly learn representations and
cluster assignments while preventing the network from falling into trivial solutions.

2. An extended MI method is proposed. It calculates the MI between features from mul-
tiple views of the same image, forcing the instance-level feature to capture invariant
essential information and thus reducing the intra-class diversities in the representation
feature space.

The rest of this paper is organized as follows. In Section 2, some related works on
deep clustering and mutual information are outlined. Section 3 introduces the proposed
method. Section 4 discusses the experimental results of DCSM, and Section 5 concludes
our proposed method.

2. Related Work
2.1. Deep Clustering

In various deep architectures, one simple yet effective neural network is the au-
toencoder (AE). Therefore, many methods applied AE to extract features for clustering.
For example, Yang et al. [29] applied AE to learn a K-means-friendly embedding representa-
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tion. Fard et al. [30] proposed a Deep K-means approach using AE. Lv et al. [31] proposed
a pseudo-label-based deep subspace clustering method. Diallo et al. [32] employed con-
tractive autoencoder and self-augmentation techniques to develop deep clustering models
suitable for document datasets. Ren et al. [33] proposed a deep density clustering frame-
work by combining density clustering and AE. Since the convolutional neural network has
demonstrated promising performance in image processing tasks, CNN has also been used
in deep clustering. Yang et al. [34] used an RNN to implement aggregated clustering on
the representations output by CNN and trained both networks in an end-to-end fashion.
Sun et al. [35] combined active learning and deep clustering models to manually annotate
uncertain and informative sample pairs and used these manually annotated samples to
guide the training of CNN.

Different from the above methods using AE or CNN, another unsupervised deep
architecture is generative models, such as GAN and VAE. Mukherjee et al. [24] designed
the ClusterGAN-2 model to perform clustering in the latent space by optimizing GANs and
cluster-specific losses. Wang et al. [25] utilized generated and raw data to train a feature
extractor to learn efficient representations. Ntelemis et al. [36] introduced the Sobel opera-
tion before the discriminator to enhance the separability of learning features. Xu et al. [1]
proposed a variational encoder deep clustering method based on MI maximization and
derived a new generalization evidence lower bound.

It is also a good idea to directly design a specific clustering loss according to the desired
clustering assumption. Xie et al. [37] use only one encoder when clustering, updating the
encoder part of the AE by minimizing the KL divergence loss. Chang et al. [26] transformed
the clustering problem into a binary discrimination problem by selecting pairs of similar
and dissimilar samples to train the network. Wu et al. [27] mine and exploit associations
between unlabeled data from three aspects to study category information, and introduce MI
to further help learn more discriminative features. Xu et al. [28] learned cluster assignments
by maximizing the mutual information of data to probabilistic features. Gansbeke et al. [38]
generated pseudo-labels by mining nearest neighbors in the latent embedding space.

2.2. Mutual Information

Information theory has become an important tool for training deep neural networks.
Mutual information quantifies the amount of information obtained by observing one
random variable about another random variable. MINE [39] is an MI estimation technique
for continuous variables that is scalable in the sample size, trained via backpropagation
and is strongly consistent. DIM [40] adopts a simple alternative based on Jensen–Shannon
divergence, which is an unbiased estimator that is insensitive to the number of negative
samples. More importantly, DIM can also use the local structure of the input to improve
the learned embedding representation ability and improve the quality of downstream
tasks. RIM [41] introduces a regularization term that penalizes conditional models with
complex decision boundaries to produce a reasonable clustering solution. Inspired by RIM,
IMSAT [42] utilizes data augmentation to impose invariance on discrete representations
by maximizing the mutual information between the data and its representations. IIC [28]
constrains the output variables to be discrete variables and performs a simple and accurate
mutual information calculation for the discrete variables.

3. Deep Image Clustering under Similarity and Mutual Information

The purpose of this paper is to cluster a set of N images X = {xi}N
i=1 into K classes

by training a neural network without using any annotations. The neural network can be
conceptually divided into two parts: a feature module that maps images to instance-level
representations, zi = fr(xi; wr), and a clustering module that maps images to class-level rep-
resentations, li = fl

(
ri,j; wl

)
, where wr and wl represent the trainable parameters of IR-block

and C-block combined with the backbone network, respectively. This paper uses the output
of the C-block to measure the similarity between samples driving the separation between
clusters. The IR-block is constrained by the proposed extended mutual information, which
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captures the presence of a key object in the image to reduce the differences in intra-class
feature representations. In addition, two tasks are designed to ensure the accuracy and
stability of our model. They are fine-tuning the network using cluster-standard samples
and maximizing the entropy loss. In the following subsections, this paper introduces each
part in detail.

3.1. Clustering Module

The relationship of pairwise images is binary, i.e., similar or dissimilar. Based on such
observations, the clustering task can be smoothly recast into a binary pairwise classification
model [26]. It is natural to use the loss for the classification task instead of the clustering
objective function:

minLDT(wl) =
n

∑
i=1

n

∑
j=1

L(ri,j, g(xi, xj; wl)) (1)

where LDT(ri,j, g(xi, xj; wl)) represents the cross-entropy loss between the ground-truth sim-
ilarity ri,j and the estimated similarity g(xi, xj; wl), and wl indicates the learnable parameter
of the clustering module.

In Equation (1), the ground-truth similarity ri,j of samples xi and xj is unknown,
and this problem needs to be solved. Previous methods used a high threshold to select
pairwise similar (dissimilar) samples to assign ri,j, where ri,j = 1 indicates that samples xi
and xj belong to the same cluster and ri,j = 0 otherwise [26,27]. Due to the existence of the
threshold, the similarity relationship between pairwise samples does not satisfy transitivity,
i.e., ri,j = 1 = ri,k /⇒ rj,k = 1.

This can lead to unstable network training. Different from the existing methods, this
paper uses K-means as a flexible threshold selection strategy to construct ri,j:

ri,j =

{
1, ci = cj or i = j,
0, otherwise.

(2)

ri,j = 1 indicates that xi and xj belong to the same cluster c or the same sample, i = j,
and ri,j = 0 otherwise. When pairwise samples belong to the same cluster, their similarity
relationship must be transitive. The estimated similarity g(xi, xj; wl) can be formulated as:

g
(
xi, xj, wl

)
= fl(xi; wl) · fl(xj; wl) = li · lj

s.t.∀i||li||2 = 1, 0 ≤ lih ≤ 1, h = 1, . . . , k.
(3)

where fl is the clustering module, and the operator “·” represents the dot product between
two label features. If the optimal value of Equation (1) is attained, the learned label features
are k-diverse one-hot vectors ideally [26]. Images can be directly clustered based on the
learned class-level representations.

3.2. Fine-Tuning through Cluster-Standard Samples

Pseudo-similar labels ri,j are obtained in Section 3.1 to learn discriminative features.
However, errors in the construction of ri,j are inevitable. These false ri,j lead to predictions
for which the network is less certain. It has been observed in experiments that samples
with high-confidence predictions tend to be assigned to the proper cluster. It can be
regarded as cluster-standard samples to fine-tune the network’s errors caused by incorrect
ri,j. Cluster-standard samples are selected by setting a large threshold:

Wi =

{
1, pi j ≥ threshold,
0, otherwise.

(4)

If the largest element pi j in the label feature li is greater than the threshold, it can
be regarded as a cluster-standard sample, Wi = 1; otherwise, it is not, Wi = 0. Then,
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the clustering module can be fine-tuned in the backward pass by minimizing the following
cross-entropy loss:

LFT = −
N

∑
i=1

wi(si log(li) + (1− si) log(1− li) (5)

where si is the one-hot vector corresponding to label feature li.

3.3. Extended Mutual Information

The discriminative class-level features have been obtained in the above section. In this
section, by exploring the correlation between the features from multiple views of the same
image, e.g., original and transformed images, the essential information in the image is
learned, and the intra-class diversities in the instance-level representation feature space
are also reduced. Maximizing MI between the complete input and the encoder output
is not sufficient to learn useful representations [40]. The average MI between the global
representation and the local features of the input plays a stronger role in improving the
quality of representation than the global MI. Inspired by DIM, this paper only uses local MI
and considers that KL divergence has no upper bound theoretically, so it is replaced by JS
divergence (JSD) similar to f-gan [43]. The JSD version of MI is defined as:

MI( fmap, z) = max EJ [−sp(−T( fmap, Z))]− EM[sp(T( fmap, Z))] (6)

where fmap corresponds to the local features (feature map), Z corresponds to the global
feature (instance-level representation), sp is the softplus function and T is a discriminator
trained to distinguish whether fmap and Z are sampled from the joint distribution J or from
the marginal distribution M. In this paper, only fmap and Z belong to the same cluster and
follow J; otherwise, they follow M. A pair of samples that satisfy the joint distribution is
called a pair of positive samples; otherwise, a pair of negative samples.

In order to force the instance-level feature z to capture the essential information, our
model extends DIM by introducing data augmentation techniques. Let x and x̃ be the
original and transformed samples, respectively, {Ci,j(x)|i = 1, 2, . . . , h; j = 1, 2, . . . , w}
and {C̃i,j(x̃)|i = 1, 2, . . . , h; j = 1, 2, . . . , w} correspond to their feature map. The negative

samples of the feature map are all represented by the symbol C
′
i,j. By concatenating Ci,j

and z to get a larger feature map as the input of the discriminator, the estimation of the
global-local MI loss can be obtained by minimizing the following loss function:

LLMI(z̃, Ci,j)

= −max I(z̃, Ci,j) = min−(EJ [−sp(−T(z̃, Ci,j))]− EM[sp(T(z̃, C
′
i,j))])

(7)

LLMIT(z̃, C̃i,j)

= −max I(z̃, C̃i,j) = min−(EJ [−sp(−T(z̃, C̃i,j))]− EM[sp(T(z̃, C
′
i,j))])

(8)

Meanwhile, not only the global-local MI is calculated. The original images and the
augmented images’ intermediate layer features should also be related, and their MI should
be as large as possible. The estimation of local-local MI loss can be obtained by minimizing
the following loss function:

LLMIC(C̃i,j, Ci,j)

= −max I(C̃i,j, Ci,j) = min−(EJ [−sp(−T(C̃i,j, Ci,j))]− EM[sp(T(C̃i,j, C
′
i,j))])

(9)

By maximizing the MI between features extracted from multiple views with the same
information, it implies that the features need to capture high-level information with decisive
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influence, such as the existence of an object, so the extension of this paper is reasonable.
Since DIM selects negative samples randomly, it is unreasonable to minimize the MI of
pairwise samples when they belong to the same cluster. Therefore, in a similar way to
DCCM, the positive and negative pairs of the same sample are selected according to the
similarity of the sample pairs in this batch. Similar pairwise samples are regarded as
positive pairs; otherwise, they are negative pairs. Maximizing MI between positive pairs
promotes intra-class aggregation. Minimizing MI between negative pairs promotes inter-
class separation. Based on the above-mentioned analysis and exploration, the final loss
function is summarized as:

LMI = αLLMI + βLLMIT + δLLMIC (10)

where α, β and δ are constants to balance the contributions of different terms.

3.4. Maximize Entropy Loss

In deep clustering, it is easy to fall into a local optimal solution that assigns most
samples into a minority of clusters. Inspired by GATCluster [44], this problem can be
solved by introducing the technique of maximizing entropy, which can be formulated as:

LE = −H(q) =
K
∑

i=1
qi log(qi)

s.t. qk =
1
m

m
∑

i=1
lik, k = 1, . . . , K

(11)

where lik indicates the k-th element of li, qk represents the frequency of the k-th cluster and
H is entropy.

Then the overall objective function of DCSM can be formulated as:

L = εLDT + LFT + LMI + λLE (12)

where ε and λ are constants to balance the contributions of different terms. Figure 1 shows
the framework of the proposed DCSM model.

Figure 1. Model Overview. The original image and its transformed image are regarded as a pair
of inputs to learn class-level (C-block) and instance-level (IR-block) representations using a shared
deep neural network. The similarity matrix is generated from the class-level feature similarity
relationship of the transformed images, and the target matrix is generated using K-means in the
original image class-level feature space to guide the similarity matrix. Cluster standard samples are
selected according to the threshold to modify the network parameters. The discriminator network
estimates the mutual information of local-global and local-local representations, respectively.
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4. Experiments

In this section, the effectiveness of DCSM is demonstrated on four image datasets
through experiments. Furthermore, five ablation experiments are performed to system-
atically and comprehensively analyze the developed DCSM model. All experiments are
implemented on a PC machine installed in a 64-bit operating system with two Nvidia
GeForce GTX 1080 Ti GPUs with 8-GB video memory.

4.1. Datasets

This paper selects four representative image datasets for clustering, including CIFAR10,
MNIST, STL-10 and Imagenet10. As a common setting [29,35], for each dataset, the training
and test sets are jointly used in our experiments. For clarity, Table 1 reports the details of
each dataset, such as the number of categories, the number of samples and so on.

Table 1. Statistics of the Different Datasets.

Datasets Training Sets Test Sets Categories Image Size

CIFAR10 50,000 10,000 10 32 × 32 × 3
MNIST 60,000 10,000 10 28 × 28 × 1
STL-10 13,000 N/A 10 96 × 96 × 3

ImageNet-10 13,000 N/A 10 128 × 128 × 3

4.2. Evaluation Metrics

For a complete comparison, this paper employs three clustering metrics to evaluate the
clustering performance, i.e., Normalized Mutual Information (NMI), Adjusted Rand Index
(ARI) and clustering Accuracy (ACC). In addition, these metrics range in [0,1], and higher
scores indicate better clustering results.

4.3. Experimental Settings

The backbone network architecture used in our model is VGG, and ReLU activation
is used on all hidden layers. The reason why we use ReLU activation is that it overcomes
the vanishing gradient problem, allowing models to learn faster and perform better. Both
the class-level mapping block and the instance-level mapping block are fully connected
networks, and their output layer dimensions are set to 10 and 30, respectively. For the
local MI objective, the global representation is concatenated with the feature map at each
location. A 1 × 1 convolutional discriminator is then used to score the pair. The network
parameters are optimized using Adam [45], and the learning rate is set to 0.001. The batch
size of STL10, ImageNet-10, Cifar10 and MNIST is all 32. The number of training repetitions
for each batch of MNIST is 4, and the for rest of the datasets, it is 8. The small perturbations
used in the experiments include rotation, shift, color adjustment and so on. The setting of
the remaining three hyperparameters is given in Table 2.

Table 2. Parameter Settings of the Different Datasets.

Datasets α β δ

CIFAR10 0.1 0.5 0.2
MNIST 0.2 1 0.1
STL-10 0.1 1 0.1

ImageNet-10 0.3 1 0.3

4.4. Compared Methods

In the experiment, both traditional and deep learning-based methods are compared,
including K-means, SC, AE, DAE, GAN, DECNN, VAE, DEC [37], JULE [34], DAC [26],
DCCM [27], IIC [28], ICGAM [36] and EDCN [25]. DCSM-oc is a version of our model that
uses only class-level map blocks.
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4.5. Results and Analysis

In Table 3, the quantitative clustering results of the compared methods on four image
datasets are orderly reported. From Table 3, our DCSM method consistently achieves
superior performance on different datasets, which empirically signifies that DCSM is in
a position to cluster data effectively. From further analysis, several tendencies can be
observed in Table 3.

First, the performance of the clustering methods based on deep learning is generally
superior to the traditional methods (e.g., K-means, SC). It shows that representation learning
is more important than clustering techniques for unsupervised learning.

Second, the methods (e.g., DEC, DAC) of joint representation learning and cluster as-
signment outperform traditional methods and the representation-based clustering methods.
It indicates that clustering and representation learning can promote each other and achieve
better performance consequently.

Third, the performance of DCCM and IIC using the data augmentation technique
is better than other algorithms. It means that the introduction of the data augmentation
technique in unsupervised clustering can help the model to be optimized.

Besides of these common conclusions, our DCSM method outperforms methods that
only use class-level representation (e.g., DCSM-oc, DCCM). It means that the clustering
performance is related to both class-level representation and instance-level representation.

Figure 2 visualizes the confusion matrix on the MNIST and Imagenet10 datasets.
Figure 3 visualizes the class-level representations of the DCSM on the ImageNet10 datasets
using t-SNE at the different training stages.

Table 3. Clustering performance of different methods on four datasets. The best results are high-
lighted in bold.

MNIST CIFAR-10 STL-10 ImageNet-10

NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-means 0.501 0.572 0.365 0.087 0.229 0.049 0.125 0.192 0.061 0.119 0.241 0.057
SC 0.662 0.695 0.521 0.103 0.247 0.085 0.098 0.159 0.048 0.151 0.274 0.076
AE 0.725 0.812 0.613 0.239 0.314 0.169 0.250 0.303 0.161 0.210 0.317 0.152

DAE 0.756 0.831 0.647 0.251 0.297 0.163 0.224 0.302 0.152 0.206 0.304 0.138
GAN 0.763 0.736 0.827 0.265 0.315 0.176 0.210 0.298 0.139 0.225 0.346 0.157

DeCNN 0.757 0.817 0.669 0.240 0.282 0.174 0.227 0.299 0.162 0.186 0.313 0.142
VAE 0.876 0.945 0.849 0.245 0.291 0.167 0.200 0.282 0.146 0.193 0.334 0.168
DEC 0.771 0.843 0.741 0.257 0.301 0.161 0.276 0.359 0.186 0.282 0.381 0.203
JULE 0.913 0.964 0.927 0.192 0.272 0.138 0.182 0.277 0.164 0.175 0.300 0.138
DAC 0.935 0.977 0.948 0.396 0.522 0.306 0.366 0.470 0.257 0.394 0.527 0.302
IIC - 0.992 - - 0.617 - - 0.610 - - - -

DCCM 0.951 0.982 0.954 0.496 0.623 0.408 0.376 0.482 0.262 0.608 0.710 0.555
ICGAM - 0.990 - - 0.700 - - 0.587 - - - -
EDCN 0.962 0.985 - 0.603 0.544 - 0.357 0.482 - - - -

DCSM-oc 0.950 0.981 0.959 0.451 0.589 0.368 0.431 0.576 0.342 0.561 0.701 0.523
DCSM 0.967 0.994 0.973 0.505 0.636 0.413 0.483 0.625 0.410 0.623 0.769 0.581
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(a) (b)

Figure 2. Confusion matrixes of the cluster results. (a,b) represent the clustering results on MNIST
and Imagenet10 datasets, respectively.

(a) (b) (c)

Figure 3. Visualization of the class−level representations for different training stages of the proposed
DCSM on the Imagenet10 datasets. (a) Initial stage of DCSM, (b) Middle stage of DCSM and (c) Final
stage of DCSM.

4.6. Ablation Study

In this section, to further verify the performance of our model, five additional ablation
experiments are performed.

The influence of different strategies to construct ri,j. The ri,j constructed by the high
threshold in DCCM and constructed by the K-means in this paper are used to guide the
training of the two identical networks on Stl-10 datasets. The results are shown in Table 4.
It can be seen that our strategy has enough advantages, indicating that K-means is a better
alternative solution than the threshold.

Table 4. The influence of different strategies on constructing ri,j.

Methods ACC NMI ARI

OUR 0.529 0.402 0.311
DCCM 0.391 0.297 0.213

Impact of threshold. The clustering performance of STL-10 datasets under different
thresholds in Equation (2) is displayed in Figure 4a. For STL-10, the clustering performance
increases gradually as the threshold increases. It indicates that the correct rate of the
selected cluster-standard samples is also gradually increasing.
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The dimensional impact of z. As shown in Figure 4b, varying the dimension of z from
10 to 50 does not affect the clustering performance much. However, when the dimension
of z becomes 0, which means that the network only learns class-level representations,
the performance drops a lot. The reason is that class-level representation alone is not
enough to describe the differences between images belonging to the same cluster. A good
clustering model should assign data to clusters to keep inter-group similarity low while
maintaining high intra-group similarity.

(a) (b)

Figure 4. Clustering performance under different thresholds and z. (a) Impact of threshold. (b) The
dimensional impact of z.

The sensitivity of the model to mutual information. For convenience, the mutual
information loss LMI is divided into two parts: the global-local MI LZC = LLMI + LLMIT
and the local-local MI LLMIC. To comprehensively examine the effect of global-local and
local-local MI on the clustering performance of the model, LMI was changed to LZC and
LLMIC, respectively. The experimental results are shown in Table 5. From the results,
the two parts of MI have similar performances in improving the clustering performance. It
also proves our proposed extended mutual information is reasonable.

Table 5. The sensitivity of the model to mutual information.

STL-10 ImageNet-10

NMI ACC ARI NMI ACC ARI

LZC 0.464 0.605 0.387 0.589 0.736 0.542
LLMIC 0.455 0.596 0.376 0.583 0.727 0.564

LZC + LLMIC 0.483 0.625 0.410 0.623 0.769 0.581

The impact of each part. In the case of the combination of each part, the clustering
performance is shown in Table 6. Due to the lack of LE loss, the network will have unstable
results, so the maximum entropy loss is not removed in this part. It can be found that it is
very effective to use cluster-standard samples to correct the network parameters.

Table 6. The impact of each part.

STL-10 ImageNet-10

NMI ACC ARI NMI ACC ARI

LDT 0.402 0.529 0.311 0.501 0.638 0.469
LDT + LFT 0.431 0.576 0.342 0.561 0.701 0.523

LDT + LFT + LMI 0.483 0.625 0.410 0.623 0.769 0.581
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5. Conclusions

This paper proposes an end-to-end clustering network model, DCSM, which aims to
simultaneously reduce intra-class differences and improve inter-class separation. The pro-
posed extended mutual information method achieves the purpose of reducing intra-class
differences by further exploring the relationships between the original image features and
transformed image features. Based on the pseudo-similar labels of sample pairs, DCSM
encourages similar samples to move closer to each other and dissimilar samples to move
away from each other to promote inter-class separation. The experiments demonstrate the
advantages of our approach on four benchmark datasets. Future work will explore how to
achieve more accurate pseudo-similar labels of sample pairs. This may include the use of
contrastive learning or soft assignment methods to generate the pseudo-similar labels of
sample pairs.
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