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Abstract: Driven by the 2030 Agenda for Sustainable Development, the importance of sustainable
urbanization has taken center stage. In this study, we investigate the impact of polycentric struc-
tures on CO2 emissions using data from 279 Chinese cities and employing two-way fixed effects
complemented by instrumental variables. Our findings indicate that polycentric structures effec-
tively alleviate CO2 emissions. We identify two key pathways through which polycentric structures
contribute to CO2 reduction: promoting green technology and curbing energy consumption. Addi-
tionally, we discover that these relationships are influenced by market integration levels and resource
dependency. This research offers valuable insights into the future development of sustainable urban
spatial structures, paving the way for more eco-friendly cities around the globe.

Keywords: Sustainable Development Goals; CO2 emissions; polycentric structure; urban spatial
structure; cities

1. Introduction

The 2030 Agenda for Sustainable Development offers a visionary roadmap for a sus-
tainable future. There is global consensus on coordinating spatial expansion, economic
growth, and the environment to achieve sustainable development [1,2]. Sustainable De-
velopment Goal 11 (SDG 11) aim to create inclusive, safe, resilient, and sustainable cities
and communities for all. However, the increasing threat of climate change looms over
our living environments. The most recent progress report on SDG 13, which focuses on
climate action, highlights the urgent need to reduce CO2 emissions, as they reached a
historic high in 2021 [3]. In countries like China, rapid urbanization and the concentration
of resources in major cities exacerbate CO2 emissions. Consequently, finding a balance be-
tween resource integration and sustainable development has become a critical challenge in
urban planning.

Research has shown that adopting a polycentric structure can be beneficial in terms of
resource integration and optimizing efficiency [4]. Thus, clarifying the impact of polycentric
structure on CO2 emissions can help direct the practice of sustainable development. How-
ever, the relationship between polycentric structure and CO2 emissions has not reached
consensus. Some studies prove that the polycentric structure takes advantage of the in-
tegration of resources and optimizes the efficiency of factors [5]. Thus, it can alleviate
CO2 emissions [4,6]. It’s important to note that some studies have raised concerns about
polycentricity, suggesting that it may lead to higher household emissions, increased indus-
trial manufacturing [7], and greater household heating demands [8], all of which could
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contribute to higher CO2 emissions. While the other studies demonstrate a non-linear
relationship between polycentric structure and CO2 emissions [9,10]. This highlights
the need for further exploration and discussion to better understand the intricacies of
this relationship.

The inconsistencies in the relationship between polycentricity and CO2 emissions can
be explained by four reasons: First, this relationship stems from a balance among diverse
influence pathways. Previous studies have examined pathways such as reduced commuting
duration, traffic congestion, household carbon emissions, and industrial emissions [7,11].
Focusing on different pathways could lead to inconsistent findings regarding the connection
between polycentric structures and CO2 emissions. Second, the sample areas vary from
study to study. For example, Burgalassi and Luzzati [7] found that polycentric structure
aggravates CO2 emissions in Italy, while Sun et al. [6] and Sha et al. [11] discovered a
positive association between polycentricity and CO2 mitigation in China. One plausible
reason is that the impact of polycentric structures on CO2 emissions may be influenced by
factors such as regional resource dependence and the level of market integration. Third,
even within the same country, diverse scales of study regions may lead to a different
association between polycentric structures and CO2 emissions. The evidence from Chinese
cities showed a negative association between polycentric structure and CO2 [11], while the
evidence from Chinese provinces demonstrated a U-shaped relationship [9]. Fourth, the
measurement of core variables and the robustness of methods can also influence the results.
The influence of the morphological polycentric index differs from that of the functional
dimensions of polycentric structures. Additionally, conducting multiple robust tests is
recommended to mitigate endogeneity and determine more accurate associations between
spatial structures and CO2 emissions [6].

This study evaluates the impact of morphological polycentricity on CO2 emissions in
China using a panel dataset from 279 cities spanning from 1999 to 2017. Then we propose
two plausible pathways, green technology and energy consumption, and discussed the
heterogeneous effects of market integration and resource dependence. Notably, we
introduce an innovative instrument variable (IV) in conjunction with a widely used
IV to mitigate the endogeneity, exclude the interferences of policies, adopt propensity
score matching (PSM) to avoid selection bias, alter fixed effects, clustered levels, and
core variable measurements to ensure the robustness of our findings. The contribu-
tions of this study are as follows: First, we provide robust evidence of the impact of
polycentric structures on CO2 emissions in China, accounting for potential biases from
endogeneity and policy-related factors. Second, we discuss the plausible mechanisms
that influence this relationship by examining the mediating effects of green technology
and energy consumption, thus enhancing our understanding of the spatial structure
and CO2 emissions framework. Third, we highlight the heterogeneous effects of market
integration and resource dependence, which partly explains the inconsistent results
among previous studies.

The rest of the study is organized as follows: Section 2 reveals the data and methods
adopted in this study. Section 3 presents the impact of polycentric structure on CO2
emissions and shows the robustness, mechanisms, and heterogeneity of this relationship.
Section 4 analyzes the results above. Section 5 summarizes the conclusion and its policy
implications. The conceptual framework is represented in Figure 1.
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2. Materials and Methods
2.1. Data and Variable
2.1.1. Dependent Variables

We adopted the logarithm of regional CO2 emissions as the dependent variable. The
data on CO2 emissions were generated by Chen et al. [12], who used a particle swarm
optimization-back propagation algorithm to unify the scale of DMSP/OLS and NPP/VIIRS
satellite imagery at the county level. We carried out our study using the data of the CO2
emissions between 1999 and 2017.

2.1.2. Independent Variable

In this study, we focused on morphological polycentricity, which is a balanced distri-
bution of the importance of the cities within a given region. Generally, it can be quantified
by employment, population size, or economic output [6]. We used the Prolonged Artificial
Nighttime-Light Dataset of China generated by Zhang et al. [13] to measure the economic
activity of cities [10]. Based on this dataset, we measured the polycentricity as the Pareto
exponent, which is calculated by the slope of the size and the ranks of each county within a
city [14]:

ln
(

Rank j
)
= A − QlnLightj (1)

where Q refers to the level of polycentricity. The higher the Q-value, the more polycentric
and compact a city’s spatial structure is. Rank j is the rank of economic activity of county j
in descending order within the given city. lnsizej is the economic activity level of county j.

2.1.3. Control Variables

Following previous studies on CO2 emissions, we controlled secondary industry as a
percentage of GDP, foreign direct investment, population density, the percentage of budget
fiscal expenditure and technology expenditure on GDP, and the ratio of the employed
population to exclude their influence on CO2 emissions [15,16]. Table 1 defined all the
variables used in this study.

2.2. Data Summary

Descriptive statistics for each variable were reported in Table 2. The overall CO2
emissions had a value of 2.743 on average. The average polycentricity was 0.924. Generally,
if the q-value is greater than 1, the spatial structure of the city is polycentric. If it is
less than 1, the spatial structure is relatively monocentric.
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Table 1. Definitions and operations of variables.

Variable Definition

Dependent variable
Carbon The logarithm of regional CO2 emissions.

lndependent variables
Q The Pareto exponent.

Mediating variable

Gti The logarithm of the annual number of green patent
applications plus one.

Energy The logarithm of electricity consumption.

Control variables
lngy The share of the secondary sector in GDP.

lnFDI The logarithm of the ratio of the region’s actual use of
foreign capital to GDP in that year.

lnpeople The logarithm of the ratio of the total population to the
local land area at the end of the year.

lnfis The logarithm of the ratio of regional general budget
fiscal expenditure to GDP.

lnsci The logarithm of the ratio of regional science and
technology expenditure to GDP.

lnurba The logarithm of the ratio of the urban employed
population to the year-end household population.

Other variables
Hlhl The ratio of the river density to the exchange rate.

Unemploy The ratio of unemployment to the population.

LCC If it is the pilot city of Low-carbon city policy, this
variable = 1, 0 otherwise.

ETS If it is the pilot city of the emissions trading scheme, this
variable = 1, 0 otherwise.

Rep_carbon The CO2 emissions proposed by of Wu et al. [17]
PCE CO2 emissions per capita.

Lngreencov The logarithm of canopy coverage.

Lnlpg The logarithm of household consumption of liquefied
petroleum gas.

Lnws The logarithm of average wind speed.
Lnhum The logarithm of average relative humidity.
Lntem The logarithm of average temperature.

2.3. Methodology

Accounting for unit-variant and time-variant variables, we adopted a two-way fixed ef-
fects model to control for both unit- and time-fixed effects. We constructed the following model:

Carboni,t = α0 + α1Qi,t + ∑ τj ∗ Xj,i,t+µi + ϕt + εi,t (2)

where the subscript i represents different cities, t represents time variables, Carboni,t repre-
sents the natural logarithm of regional CO2 emissions, Qi,t represents the polycentricity of
city i, Xj,i,t is the matrix-vector of the control variables, µi represents a city-specific effect
to control for unobserved heterogeneity, ϕt represents the control for the year-fixed effect,
and εi,t is the stochastic disturbance term.

To mitigate concerns about endogeneity and figure out the causality between poly-
centric spatial structures and CO2 emissions, we constructed two IVs that were correlated
with polycentric spatial structures but met the exogeneity condition of CO2. Specifically,
we followed Chen et al. [10] and used the river density/exchange rate (i.e., Hlhl) as the
first instrument for polycentricity [10]. Proximity to water sources could affect the spatial
structure of cities [18]. In the meantime, it is not related to CO2 emissions. Thus, river
density is a proper IV for polycentricity.
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Table 2. Descriptive statistics of variables.

Variables Obs. Mean S.D. Min Max

Carbon 5278 2.743 0.858 0.0881 5.441
Q 5269 0.924 0.540 0.252 5.498

lngy 5226 3.868 0.282 2.086 4.525
lnFDI 4672 −6.201 1.386 −15.250 −1.816

lnpeople 5295 −2.717 0.973 −7.624 0.340
lnfis 5290 −2.094 0.504 −4.221 0.994
lnsci 5279 11.370 1.270 5.727 15.430

lnurba 5240 −1.809 0.665 −3.358 1.249
Hlhl 5330 0.291 0.209 0.00577 2.278

Unemploy 5278 3.884 0.697 −0.486 7.051
LCC 5330 0.139 0.346 0 1
ETS 5330 0.0356 0.185 0 1

Rep_carbon 5071 7.841 0.569 6.047 11.51
PCE 5275 −3.104 0.765 −5.931 −0.270

Win_carbon 5278 2.742 0.844 0.739 4.652
Gti 4968 3.225 1.683 0.693 8.897

Energy 2789 13.070 1.221 4.625 16.54
Lngreencov 5243 3.488 0.459 −1.715 5.957

Lnlpg 5125 8.820 1.510 1.386 13.809
Lnws 5330 0.735 0.266 −0.302 1.582

Lnhum 5330 4.227 0.143 3.590 4.481
Lntem 5323 2.588 0.482 −2.036 3.274

We then proposed an innovative instrument, namely, the proportion of unemployment
(i.e., unemployment as a percentage of the population). It has been proven that there are
interdependencies between labor market behavior and the spatial structure of cities [19]. A
large proportion of unemployed people indicates that the city has developed excessively
or poorly, which leads to a lack of impetus for further expansion of the city, which has a
negative impact on polycentricity. Meanwhile, the proportion of unemployment cannot
affect CO2.

Finally, the ratio of river density to exchange rate and the proportion of unemployment
were IVs for polycentric spatial structure. The first stage of two-stage least squares (2SLS)
was as follows:

Qi,t = β0 + β1Hlhli,t + β2Unemployi,t + ∑ τj ∗ Xj,i,t+µi + ϕt + εi,t (3)

where Hlhli,t and Unemployi,t represent the ratio of river density to the exchange rate and
the proportion of unemployment, respectively.

The second stage of 2SLS was as follows:

Carboni,t = δ0 + δ1Q̂i,t + ∑ τj ∗ Xj,i,t+µi + ϕt + εi,t (4)

where Q̂i,t is the first-stage predicted value for the polycentricity (i.e., Qi,t).
Previous studies have verified the mediating role of transportation, household carbon

emissions, and industrial emissions in the relationship between polycentric structures and
CO2 emissions [6,11]. We proposed two innovative pathways to examine how polycentric
structures affect CO2 emissions. We hypothesized that green technology and energy
consumption might serve as potential mechanisms through which polycentric structures
influence CO2 emissions. To test these hypotheses, we measured green technology as
the logarithm of the annual number of green patent applications plus one assessing its
mediating effect on the relationship. For energy consumption, we used the logarithm of
electricity consumption to evaluate its potential mediating role in the relationship between
polycentricity and CO2 emissions. With these variables in place, we constructed the
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following model to analyze the impact of polycentric structures on CO2 emissions through
these proposed pathways:

Mi,t = γ0 + γ1Qi,t + ∑ τj ∗ Xj,i,t+µi + ϕt + εi,t (5)

where Mi,t represents mediators (i.e., green technology and energy consumption).

3. Results
3.1. Effect of the Polycentric Spatial Structures on CO2 Emissions

Based on Equation (1), Columns (1)–(3) of Table 3 reported the results with a two-
way fixed effect with robust standard errors, Driscoll-Kraay standard errors [20], and
1000 bootstrap replications, respectively. The results demonstrated a significant negative
effect of polycentricity on CO2 emissions, which implied that polycentric spatial structures
helped reduce CO2 emissions in China.

Table 3. The impact of polycentric spatial structures on CO2 emissions.

(1) (2) (3) (4) (5)

FE FE_DK FE_BS First Stage Second Stage
Variables Carbon Carbon Carbon Q Carbon

Q −0.050 *** −0.050 *** −0.050 ** −0.772 ***
(−2.61) (−3.32) (−2.48) (−4.06)

Hlhl 5.233 ***
(3.57)

Unemploy −0.029 ***
(−4.31)

Control YES YES YES YES YES
City FE YES YES YES YES YES
Year FE YES YES YES YES YES

Observations 4513 4513 4513 4496 4496
R-squared 0.947 0.947 0.947 0.882

K-P LM statistic 24.219 ***
K-P Wald F statistic 12.663

Hansen J statistic 0.219
Notes: t/z-values are in parentheses; **, and *** represent the 5%, and 1% significance levels, respectively; the
coefficients of the control variables (i.e., the secondary industry as a percentage of GDP, foreign direct investment,
population density, the percentage of budget fiscal expenditure and technology expenditure on GDP, and the ratio
of the employed population), year and time dummies are not reported to save space; the unit of river/exchange
rate is %.

3.2. Robustness Checks
3.2.1. Endogeneity

The results based on the 2SLS estimator were presented in Columns (4) and (5) of
Table 3. The estimation results of the first stage demonstrated that the associations be-
tween IVs and polycentricity were significant at a 1% level, and the F-statistic is 12.663,
surpassing the threshold for a strong instrument. The K-P LM statistic was significant at
a 1% level, indicating the IVs were related to the polycentric spatial structure. And the
Hansen J-test indicated that there were no over-identification problems and the IVs were
strictly exogenous.

The results suggested that polycentric spatial structure supports CO2 emission reduc-
tion after considering endogeneity. Compared with the coefficients in Columns (1)–(3), the
coefficients estimated by 2SLS were greater than those estimated by the two-way fixed
effect. One plausible reason was that there might be reverse causality between polycentric
spatial structure and CO2 emission because air pollution could also affect the labor mar-
ket, which would influence the spatial structure of cities [21]. The 2SLS approach helped
mitigate this potential source of bias.
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3.2.2. Alter Fixed Effects and Clustered Levels

In the baseline results, we controlled both individual-fixed effects and year-fixed
effects. To avoid the influence of unmeasured factors, we controlled for fixed effects in
the dimension of the province. Furthermore, we adopted interactive clustering that took
different clustering levels, such as city, province, and the interaction term of these two
levels, into account. The results for altering fixed effects and clustering levels were shown
in Figure 2. The blue line showed the 95% confidence interval, the orange point presented
the coefficient, and the red dotted line indicated the 0 value. The results indicated that poly-
centric spatial structure had a significantly negative impact on CO2 emissions. The fixed
effect of province dimension and diverse cluster levels did not influence this relationship;
namely, the benchmark results were robust after considering these unmeasured factors.
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3.2.3. Exclude the Interference of Related Policies

CO2 emissions highly interfered with relevant policies in China. For example, the
low-carbon city (LCC) policy emphasized CO2 emissions along with economic develop-
ment [22]. The effectiveness of LCC in CO2 emissions abatement had been verified in
pilot cities [23]. Furthermore, the emissions trading scheme (ETS), as a typical market-
oriented environmental instrument, was also conducive to reducing CO2 emissions [24].
In this regard, the interference of LCC and ETS might confound the relationship between
polycentricity and CO2 emissions.

Thus, we controlled these two policies based on the benchmark results to mitigate their
interference. The results were presented in Columns (1) and (2) of Table 4. After controlling
the relevant policies (i.e., LCC and ETS), respectively, the coefficients of polycentricity are
still significantly negative. It indicated that polycentric spatial structures helped reduce
CO2 emissions; namely, the benchmark results are robust.

3.2.4. Alter the Measurement of CO2 Emissions

The impact of polycentricity on CO2 emissions might also be influenced by the mea-
surement of CO2 emissions. To guarantee the robustness of benchmark results, we mea-
sured the CO2 emissions by Wu et al. [17] and CO2 emissions per capita. The estimated
results were shown in Columns (3) and (4) of Table 4, respectively. The impact of polycentric
spatial structure helped CO2 abatement, indicating that altering the measurement of CO2
emissions did not influence the benchmark results.
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Table 4. Robustness check: the impact of polycentric spatial structures on CO2 emissions.

(1) (2) (3) (4) (5)

Variables Carbon Carbon Rep_Carbon PCE Win_Carbon

Q −0.045 ** −0.045 ** −0.018 ** −0.128 *** −0.055 ***
(−2.33) (−2.42) (−2.52) (−2.67) (−2.92)

LCC −0.067 ***
(−4.26)

ETS −0.119 ***
(−5.83)

Control YES YES YES YES YES
City FE YES YES YES YES YES
Year FE YES YES YES YES YES

Observations 4513 4513 4313 4513 4513
R-squared 0.948 0.949 0.850 0.915 0.941

Notes: t-values are in parentheses; **, and *** represent the 5%, and 1% significance levels, respectively; the
coefficients of the control variables (i.e., the secondary industry as a percentage of GDP, foreign direct investment,
population density, the percentage of budget fiscal expenditure and technology expenditure on GDP, and the ratio
of the employed population), year and time dummies are not reported to save space.

Furthermore, the results of a regression could be sensitive to outliers, while the
CO2 emissions varied widely among 4513 city-year observations (minimum = 0.0881,
maximum = 5.441). Thus, we tailored the data at the 1% level. The results were presented
in Column (5) of Table 4. After excluding the outliers in CO2 emissions, the polycentricity
still had a significant and negative impact on CO2 emissions, indicating that the benchmark
results were robust.

3.2.5. PSM

One might argue that the CO2 abatement was not achieved by polycentric spatial
structure but by the selection bias between polycentric structure and monocentric structure.
To mitigate such selection bias, we adopted propensity scores to match cities in the poly-
centric structure with those in the monocentric structure and make them comparable. The
propensity score is estimated using a logit regression model. Columns (1)–(3) in Table 5
reported the results using nearest neighbor matching (1:4), caliper matching, and kernel
matching, respectively. The results of balance tests were reported in Appendix A Table A1
and Figure A1, Table A2 and Figure A2, and Table A3 and Figure A3, respectively. The
results of balance tests demonstrated that after matching, there was no significant bias
between cities with polycentric and monocentric structures, indicating that PSM helped
mitigate selection bias. After matching, the impact of polycentric spatial structures on CO2
emissions was still significantly negative, implying a positive role for polycentricity in
CO2 reduction.

Table 5. Robustness check: the impact of polycentric spatial structures on CO2 emissions using PSM.

(1) (2) (3)
Variables Carbon Carbon Carbon

Q −0.0558 *** −0.0508 *** −0.0508 ***
(−3.15) (−2.64) (−2.64)

Control YES YES YES
City FE YES YES YES
Year FE YES YES YES

Observations 3771 4508 4508
R-squared 0.947 0.947 0.947

Notes: t-values are in parentheses; *** represent the 1% significance levels, respectively; population density, the
percentage of budget fiscal expenditure and technology expenditure on GDP, and the ratio of the employed
population are adopted to match cities in the polycentric structure with those in the monocentric structure; the
coefficients of the control variables (i.e., the secondary industry as a percentage of GDP, foreign direct investment,
population density, the percentage of budget fiscal expenditure and technology expenditure on GDP, and the ratio
of the employed population), year and time dummies are not reported to save space.
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3.2.6. Exclude Other Confounders

Despite accounting for various confounding factors that could influence the relation-
ship between polycentric structures and CO2 emissions in our baseline results, there were
still some potential confounders that we have not considered. Factors such as canopy cov-
erage [25], energy consumption [26], wind speed [27], humidity [28], and temperature [29]
may affect carbon emissions. To minimize the impact of these confounders, we included
them as controls in our baseline results. Columns (1)–(5) in Table 6 displayed the effect
of polycentric spatial structures on CO2 emissions after controlling for canopy coverage,
energy consumption, wind speed, humidity, and temperature, respectively. The results
indicated that polycentric structures reduce carbon emissions even after accounting for the
confounding influences of these additional factors. Column (6) presented the results after
controlling for all potential confounders, and the findings remained robust.

Table 6. Robustness check: The impact of polycentric spatial structures on CO2 emissions.

(1) (2) (3) (4) (5) (6)
Variables Carbon Carbon Carbon Carbon Carbon Carbon

Q −0.052 *** −0.051 ** −0.050 *** −0.050 *** −0.050 *** −0.051 ***
(−2.77) (−2.55) (−2.60) (−2.60) (−2.59) (−2.67)

lngreencov 0.030 0.031
(1.43) (1.38)

lnlpg 0.003 0.002
(0.004) (0.41)

lnws −0.005 −0.014
(0.047) (−0.28)

lnhum −0.162 * −0.162 *
(−1.91) (−1.81)

lntem 0.022 −0.007
(0.85) (−0.30)

Control YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Observations 4473 4400 4513 4513 4510 4364
R-squared 0.948 0.947 0.947 0.947 0.947 0.948

Notes: t-values are in parentheses; *, **, and *** represent the 10%, 5%, and 1% significance levels, respectively; the
coefficients of the control variables (i.e., the secondary industry as a percentage of GDP, foreign direct investment,
population density, the percentage of budget fiscal expenditure and technology expenditure on GDP, and the ratio
of the employed population), year and time dummies are not reported to save space.

3.3. Possible Mechanisms

The analysis above demonstrated that polycentricity had a notable impact on CO2 emis-
sions. We also highlighted the mediating role that green technology and energy consumption
played in the relationship between polycentricity and CO2 emissions. By understanding this
connection, we could develop a more comprehensive understanding of the factors influencing
CO2 emissions and make more informed decisions on sustainable urban development.

The results demonstrated that polycentric structure had a positive impact on green
technology (see Columns (1)–(3) in Table 7), while had a negative impact on energy con-
sumption (see Columns (4)–(6) in Table 7). It indicated that polycentric structures promoted
green technology and reduced energy consumption, both of which were conducive to
CO2 abatement. In this regard, a polycentric structure could reduce CO2 emissions by
promoting green technology and reducing energy consumption.

3.4. Heterogeneity Analysis

The spatial structures and CO2 emissions were heterogeneous because of the different
features in each city. We emphasized the heterogeneity resulting in the administrative
hierarchy and the dependence on resources in this context. First, we grouped the sample
into municipalities directly under the central government and other cities. Second, we
hypothesized that the impact of polycentricity on CO2 varied between resource-based cities
and others because of the resource curse. The empirical results were presented in Table 8.
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Table 7. The impacts of green technology and energy consumption on CO2 emissions.

(1) (2) (3) (4) (5) (6)
Green Technology Energy Consumption

Variables FE FE_DK FE_BS FE FE_DK FE_BS

Q 0.173 *** 0.173 *** 0.173 *** −0.121 ** −0.121 −0.121 **
(3.10) (3.55) (2.85) (−2.36) (−1.63) (−2.21)

Control YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Observations 4286 4286 4286 2375 2375 2375
R-squared 0.877 0.877 0.877 0.654 0.654 0.654

Notes: t-values are in parentheses; **, and *** represent the 5%, and 1% significance levels, respectively; the
coefficients of the control variables (i.e., the secondary industry as a percentage of GDP, foreign direct investment,
population density, the percentage of budget fiscal expenditure and technology expenditure on GDP, and the ratio
of the employed population), year and time dummies are not reported to save space.

Table 8. Heterogeneity analysis for different features of cities.

(1) (2) (3) (4)
Variables PCM Non-PCM Resource-Based Non-Resource-Based

Q −0.064 −0.052 *** −0.020 −0.055 ***
(−0.17) (−2.66) (−0.55) (−2.78)

Control YES YES YES YES
City FE YES YES YES YES
Year FE YES YES YES YES

Observations 507 4006 1693 2820
R-squared 0.920 0.951 0.945 0.949

Notes: t-values are in parentheses; *** represent the 1% significance levels, respectively; the coefficients of the
control variables (i.e., the secondary industry as a percentage of GDP, foreign direct investment, population
density, the percentage of budget fiscal expenditure and technology expenditure on GDP, and the ratio of the
employed population), year and time dummies are not reported to save space.

Columns (1) and (2) in Table 8 compared the impact of polycentric structure on the
CO2 emissions of municipalities directly under the central government and the others. The
results demonstrated that polycentricity had no significant impact on the CO2 emissions of
municipalities while reduced the CO2 emissions of other cities. Columns (3) and (4) pre-
sented the relationship between polycentric structure and CO2 emissions in resource-based
cities and other cities, respectively. The results indicated that the polycentric structure af-
fected CO2 emissions neither in municipalities nor resource-based cities while significantly
reduced CO2 emissions in other cities.

4. Discussion

Our primary empirical findings suggested that polycentric structures contributed to
CO2 abatement, aligning with previous studies that found increased CO2 efficiency [11]
and decreased CO2 concentrations [4]. Monocentric structures, which partly represent
resource agglomeration in cities, tend to exacerbate emissions [30]. In contrast, polycentric
structures can mitigate agglomeration diseconomies, promote market integration, and
optimize energy efficiency [10,31], ultimately leading to CO2 reduction. Our results build
upon existing knowledge by using panel data from Chinese city regions and conducting
comprehensive robustness tests.

Green technology and energy consumption had been identified as potential mech-
anisms linking polycentric structures to CO2 emissions. On the one hand, polycentric
spatial structure is conducive to the green economy, which is inevitable for green technol-
ogy [32,33]. In the meantime, green technology is widely accepted as being environmentally
friendly and helping with CO2 reduction [34]. On the other hand, with the optimization of
the polycentric structure, mega-cities form internal subcenters represented by industrial
agglomeration, and hence strengthen the level of specialization. Therefore, in the context
of coordinated industrial development, the polycentric structure promotes green technol-
ogy. Furthermore, the polycentric spatial structure might reduce CO2 through energy
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consumption. One plausible reason is that polycentric development could affect energy
efficiency [35] and, hence, influence energy consumption. Meanwhile, energy consumption
is prone to CO2 emissions [36].

Additionally, the impact of polycentric structures on CO2 emissions was influenced by
administrative hierarchy and resource dependence. Firstly, polycentric structures had no
significant influence on CO2 emissions in municipalities, potentially due to their relatively
higher degree of regional market integration. As market segmentation can improve energy
efficiency and decrease CO2 emissions [31], cities with strong market integration might
not benefit as much from polycentric structures [10]. Secondly, the polycentric structures
did not affect CO2 emissions in resource-based cities but reduced emissions in other cities.
This can be explained by the detrimental impact of the resource curse on environmental
sustainability, as resource-based cities often have a single industry structure, which aggra-
vates CO2 emissions [37]. Resource misallocation decreases energy efficiency and, hence,
accelerates CO2 emissions [38]. Polycentric structures upgrade industry structures [39] and
hence have a relatively larger impact on cities with diverse industry structures. Namely, it
reduces CO2 emissions in cities that are not heavily reliant on resources.

5. Conclusions

Fueled by the urgency of achieving the Sustainable Development Goals (SDGs), address-
ing the rise in CO2 emissions has become a pressing concern. This study delved into the role
of sustainable urban development in mitigating CO2 emissions by investigating the impact of
polycentric structures on CO2 emissions in 278 Chinese cities from 1999 to 2017. We employed
a two-way fixed effect model to estimate our benchmark results and constructed IVs to ad-
dress endogeneity concerns. Our findings revealed that polycentric structures contributed to
CO2 emissions reduction by promoting green technology and lowering energy consumption.
Notably, the positive impact of polycentric structures on CO2 emissions was only significant
in cities that were not classified as municipalities or resource-based cities.

Our study marginally contributed to the theory. First, we figured out a robust rela-
tionship between polycentric structures and CO2 emissions, accounting for potential biases
from policy interferences, selection bias, and core variable measurements. Second, we
proposed two innovative pathways that mediated the impact of spatial structures on CO2
emissions. Third, we considered the heterogeneous effects of administrative hierarchy and
resource dependence in this context.

From our findings, we derived practical implications for achieving SDGs. First, poly-
centric structures offer a viable approach for developing countries to regulate CO2 emis-
sions. When it comes to China specifically, some cities in China should gradually build
polycentric spatial structures. Second, government departments should implement strate-
gies related to green technology and energy consumption to regulate CO2 emissions and
achieve SDGs. Third, urban planning and CO2 mitigation strategies should be tailored to
individual cities, with a focus on establishing more environmental regulations in resource-
based cities and municipalities.

In closing, we acknowledge some limitations and avenues for future research. First,
our study used county-level data to calculate the morphological polycentric index at the
city level, overlooking the functional dimensions of polycentric structures. Future studies
should explore these functional dimensions further. Second, our analysis focused on the
Pareto index in relation to city size balance, suggesting that future research could examine
the impact of spatial balance on CO2 emissions. Lastly, while our study area is China,
future studies could investigate the heterogeneous effects of diverse countries and delve
into other aspects of the SDGs to gain a more comprehensive understanding of the topic.

Author Contributions: Conceptualization, J.W. and X.Z.; methodology, X.Z.; software, J.W. and
X.Z.; formal analysis, W.D.; data curation, X.Z.; writing—original draft preparation, J.W. and W.D.;
writing—review and editing, Z.S.; visualization, W.D.; supervision, Z.S. and X.O.; project adminis-
tration, Z.S. and X.O.; funding acquisition, Z.S. All authors have read and agreed to the published
version of the manuscript.



Appl. Sci. 2023, 13, 5928 12 of 15

Funding: This work was jointly supported by the Innovative Research Program of the International
Research Center of Big Data for Sustainable Development Goals (Grant No. CBAS2022IRP04), the
National Natural Science Foundation of China (Grant No. 42171291), the Key R&D Program Projects
in Hainan Province (grant number ZDYF2020192), and the Key Research and Development Program
of Guangxi (Guike-AB22035060).

Data Availability Statement: The data on nighttime light are openly available in the Prolonged
Artificial Nighttime-Light Dataset of China at https://doi.org/10.11888/Socioeco.tpdc.271202. The
data on CO2 emissions are openly available at https://www.ceads.net/data/county/ (accessed on
8 May 2023). Other city-level data are obtained from the China City Statistical Yearbook (1999–2017).

Acknowledgments: The authors appreciate the useful discussion of editors and reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Balance Test of the Nearest Neighbor Matching (1:4).

Variables
Unmatched Mean Bias (%) Reduce Bias (%) t-Test

Matched Treated Control T P > T

lnpeople U −2.6799 −2.7279 5.0 1.81 0.071
M −2.6798 −2.7092 3.1 38.8 1.13 0.259

lnfis U −2.0714 −2.1343 12.7 4.57 0.000
M −2.0712 −2.0502 −4.2 66.7 −1.52 0.127

lnsci U 11.538 11.195 27.3 9.80 0.000
M 11.539 11.577 −3.0 88.9 −1.11 0.266

lnurba U −1.8564 −1.7648 −13.9 −5.00 0.000
M −1.8568 −1.8376 −2.9 79.0 −1.06 0.289

Notes: In the second column, U refers to the sample before employing the PSM, while M denotes the matched
sample after applying the PSM.

Table A2. Balance Test of Calliper Matching.

Variables
Unmatched Mean Bias (%) Reduce Bias (%) t-Test

Matched Treated Control T P > T

lnpeople U −2.6799 −2.7279 5.0 1.81 0.071
M −2.6800 −2.7130 3.5 31.1 1.27 0.204

lnfis U −2.0714 −2.1343 12.7 4.57 0.000
M −2.0710 −2.0606 −2.1 83.4 −0.76 0.445

lnsci U 11.538 11.195 27.3 9.80 0.000
M 11.538 11.554 −1.3 95.4 −0.46 0.643

lnurba U −1.8564 −1.7648 −13.9 −5.00 0.000
M −1.8565 −1.8474 −1.4 90.2 −0.50 0.618

Notes: In the second column, U refers to the sample before employing the PSM, while M denotes the matched
sample after applying the PSM.

Table A3. Balance Test of Kernel Matching.

Variables
Unmatched Mean Bias (%) Reduce Bias (%) t-Test

Matched Treated Control T P > T

lnpeople U −2.6799 −2.7279 5.0 1.81 0.071
M −2.6798 −2.7059 2.7 45.6 1.01 0.315

lnfis U −2.0714 −2.1343 12.7 4.57 0.000
M −2.0712 −2.0654 −1.2 90.8 −0.42 0.672

lnsci U 11.538 11.195 27.3 9.80 0.000
M 11.539 11.531 0.6 97.8 0.22 0.826

lnurba U −1.8564 −1.7648 −13.9 −5.00 0.000
M −1.8568 −1.8391 −2.7 80.7 −0.98 0.328

Notes: In the second column, U refers to the sample before employing the PSM, while M denotes the matched
sample after applying the PSM.

https://doi.org/10.11888/Socioeco.tpdc.271202
https://www.ceads.net/data/county/
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