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Abstract: UTI (Urinary Tract Infection) has become common with maximum error rates in diagnosis.
With the current progress on DM (Data Mining) based algorithms, several research projects have
tried such algorithms due to their ability in making optimal decisions and efficacy in resolving
complex issues. However, conventional research has failed to attain accurate predictions due to
improper feature selection. To resolve such existing pitfalls, this research intends to employ suitable
ML (Machine Learning)-based algorithms for predicting UTI in IoT-Fog environments, which will be
applicable to a smart toilet. Additionally, bio-inspired algorithms have gained significant attention
in recent eras due to their capability in resolving complex optimization issues. Considering this,
the current study proposes MFB-FA (Modified Flashing Behaviour-based Firefly Algorithm) for
feature selection. This research initializes the FF (Firefly) population and interchanges the constant
absorption coefficient value with the chaotic maps as the chaos possesses an innate ability to evade
getting trapped in local optima with the improvement in determining global optimum. Further, GM
(Gaussian Map) is taken into account for moving all the FFs to a global optimum in an individual
iteration. Due to such nature, this algorithm possesses a better optimization ability than other swarm
intelligence approaches. Finally, classification is undertaken by the proposed MANN-AM (Modified
Artificial Neural Network with Attention Mechanism). The main intention for proposing this network
involves its ability to focus on small and significant data. Moreover, ANNs possess the ability for
learning and modelling complex and non-linear relationships, in which the present study considers it.
The proposed method is compared internally by using Random Forest, Naive Bayes and K-Nearest
Neighbour to show the efficacy of the proposed model. The overall performance of this study is
assessed with regard to standard performance metrics for confirming its optimal performance in UTI
prediction. The proposed model has attained optimal values such as accuracy as 0.99, recall as 0.99,
sensitivity as 1, precision as 1, specificity as 0.99 and f1-score as 0.99.

Keywords: urinary tract infection; smart toilet; firefly algorithm; artificial neural network; attention
mechanism; Gaussian Map

1. Introduction

IoT brings more changes to the life of humans and increases the quality of life [1] by in-
tegrating Artificial Intelligent (AI) and cloud computing [2,3]. In recent trends, the Internet
of Things (IoT) is considered to be the more attractive and revolutionary technology that
plays a vital role in various fields such as healthcare, house automation, smart cities [4,5],
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wearable devices and so on. IoT greatly influences the healthcare industry which in turn
helps various applications of smart healthcare [6]. IoT acts as a base for innovative ideas
such as Cyber-physical Systems (CpS) [7], smart cities [5] and Industry 4.0 [8]. In the future,
fog computing [9] is used to address the demand for real-time service, which is increasing.
Fog computing acted as a platform that provides more storage space, real-time compu-
tation power and network services among data centres and end users. By using IoT-Fog
computing, many time-sensitive data and services are carried out which include emergency
health services and medical diagnosis. Smart healthcare includes various applications such
as intelligent patient monitoring, wireless tracking of health and mobile healthcare. Many
cities aim to establish the idea of smart city healthcare by means of conventional equipment
and devices that integrate the resources of healthcare and smart solutions [10].

Generally, Machine Learning (ML) models consist of many predictor variables and
require less a priori hypothesis in comparison to statistical models [11]. In the ML-based
approach, SVM (Support Vector Machine) and RF (Random Forest) are used to allow fewer
assumptions and many difficult relations between predictors. The algorithms are combined
with RFE (recursive feature elimination) to provide the optimal predictors for UTI by using
the biomarkers present in urine [12]. To monitor the well-being and health of people who
suffered from dementia, IoT has been used, and it also combines ML techniques. The model
helps in providing more effective preventive care, which reduces hospitalization [13].

UTI [14] is a particular kind of infection that occurs in various parts of the urinary
system, which includes the kidneys, urinary bladder and ureters. After kidney transplanta-
tion, many people suffer due to UTI [15]. UTI has been found in both genders irrespective
of age [15]. At the age of 24, one out of three women has at least one symptom of UTI, and
while considering the lifetime, nearly half a population is affected [16]. A survey by the
WHO (World Health Organization) confesses that over 1 million people were hospitalized
in 2011 due to UTI [17]. However, quick detection of UTI can prevent people from perma-
nent kidney problems, blood loss and severe pain. Several tests are available to test for
UTIs, but home-based UTI testing and detection provide an efficient way for precautionary
measures. However, the diagnosis of UTI is still challenging, and current techniques are
often prone to more errors. To overcome the issue, several studies have explored the use
of ML algorithms to predict UTIs. However, the accuracy of these algorithms is limited
due to the improper selection of features. Therefore, the present study aims to develop an
ML-based algorithm for UTI prediction in an IoT-Fog environment based on the application
of a smart toilet. Additionally, the present study aims to enhance the accuracy rate of UTI
prediction, which plays a significant role in patient care.

Further, many IoT devices are available and have an increased capability in acquiring
the specific parameters of urine and the determination of UTIs. Especially, IoT includes
internet-enabled sensors that have the ability to obtain universal data and transfer the data
to a remote location [18]. Additionally, the devices have used technologies that are easily
available and hence can be used in a smart toilet system.

IoT technology provides a considerable revolution in the recent healthcare industry,
which helps in monitoring remote patients, smart health services and mobile healthcare.
Real-time healthcare services have been boosted by using IoT technology and assisted in the
development of communication protocols such as CoAP [19], MQTT [20], next-generation
IPv6 version [21] and AMQP [22] of inter-network. The IoT has enhanced the home-
centric environment by extending healthcare services. IoT sensors help in expanding the
acquisition of health data, and various technologies such as data mining results in automatic
analysis of health conditions without the presence of a concerned doctor. Furthermore, the
large use of fog and cloud computing results in providing enhanced services in healthcare
applications, which includes time-sensitive data management and analysis. In the modern
world, improved IoT and fog-cloud computing [23] serves many applications in real-
time healthcare.

The Firefly Algorithm (FA) [24] has increased importance in swarm intelligence [24]
and is used in the area of both optimization and engineering. FA and its variants are used
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to solve various problems from different areas. The ideal behaviour of FA is its flashing
feature [25], which helps in efficient feature selection. Though the basic Firefly Algorithms
are comparatively efficient, the outcomes have been changed when it approaches the
optima. The success rate of FA depends on the balance that exists between exploitation and
exploration. CGFA (Chaotic Gaussian Firefly Algorithm) possesses improved numerical
stability and an enhanced convergence rate [26].

The present study has used MFB-FA (Modified Flashing Behaviour-based Firefly
Algorithm) for feature selection by utilizing IoT in a fog environment. Gaussian Chaotic
Maps (GCMs) in FA have been used to reveal the optimal fit that helps in exploring chaotic
maps. Gauss Map (GM) avoids the trapping of local optima by moving towards the optimal
solution and possesses better optimization ability in comparison to swarm intelligent
approaches. Hence, the proposed method utilizes GM for attaining improved optimization
ability. The present study has used MANN-AM (Modified ANN with Attention Mechanism)
for classification. ANN possesses more advantages such as parallel processing, the ability to
perform with partial knowledge, storing data within the network and possessing memory
distribution and fault tolerance. Similarly, the attention mechanism imitates cognitive
attention. MANN-AM performs so that the network has to devote high focus to low
but significant data parts. The present study aims to detect UTI by using MFB-FA and
MANN-AM based on the following objectives:

• To perform feature selection by using MFB-FA (Modified Flashing Behaviour-based
Firefly Algorithm) for improvising classification.

• To perform classification by using MANN-AM (Modified Artificial Neural Network
with an Attention Mechanism) to efficiently prognosticate the existence/absence
of UTI.

• To evaluate the efficacy of the proposed model with standard-performance metrics for
exposing its performance in predicting UTI.

1.1. Novelty

The present study focuses on the relatively new field of research that used bio-inspired
and ML algorithms in IoT-Fog environments for predicting UTIs, in which the MFB-FA for
feature selection is a revised version of the Firefly Algorithm that utilized chaotic maps
for avoiding local optima and assists in improving the global optimization. MANN-AM
is a revised version of ANN that utilized an attention mechanism for focusing small and
significant data. Therefore, the integration of the novel approaches offers an optimal
solution for predicting UTIs by using a smart toilet.

1.2. Contribution

The present research uses an ideal approach that combines both ML and bio-inspired
algorithms that highly contributed to the research. MFB-FA utilizes the flashing behaviour
depending on the optimal solution of the population. In MFB-FA, each firefly attracts
the optimal firefly from the neighbourhood, which depends on a modified attractiveness
function. However, MFB-FA possesses limited performance as it becomes trapped in local
optima, which may result in a suboptimal feature selection. In order to overcome the
limitation, the proposed method utilizes GM for improved optimization ability. By using
the GM technique, in each iteration, the position of the fireflies is shifted towards the
global optimum. Thereby, GM avoids getting trapped in local optima by moving towards
the optimal solution. Moreover, the proposed method swaps the value of the constant
absorption coefficient with chaotic maps in MFB-FA. The ability of the chaotic maps evades
getting trapped in local optima, introducing randomness into the algorithm, which leads to
a highly diverse search of feature space. The combination of GM and chaotic maps in MFB-
FA improves the ability of optimization, which results in an exact and efficient selection of
features for UTI prediction. MANN-AM utilizes an attention mechanism for scoring and
computing the significance of each feature in the prediction of UTI. During classification,
the weights of the input features are adjusted based on the scores, which mainly focused
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on highly informative features for predicting UTI. Moreover, MANN-AM is modified by
including additional layers to perform feature fusion for integrating the selected features.
The additional layer combines the selected features by using the computed mean and
standard deviation that is given as input to the network. Thus, the additional layers assist
in capturing the non-linear and complex relationship among the selected features and in
UTI predictions. Therefore, MANN-AM assists in the effective and accurate classification
of UTI in an IoT-Fog environment.

1.3. Limitation

Though the proposed system has the ability to attain optimal accuracy, it possesses
some limitations and challenges. The proposed system extensively depends on the avail-
ability and quality of the data and it remains challenging to use high-quality UTI-related fea-
tures. The implementation of smart toilets with IoT sensors is more challenging and costlier.

Section 2 of this paper deals with the review of the existing literature for feature
selection and classification through various ML models. The problem identified from the
existing literature has been also discussed. Section 3 deals with the proposed flow along
with the pseudo codes. Section 4 deals with the dataset description, performance metrics,
experimental results, performance analysis and comparative results. Section 5 deals with
the conclusions and future recommendations of the work.

2. Review of Existing Work

In recent times, the application of smart healthcare attains more popularity. Various
ML methods have been used in UTI for feature selection and classification. The section
has reviewed the conventional models briefly along with the gaps identified from the
state-of-the-art works.

IoT in fog environments has been used for quick prediction and diagnosis of urine
infection. Initially, multiple sensors have been used to deliver the data and by using
XGBoost [27] ensemble a learning approach, IRF (Infectious Risk Factor) has been calculated
at the fog layer. The suggested study [28] used real-time patient data. The results of accuracy,
f-score, sensitivity, precision and specificity have been given as 91.45%, 90.12%, 84.79%,
95.49% and 95.96%, respectively.

For monitoring and prediction of UTIs, the existing paper [29] has suggested an
IoT-inspired framework in a home-centric environment. By using ID (Infection Degree),
probabilistic classification [30] (Bayesian Probabilistic Model) of UTI has been performed
in accordance with both infection and non-infection categories. Temporal-Artificial Neu-
ral Network (t-ANN) technique, which incorporates IIM (Infection Index Measure), has
been used for the detection and prediction of UI. Kohonen Self Organized Mapping Tech-
nique [31] (SOM) has been used for the color visualization of information. Additionally, the
development of AI has brought several improvements in the healthcare sector. Thereby, ML
and DL methods have also been widely used in detecting several life-threatening diseases
such as cervical cancer [32] and COVID-19 [33,34] and also in predicting PCOS [35].

Diagnosis and monitoring of clinical voiding dysfunction have been assisted in the
recommended study [36]. While urinating, the vibration signals have been detected with
the help of an accelerometer and they transformed into MFCC (Mel-Frequency Cepstrum
Coefficient) [37]. The CNN model with pooling and normalization layers with ReLU (Recti-
fied Linear Unit) [38] has acted as active functional layers. Classification has been done
through the Softmax function [39]. UMAP (Uniform Manifold Approximation and Projec-
tion) [40] dimensionality reduction has been used to predict and analyse uroflowmetry and
also helps in void dysfunction diagnosis. The result of accuracy has been found to be 98%.

An integrated platform has been developed and ML models have been used for the
analysis of UTI risk and agitation in the suggested study. A huge dataset has been collected,
by which a new DL (Deep Learning) model has been evaluated that utilized rational and
attention mechanisms. Rational layers have passed through the LSTM layer, and LSTM [41]
has processed the data available in the attention block. For prediction, classifiers have used
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time steps. In detecting the risk of UTIs and agitation, the outcome values of the suggested
model [42] for precision and recall have been given as 83% and 91%.

Noise, explainability, high dimensionality, large variability and label scarcity are
some challenges present in anomaly detection. The efficiency of MP (Matrix Profile) and
SOTA has improved by using CMP (Contextual Matrix Profile), which interprets and
visualizes the anomalies present in the data of the noisy real world. Graph-based anomaly
detection has been used to detect anomalies by using a real-world dataset in healthcare. The
recommended method [43] has possessed an enhanced alert rate, recall and generalizability.

Adaptive DNN (Deep Neural Network) [44] and supervised parabolic model have
trained the model of unlabelled data by utilizing unsupervised techniques. DNN has
utilized auto-encoder in terms of learning unlabelled data representation. The trained
model has been applied to the labelled data of a smaller set, which helps in the development
of a supervised classifier with improved reliability. DL and probabilistic models have been
used to analyse UTI risks. The classification of data has been carried out by using SVM [45]
(Support Vector Machine with polynomial kernels and RBF), LR (Logistic Regression) [46],
DT (Decision Tree) [47] and KNN (K-Nearest Neighbour) [48]. The suggested ML model [49]
has detected the risk of UTI with a recall value of 85% and precision of 86% with the
help of in-home monitoring data. In the existing study, UTI in pregnant women and
children less than age 10 has been considered. ML approach has tested three algorithms
such as RF [50], NN [51] and extreme gradient boosting; at the same time, factoring of
independent variables has been executed. A sensitivity of 95% has been achieved by using
the suggested model [52].

Similarly, the existing model [53] has aimed to develop an ML model that predicts the
risk of MDR UTI (Multidrug Resistant Urinary Tract Infection) for patients after hospital-
ization. Catboost has been used to exhibit the results, and the outcomes are found to be
0.909 as Matthews’s correlation coefficient (MCC), 0.809 as f1-score and 0.717 as accuracy.
The predictive model has used an ML algorithm and provided an efficient performance
that facilitates UTI. The suggested model [54] has predicted the RUTI (Recurrent Urinary
Tract Infection) that has been associated with vesico-ureteral reflux and with a value of
0.761 as the AUC (Area Under the Curve) in the test set. ML algorithms have been used in
the prediction of identifying the incidence of stroke and post-stroke prognosis for immobile
stroke patients. The ensemble learning model in the recommended study has provided an
efficient performance in the prediction of UTI risk.

A Knowledge Discovery and Data Mining (KDDM) approach using ML methods
has been implemented to find the knowledge regarding HA-CAUTI (Hospital-Acquired
Catheter-Associated Urinary Tract Infection) from various sources of data and helps in
predicting the risk of HA-CAUTI. ML techniques such as DT, LR and SVM have been
described in the existing study [55]. The cutting-edge ML approach has been introduced in
electronic health records, which improves secondary utilization. The accuracy of DT, SVM
and LR has been found to be 75.87%, 71.50% and 75.83%, respectively.

The test characteristics of ML models have been evaluated to find the results of SBI
(Serious Bacterial Infections) in infants and the models have been compared with the
recognised clinical prediction rules. The four supervising models such as single-hidden
layer neural network, LR, SVM and RF have been developed and validated. The methods
have been used for the exact identification of patients without UTI and the recommended
model [56] has attained a sensitivity of 98%. Statistical models have utilized EHR (Electronic
Health Record) for identifying the complications of surgery such as UTI, sepsis, bleeding
and surgical infections. The elastic-net model has been used to calculate the regression
coefficient and to process variable selection. The recommended model [57] has achieved
83% of sensitivity, 88% of specificity, an area under the curve of 0.93, 52% of positive
predictive value and 97% of negative predictive value.

In order to improve predictive accuracy, alternative ML approaches (DL methods and
tree-based methods) have been implemented and explored in the recommended study [58].
To predict the risk of an AE (Adverse Effect) including UTI, the selection operator regulation
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method, least absolute shrinkage and LR have been applied. For overall AE, the AUC of
the prediction model has been found to be 0.7. However, numerous studies have shown
AUC values between 0.6 and 0.78 in predicting the complications of UTI after spine surgery.
Initially, ML methods have trained both huge records of patients and measurements of
antibiotic resistance. The existing study [59] has provided a way to use ML in decision-
making, thereby it helps in the recommendation of antibiotics over UTIs, which has reduced
the risk of failure of treatment.

By using Fourier transform infrared, bacterial susceptibility has been examined for
first-culture E. coli colonies for UTI patients. The objective of examining the infrared
microscopy in which multivariate analysis has been combined is to cut short the time taken
for identifying E. coli susceptibility to antibiotics and to find the response of bacteria to
the optimal choice of antibiotics. The outcomes of the suggested study [60] have shown
that it has been evident to find the optimal choice of antibiotic in which the sensitivity has
been found to be 89%, which has followed the first culture. Linear SVM has been used
to implement multidimensional classification. When ML classification algorithms have
combined with infrared spectroscopy for pattern recognition, it has been considered a
powerful tool for determining the susceptibility of E. coli bacteria, which is a commonly
used antibiotic.

For identifying pathogenic microorganisms, MALDI-TOF MS (MALDI-TOF Mass
Spectrometry) has been utilised in the diagnosis of infectious diseases. The DL model has
been used in analysing the data, and the DL model performance has been compared with
conventional and supervised ML algorithms. The suggested study [61] has illustrated a
huge dataset that contains bacterial species in relation to UTIs. By selecting five different
species, an accuracy of 85% has been attained.

The ability of infrared spectroscopic microscopy has been evaluated, which includes
the multivariate analysis for quick detection of ESBL (extended-spectrum β-lactamase),
which produces Escherichia coli (E. coli) and has been separated from UTI samples. The
outcomes of the suggested study [62] have shown that it has been evident to find the
ESBL-producing bacteria with 99% of sensitivity, 97% of success rate and 94% of specificity
for samples that have been tested with less time by succeeding the first culture.

Least Absolute Shrinkage and Selection Operator (LASSO) and LR have been executed
to recognise and select the variables for analysis and its results with the potential model.
By using the numerical outcomes and clinical criteria, the final model has been selected.
Developing ML algorithms for a huge dataset has been made possible, which delivers
beneficial tools for counselling patients and in the assessment of surgical risk. The value
of AUC has been found to be 0.70 with a Brier score of 0.01. The results of the predictive
model for UTI in accordance with specificity and sensitivity have been given as 95% and
97%, respectively [63].

Problem Identification

Various problems identified from the extensive literature have been discussed
as follows:

• The collected data from the system have limitations in facilitating large databases and
various sources of information and also in voiding dysfunction diagnosis algorithms.
The existing algorithm has fewer limitations in accessing the diagnosis information
and sometimes has the probability to get diagnostic errors [36].

• By using ML methods, risk factors have generally been neglected by classical statistical
models. The data have been extracted on a small scale, and hence the findings possess
some limitations in terms of generalizability [53].

• For practical examination, a more precise scoring tool based on the ML model has
been needed to improve the outcomes of the model [11].
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3. Proposed Methodology

This study tries to predict the existence or absence of UTI (Urinary Tract Infection)
based on ML methods. In spite of the endeavours undertaken by conventional works
to accomplish this, they lacked in accordance with classification rates. To attain better
prediction performance, this study proposes suitable feature selection and classification
algorithms as depicted in Figure 1. In this case, the UTI dataset is initially loaded. Following
this, the data is pre-processed. Typically, the pre-processing of data is crucial prior to its
actual usage. It is the process of converting raw data into a clean dataset. Pre-processing
is undertaken to check the missing values, noise and other inconsistencies prior to the
implementation of the algorithm. After checking the missing values, categorical encoding
is performed to convert the categorical data into integer form by which data with the
converted category values could be afforded to models for attaining enhanced prediction.
As data must be in a suitable format for ML, pre-processing is done. Further, suitable
features are selected for making the process accurate. This improvises the prediction ability
of algorithms through the selection of critical variables, thereby eliminating irrelevant
and redundant features. To achieve this, the study regards MFB-FA (Modified Flashing
Behaviour-based Firefly Algorithm). In this process, GCMs (Gaussian Chaotic Maps) are
used with FA for selecting suitable features. This is fed into the train and test split with 80%
training and 20% testing. Lastly, the classification process is undertaken by MANN-AM
(Modified Artificial Neural Network with an Attention Mechanism).
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In this case, algorithms, namely, KNN, RF and NB are regarded for internal com-
parison with the proposed system. The overall performance is assessed with regard to
performance metrics.

3.1. Feature Selection MFB-FA (Modified Flashing Behaviour-Based Firefly Algorithm)

FA (Firefly Algorithm) is stimulated by the FF’s (Firefly’s) flashing behaviour. Three
assumptions exist in FA as follows:

(i) All FFs (Fireflies) are uni-sexual. Each FF gets attracted to each of the other FF.
(ii) Attraction is proportional to the brightness of FF. For any 2 FFs, the less bright

FF will get attracted by the brighter FF, and the brightness will minimize as the
distance enhances.
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(iii) When no FFs brighter than a specific FF exists, it starts to move in a random manner.

Typically, light intensity (LI(r)) is inversely proportional to the distance from the light
source. Hence, when the light passes via a medium with the light absorption coefficient of
(β), then LI(r) differs with the distance (r) as specified in Equation (1):

LI(r) = I0e−βdist2
(1)

In Equation (1), I0 represents the intensity at the source-point. As the computation of
LI(dist) = 1

1+βdist2 is simpler than e−βdist2
, LI(r) could be computed as follows:

I(dist) =
I0

βdist2 (2)

Each FF possesses its unique attractiveness (∝) and could be claimed as per Equation (3):

∝ (dist) =∝0 e−βdist2
(3)

Likewise, it could be stated as follows:

α(dist) =
α0

1 + βdist2 (4)

In Equation (4), α0 denotes the attraction at dist as 0.
A FF positioned at the movement (qi) gets attracted to another bright FF positioned at

(qm) and is given by Equation (5):

qi+1 = qi + α0e−βdist2
(qm − qi) + ςε (5)

The second term is accredited to attraction, while the third term gets randomization
with (ς(0 ≤ ς ≤ 1)) and ε. For numerous practical issues, a constant value (ς = 0.2) can
be used. In this case, ε denotes the random variable vector retrieved from the Gaussian
distribution. On the contrary, chaos exists as a stochastic motion mapped by a deterministic
equation. It varies from disorder and irregularity. Chaos possesses a fine internal structure.
It comprises three characters: random, regularity and ergodic. The ergodic property could
search all the states with its formulae within a specific range. Thus, chaos turns into
an efficient approach to avoid getting trapped in local optima with the enhancement in
determining global optimum.

The Gaussian function is given by Equation (6):

qi+1 = exp
(
−ςq2

i

)
(6)

From Equation (6), it is revealed that the present study initializes the FF population
and interchanges the constant absorption coefficient value with the chaotic maps. In this
research, GM (also termed mouse-map) is taken into account for moving all the FFs to
global optimal in individual iteration. Further, for stabilizing the movement of a FF, a
distinct behaviour is proposed for directing the movement of FFs to the global best solution
when no ideal solution around it exists.

When a FF is utilized for optimizing the multiple peak function, it could get effortlessly
trapped in local minima. This results in less convergence speed. In addition, it is complex
for attaining an ideal outcome without using a better search methodology. Chaos is
typically a non-linear phenomenon that encompasses features of ergodicity, regularity and
randomness as its exquisite internal construction. In this study, MFB-FA was combined
with GCM for enhancing the precision and convergence quality of standard FA. Common
defects prevailing in FA are discussed below.

The evaluation of the defects of FA in its search process is discussed below.
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(1) Random Initialization: Though random initialization could assure initial FFs are ho-
mogeneously distributed in solution space, the solution quality seems to be uncertain
as the FFs seem to go far from the global optimum. When initial FFs seem to be not
only homogeneously distributed but also with high quality, it would assist in the
betterment of the mass of FFs, thereby preventing the approach of getting prematurely
trapped in local optima to a certain extent.

(2) The light-absorption coefficient corresponding to β exists as the constant value. In
this case, the β value finds the attraction of all FFs. Generally, β ∈ [0, 10] might be
recommended, and it is convenient. Nevertheless, using fixed values for all issues
is irrational. The absorption coefficient has to differ with iterations in the searching
space. Thus, in this research, β is tuned with the chaotic maps without using a
constant value.

In stochastic-searching optimization approaches, the methodologies using chaotic
variables rather than random variables are termed chaotic optimization algorithms. In
such algorithms, due to ergodicity and non-repeatability of chaos, it could accomplish
complete searches at a higher speed than the stochastic searches that rely on probabilities.
Thus, in this study, a chaotic map is used for initializing the FF population and tuning the
absorption coefficient. The MFB-FA Algorithm 1 is presented below.

Algorithm 1 MFB-FA: Modified Flashing Behaviour-based Firefly Algorithm

Input : Size of the population
Output : Best optimal solution (bestsubset)
Begin
set params for Modified_FA();
initpopulation;
Det of light intensity_I();

Objec(fun) = f(q), q = (q1, . . . , qd)T
Generate an initial chaotic population of fireflies

qi, i = 1, 2, . . . n

compute the ′I′ so that it is associated with f(q)

while(T ≤ Max Iteration)
Define absorption coefficient βwith chaos Gaussian Map
for m = 1 : i (i ff)
for n = 1 : i (i ff)
if Im > In
move ff towards n;
end if
Vary attractiveness withdistance Dist via exp−βDist2

Evaluation of new solutions and updating of light intensity (LI)
end for
end for
Firefly ranking and determination of best solution;
T = T + 1
end while
end

3.2. Classification of MANN-AM (Modified Artificial Neural Network with Attention Mechanism)

ANN (Artificial Neural Network) is a term that is used to describe a biologically
stimulated sub-area of AI (Artificial Intelligence) and is modelled after a succeeding brain.
Usually, ANN is a computational network relying on biological networks that build the
structure of the human brain. Identical to the human brain, it possesses neurons intercon-
nected with one another. ANNs also comprise neurons that are associated with one another
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in several network layers. Such neurons are termed nodes. The main merits of utilizing
ANN involve its parallel processing ability, storing data within the network and the ability
to function with partial knowledge. It also possesses memory distribution. It is also fault
tolerant. Concurrently, an attention mechanism exists with the idea of permitting a decoder
to use relevant input sequences flexibly through weighted integration of all encoded inputs,
with related vectors being credited with maximum weights. In ANNs, attention is meant
for imitating cognitive attention. The effect improvises certain input data parts while
alleviating other parts. The motivation for using MANN-AM prevails in the fact that the
network has to devote a high focus to less, but significant, data parts. The overall model of
MANN-AM is shown in Figure 2, wherein the model performs layer-wise learning.

Appl. Sci. 2023, 13, 5860 11 of 27 
 

 
Figure 2. Modified Artificial Neural Network with Attention Mechanism Model. 

The proposed model is designed for predicting the absence or existence of UTI. This 
is undertaken by normalization (Norm), Euclidean distance (d), Nearest Neighbour (u (r)) 
and Sigmoid activation-function (sigm(x)). 
(i) Normalization 

Normalization ensures that both negative and positive values considered as input for 
the subsequent layer exist. This makes learning flexible, and the network considers all the 
input features to a certain extent while learning. It is given by Equation (7): Norm = e − EE − E  (7)

In Equation (7), e indicates the data, E  represents the minimum values in each 
of the columns and E  represents the maximum values in each of the columns. 
(ii) Euclidean distance 

The Euclidean distance computes the distance amongst the vectors with two real val-
ues. It is given by Equation (8): 

d =  (P − P )  (8)

Figure 2. Modified Artificial Neural Network with Attention Mechanism Model.

The proposed model is designed for predicting the absence or existence of UTI. This is
undertaken by normalization (Norm), Euclidean distance (d), Nearest Neighbour (ui(r))
and Sigmoid activation-function (sigm(x)).

(i) Normalization

Normalization ensures that both negative and positive values considered as input for
the subsequent layer exist. This makes learning flexible, and the network considers all the
input features to a certain extent while learning. It is given by Equation (7):

Norm = e− Emin

Emax
− Emin (7)

In Equation (7), e indicates the data, Emin represents the minimum values in each of
the columns and Emax represents the maximum values in each of the columns.

(ii) Euclidean distance
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The Euclidean distance computes the distance amongst the vectors with two real
values. It is given by Equation (8):

d =

√
v

∑
i=1

(P1i − P2i)
2 (8)

In Equation (8), d represents the distance, v indicates the length and P1i and P2i denote
the Euclidean vectors.

(iii) Nearest-Neighbour

The Nearest Neighbour is given by Equation (9):

ui(r) =
∑K

j=1 uij(1/||
∣∣∣d(r, rj

)2
)||

∑K
j=1 (1/||

∣∣∣d(r, rj
)2
)||

(9)

In Equation (9), ui indicates the membership-values in the ith class, rj represents
the neighbour residue of (r), r indicates the present residue, which is allocated to the
membership values, K denotes the Nearest Neighbour and d represents the distance
amongst residues.

Rather than considering all high and low weights, the above equation is utilized for
picking only the least Nearest Neighbour that relies on the K value, which affords outcomes
effectively in comparison to a conventional classifier.

(iv) Sigmoid-Activation Function

The sigmoid-activation function is given by Equation (10):

sigm(x) =
1

1(1 + e−z)
(10)

In Equation (10), e−z indicates the exponential function that is utilized for computing
the activation function comprising a small real value ranging from −1 to 1. The algorithm
corresponding to MANN-AM is shown in Algorithm 2.

Algorithm 2 MANN-AM (Modified Artificial Neural Network with Attention Mechanism)

Input : Input : dataset df, xtrain, xtest − independent variable, ytrain, ytesttarget variable
Output : target ypreds with tract infection of UTX_DIAGONSIS(0, 1)
scale the datasets using // input layer
divide xtrainxtest and ytrain, ytest //input layer
W is calculated based on dist using //hidden layer
set value for parameter k
Estimating the distance between train and test
Sorting dist in an ascending pattern
select the best kneigh
Repeating steps 2–4 until the algorithm is over
W matrix is saved as result
Simulation involves using //hidden layer
Saving results
Retrieving ANN with attention model
Setting values for number of input, output and hidden layers
Primary weighing of existing neurons in input, output and hidden layers
Calculating the output (y) for each neuron in output layer
Updating ANN parameters
Repeating steps 3–4 until the algorithm is over
Saving results
End of hybrid model
Displaying results
End
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The RF algorithm is shown in Algorithm 3.

Algorithm 3 Random Forest

Input : dataset df, xtrain, xtest − independent variable, ytrain, ytesttarget variable
output : target ypreds with tract infection of UTX_DIAGONSIS
A is training set TS := (a1, b1 . . . . . . , (a nbn)
training set(TS) = images
F− feature,
N(t) = nooftrees
Forest = E
begin
function RandomForest(H, R)
I← ∅
for iε1, . . . .E do
H(i) ← A bootstrap sample from TS
ai ← Randomized Tree Learn (H(i), R)
I← I∪ (ai)
end for
return I
end function
function RandomizedTreeLearn(H, R)
At each node :
F← very small subset of R
split on best feature in F
Return the learned tree
end function
End for
End

The overall algorithm of K-NN is given in Algorithm 4.

Algorithm 4 K-Nearest Neighbour

Input : dataset df, xtrain, xtest − independent variable, ytrain, ytesttargetvariable
Input : dataset df, xtrain, xtest − independent variable, ytrain, ytesttargetvariable
output : target ypreds with tract infection of UTX_DIAGONSIS
begin
for each y belong df do

calculate the Dist D(x, y)bet y and x
end

subset(N) from the data frame (df)
N contains m training samples which are the knn of the test samples x
cal categoricalvariables of x :
yx = argyεYmax ∑

yεY
I(y = class(categoricalvariables))

end

The NB algorithm is based on the conditional probability principle as per Bayes
theorem. The following steps are to be followed (as exposed in Algorithm 5).
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Algorithm 5 Naive Bayes classifier

Input : dataset df, xtrain, xtest − independent variable, ytrain, ytesttarget variable
output : target ypreds with tract infection of UTX_DIAGONSIS
Begin
data splitting = 80 : 20
training− set = 80; testing− set = 20 (in %)
training− set
tot(t) = samples in the training set df
prob = probability; and Frequency = fre;
Classj is the class in ′ts′

compute the prob of individual class

Prob
(
Cj
)
=

fre(Cj)
t

compute ′m′ and ′std′

mean(m) = µ and standard deviation(sd) = σ;
compute m, sd for each features ineach class in dfand save it.

Testing set
A sample in the testing set df
Probability density function(pdf)

pdf(G)at Cj for values of features of G. it exist in the df
p
(
Gi
∣∣Cj
)

Calculating conditional probability((cp)(G))at Cj
result get by below equation

P
(
G
∣∣Cj
)
= ∏n

j=1 P
(
hj
∣∣Cj
)

Calculating posterior probability((pp)(G)), p
(

Cj
∣∣G)

((pp)(G)), p
(

Cj
∣∣G)→ probability of samples at Cj

Assign class labels to the class of G by maxi(p) =
(

Cj
∣∣G)

Return class
(

UTXdiagnosis(1) or UTXdiagnosis(0)
)

end

4. Results and Discussion

The results that have been obtained by the implementation of this work are included
in this section, with its dataset description, standard-performance metrics, experimental
results, performance and comparative analysis.

4.1. Dataset Description

Predictor variables that include laboratory results, urine dipstick results, urinalysis,
past medical history, structure historical findings, physical exam findings, chief complaints
and demographic information were available in the dataset that includes a reduced set of
10 variables and a full set of 211 variables. The dataset has been taken from the IoT-based fog
environment. The dataset has been collected from https://figshare.com/articles/dataset/
Predicting_urinary_tract_infections_in_the_emergency_department_with_machine_learning/
5959417?file=10679215 (accessed on 8 March 2018).

The dataset consists of 80,387 attributes and 219 rows, and some of them are
given below:

Age: Shows the patient’s age.
Sex: Represents the patient’s gender.
Diabetes: The presence of diabetes is shown by using a binary output.
Hypertension: This shows the existence of hypertension by using a binary variable.
UTI history: This shows the presence of UTI or not.
Fever: A binary variable shows whether the patient has a fever or not.
Dysuria: A binary output indicates whether the patient has any discomfort or pain

during urination.
Urgency: A binary output indicates whether the patient feels the need to urinate

urgently or not.

https://figshare.com/articles/dataset/Predicting_urinary_tract_infections_in_the_emergency_department_with_machine_learning/5959417?file=10679215
https://figshare.com/articles/dataset/Predicting_urinary_tract_infections_in_the_emergency_department_with_machine_learning/5959417?file=10679215
https://figshare.com/articles/dataset/Predicting_urinary_tract_infections_in_the_emergency_department_with_machine_learning/5959417?file=10679215
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Frequency: A binary output that denotes whether the frequency of the urination is
increased over normal times.

Hematuria: A binary output that denotes whether the patient has blood in their urine
or not.

WBC_count: This represents the count of the white blood cells, which is measured in
cells per microliter.

Bacteria_count: This represents the bacteria count present in the urine of the patient,
which is measured in colony-forming units per milliliter.

Nitrite: A binary output that denotes the existence of nitrite content in a patient’s urine.
Leukocyte: A binary output that denotes the existence of leukocytes in a patient’s urine.
Diagnosis: A binary output that indicates whether the patient has UTI or not.
The above-mentioned attributes are some of the attributes that help in training and test-

ing the ML algorithms in predicting the UTIs by using the medical history and symptoms.
Pre-processing has been carried out to identify and handle the missing values. Cate-

gorical data have been encoded with the values 0 and 1 and check for the missing values.

4.2. Performance Metrics

The performance metrics have become a part of each ML. Metrics, namely, precision,
accuracy, f1-score, specificity, recall and sensitivity are utilized to analyse the classifica-
tion models.

4.3. Experimental Results

The experimental results attained when using the proposed method MANN-AM have
been shown in Figure 3, in which the red color denotes 0 and the blue color denotes 1. The
green line denotes the target value that classifies the target data.
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Figure 4 shows the feature importance of the proposed model based on the number of
iterations. From Figure 4, it is clearly found that during the initial iteration, the proposed
model has taken a long time for feature selection. After several iterations, the proposed
model has learned to select features more efficiently. Selecting the appropriate features
is an important step for predicting UTI. Based on the selected features, the proposed
model performs a classification by using MANN-AM, which efficiently prognosticates the
existence/absence of UTI.
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4.4. Performance Analysis

Performance analysis of the proposed study that has used the proposed MANN-AM
classifier, KNN, NB and RF has been discussed; it gives detailed information and helps
in a better understanding of the proposed model. Figure 5 shows the AUC curve for the
proposed MANN-AM classifier, Naive Bayes, K-Nearest Neighbour and Random Forest,
where TPR refers to True Positive Rate and FPR refers to False Positive Rate.
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AUC shows a collective measure of performance across all possible classifications.
From Figure 5, it is observed that the value of AUC for the proposed MANN-AM classifier
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has been given as 0.99961, which is closer to 1. For the KNN classifier, the value of AUC
has been given as 0.64831. For the Naive Bayes classifier, the value of AUC has been
given as 0.77063. For the Random Forest classifier, the value of AUC has been given as
0.72489. Hence, it is revealed that the proposed model has better efficiency in accordance
with classification.

The confusion matrix of the proposed system, KNN, NB and RF, is shown in Figures 6–9,
respectively. From Figure 6, it is clear that the proposed method has a majority of correct
estimates of UTI, which is represented in the diagonal portion (0, 0 and 1, 1). Though it
estimates a few wrong predictions, which are represented in black color, when comparing,
the proposed method has more accurate estimates than the wrong ones. Hence, the
proposed method is more efficient. From Figure 7, it is clear that the KNN classifier has
11,406 true positives, 1257 true negatives, 2063 false negatives and 1352 false positives. The
performance analysis of the Naive Bayes classifier has been shown in Figure 10 by using
the AUC curve.
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From Figure 8, it is clear that the Naive Bayes classifier has a majority of correct
estimates of UTI, which are 7058 true positives, 5605 true negatives, 55 false negatives
and 3360 false positives. From Figure 9, it is clear that the Random Forest classifier has
11,825 true positives, 838 true negatives, 1653 false negatives and 1762 false positives.

The Modified Flashing Behaviour-based Firefly Algorithm using a Gaussian Map has
been shown in Figure 10.

During the initial iterations, the proposed model attained a higher fitness value. When
the number of iterations increased, the proposed model learned to select features more
efficiently and steadily, which is shown in Figure 10.

4.5. Performance Analysis of Classifiers

The proposed model Modified ANN-AM has been compared internally with KNN,
Naive Bayes and Random Forest classifiers to show that the proposed model has improved
efficiency among other classifiers. The performance analysis of Modified ANN-AM, NB,
KNN and RF is shown in Table 1 and Figure 11.

Table 1. Performance analysis of Modified ANN-AM, NB, KNN and RF.

Accuracy Precision Recall F1-Score Sensitivity Specificity

Modified ANN
with AM 0.99 1 0.99 0.99 1 0.99

Naive Bayes
Classifier 0.65 0.68 0.77 0.63 0.55 0.98

KNN Classifier 0.79 0.68 0.65 0.66 0.9 0.39

Random Forest
Classifier 0.85 0.78 0.72 0.75 0.93 0.51Appl. Sci. 2023, 13, 5860 21 of 27 
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The proposed model has been analysed by using six performance metrics, and the
values are given in Table 1. The proposed model has an accuracy of 0.99, recall of 0.99,
precision of 1, f1-score of 0.99, specificity of 0.99 and sensitivity of 1. The Naive Bayes has
an accuracy of 0.65, recall of 0.77, precision of 0.68, F1-score of 0.63, specificity of 0.98 and
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sensitivity of 0.55. The KNN classifier has an accuracy of 0.79, recall of 0.65, precision of
0.68, f1-score of 0.66, specificity of 0.39 and sensitivity of 0.9. The Random Forest classifier
has an accuracy of 0.85, recall of 0.72, precision of 0.78, f1-score of 0.75, specificity of 0.51
and sensitivity of 0.93.

From Table 1 and Figure 11, it is clear that the proposed model of Modified ANN with
AM is more efficient and has better values in all performance metrics. Hence, it can be
concluded that the proposed model shows an enhanced performance in UTI detection.

Table 2 shows the feature ranking by Firefly Algorithm, in which chloride refers to
the chloride content that exists in urine, ua_ketones refers to the ketones level in urine,
ua_clarity refers to the clarity level of the urine, ua-color refers to the color of the urine,
ua-glucose refers to the glucose level in urine, Temp_Mean refers to the body temperature
of the patient and the fever attribute shows whether the patient has a fever or not.

Table 2. Feature ranking by Firefly Algorithm.

Feature Importance Feature Ranking by Firefly Algorithm

Chloride 0.089883

HR_Min 0.074717

Chloride 0.072249

ua_ketones 0.033614

ua_clarity 0.031833

ID 0.015908

ua_color 0.015579

Chloride 0.014618

fever 0.014009

lang 0.013988

abd_distended2 0.01389

ua_glucose 0.013608

Temp_Mean 0.013354

HR_First 0.013126

UCX_abnormal 0.013082

By using the proposed method, the feature ranking for chloride, HR_Min and chloride
again are the three most important features for predicting UTI, and the feature importance
scores are given to be 0.089883, 0.074717 and 0.072249, respectively. The other features
such as ua_ketones, ua_clarity, ID, ua_color, fever, lang, abd_distended2, ua_glucose,
Temp_Mean, HR_First and UCX_abnormal have lower feature importance scores, which
indicates that they have a relatively lower contribution in the prediction of UTI. In Table 2,
it is observed that chloride has a higher ranking of 0.089883.

4.6. Comparative Analysis

The proposed model has been compared with two traditional studies and the respec-
tive results have been discussed. The dataset of the proposed study has used an IoT-based
fog environment, hence the existing studies which have similar types of datasets have
been considered in the comparative analysis. Table 3 shows the comparative analysis of
various models.
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Table 3. Comparison of performance metrics of classifiers [64].

Models AUC Sensitivity Specificity Accuracy

XGBoost (existing) [64] 0.9 0.617 0.94 0.87

Random Forest 0.9 0.573 0.96 0.87

Adaboost 0.88 0.622 0.92 0.85

Support Vector Machine 0.88 0.496 0.96 0.86

ElasticNet 0.89 0.563 0.949 0.86

Logistic Regression 0.89 0.575 0.947 0.864

Neural Network 0.88 0.546 0.95 0.863

Reduced XGBoost 0.88 0.547 0.94 0.859

Reduced Random Forest 0.86 0.54 0.94 0.855

Reduced Adaboost 0.83 0.61 0.88 0.822

Reduced Support Vector Machine 0.82 0.49 0.95 0.85

Reduced Elastic Net 0.87 0.52 0.952 0.85

ReducedLogistic Regression 0.87 0.53 0.948 0.85

Reduced Neural Network 0.87 0.54 0.95 0.859

Proposed model 0.99 1 0.99 0.99

For extensive analysis, the proposed model has been compared with the existing
study [64], which has a dataset similar to the proposed study and used various classification
models. In the existing methods, XGBoost has a higher accuracy of 0.9 compared to other
models. In Table 3 and Figure 12 it is revealed that the proposed model possesses ideal
values in every performance metric and has attained the highest accuracy of 0.99.
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The comparative analysis of performance metrics of the proposed model with the
existing study [64] is shown in Figure 12. Table 4 shows the comparative analysis of various
models in the existing study [32].

Table 4. Comparison of performance metrics of classifiers [32].

Model Accuracy Precision F1-Score Specificity Sensitivity

XGBoost (existing) [32] 0.9145 0.9549 0.9012 0.9596 0.8479
Random Forest 0.8149 0.886 0.8126 0.8945 0.7446

MLP 0.8395 0.8546 0.8478 0.8446 0.8349
K-NN 0.7718 0.9125 0.7508 0.9456 0.6256
SVM 0.8515 0.8945 0.8564 0.8945 0.8143

Proposed system 0.99 1 0.99 0.99 1

For broad analysis, the comparative analysis has been done with the existing study [32],
which has a dataset similar to the proposed study and used various classification models.

The comparative analysis of the performance metrics of the proposed model has been
shown in Figure 13. In the existing methods, XGBoost has a higher accuracy of 0.9145
compared to other models. In Table 4 and Figure 13, it is revealed that the proposed system
has better values in every performance metric and has attained the highest accuracy of
0.99. The proposed MANN-AM classifier has greater potential in focusing on small and
significant data. The MFB-FA model for feature selection has helped in attaining a global
optimum. Hence, from the experimental results, performance analysis, internal analysis
and comparative analysis, it is revealed that the proposed study has better efficacy in every
performance metric in detecting UTI.
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5. Conclusions

This research aimed to identify the existence or absence of UTIs using effective ML-
based algorithms. This study used MFB-FA for feature selection and MANN-AM for
classification. Significant features chosen by the MFB-FA were also presented to afford an
idea about the features selected based on ranking. Experimental results were presented to
reveal the outcomes of the proposed system in dividing the target value, thereby classifying
the data. To evaluate the performance of this work, an internal comparison was performed
with ML algorithms, namely, NB, RF and KNN. The accuracy rate of the proposed system
was found to be 0.99, NB exposed 0.65 as the accuracy rate, RF showed 0.85 as the accuracy
rate and KNN explored 0.79 as the accuracy rate. From the internal comparison, the
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proposed methodology exposed a higher accuracy rate than the other three algorithms.
Further, a confusion matrix was attained to showcase the correct classification rates of
the proposed system. In addition, for evaluating the efficacy of the proposed system, a
comparison was performed with two conventional studies. The comparative analysis
outcomes confirmed the proposed work was more effective than existing studies, with
0.99 as the accuracy rate. Due to the high prediction rate, the study possesses the ability
to be applied in real-time. Moreover, in the future, various other hybrid ML algorithms
could be regarded to enhance the prediction rate. Additionally, the proposed system can
be deployed in real-world scenarios such as public restrooms, hospitals and offices, which
will increase the effectiveness and feasibility of diagnosing UTIs.
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