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Abstract: The three-body coupling grinding mode (3B-CGM) of spheres not only guarantees lot
diameter variation and batch consistency of precision ball processing on the balling principle but also
makes structural control easy and feasible. To assure balling quality under the three-body coupling
grinding mode, it must improve dynamic mechanical precision control ability during processing. This
study detailed contents covered the following three aspects: (1) The velocity equilibrium equation
under the three-body coupling grinding mode was established under ideal conditions. This velocity
equilibrium equation was transformed into the velocity equilibrium equation in the form of θ,
Ωb, and ωb, thus laying the foundations to analyze the influencing degree of grinding uniformity;
(2) On the basis of the velocity equilibrium equation, the characteristics of various sliding states were
analyzed. Moreover, the sliding–friction ratio (Sc) was established to analyze the variation laws of the
sliding state. The acquired mathematical model of evaluation indexes could realize optimization of
the system control precision; (3) A multibody dynamics analysis software, i.e., ADMAS, was applied,
and the standard deviation of uniformity of spherical track points in the simulation was created to
evaluate influences of subsequent mechanical structural errors, including excessive loads, run-out,
the tilt and out-of-roundness of upper and lower grinding discs, the diameter of grinding discs,
and the V-shaped groove angle of grinding discs. This study establishes an accurate motion control
model, as well as the optimal parameter analysis method. It improved the fine control over motion
states. These models and indexes lay theoretical foundations for the realization of approximately
ideal grinding effect in practical mass production.

Keywords: three-body coupling grinding mode (3B-CGM); precision ball; sphericity; rotating angular
velocity; grinding uniformity

1. Introduction

Precision balls area core basic element in roundness-measuring instruments, peg-tops,
precision bearings, ball crews, spherical guides, and precision-measuring instruments. It
has huge requirements and has been extensively applied to various fields, such as preci-
sion machinery, petrochemical engineering, military science, national defense, aerospace,
etc. [1–7]. The precision and batch consistency of spheres considerably influence the perfor-
mance of precision functional components [8–11]. At present, industries, such as precision
instruments and precision machine tools are proposing increasing demands for precision
balls. Thus, the development of a whole set of high-efficiency and high-precision spherical
technology and equipment for batch processing is urgent.

To increase further the ultra-precision machining technological level, developed coun-
tries are developing new methods and techniques to achieve new breakthroughs.

The batch processing of precision balls mainly inherits the traditional steel ball pro-
cessing technique (V-shaped groove processing technique) [12]. It leads to poor processing
precision and poor batch consistency [13]. High-precision balls are usually picked out
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of batch-processing balls, which has been a challenge in the field of high-precision ball
processing in China and foreign countries [10,11]. Moreover, the degree of production
automation is low, and production technology is influenced by human factors [14–20].

The project team innovatively proposed a three-body coupling grinding technique
that can realize ultra-precision ball grinding. It guarantees high precision, lot diameter
variation, and batch consistency during the processing of precision balls. The working
principle of the three-body coupling grinding technique is shown in Figure 1 [21].
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Figure 1. Principle of dual-disc rotatory grinding.

However, many factors influence grinding precision. Given factors, such as changes
in processing conditions or structural errors of grinding equipment, the ball does not
move in the theoretically predicted way, thus influencing the processing precision. To
address these problems, influencing factors of grinding uniformity, which can further affect
balling precision in practical processing, were chosen and analyzed theoretically one by
one. The influencing laws of these factors on grinding uniformity were deduced, thus
further improving dynamic mechanical precision control ability during processing. This
deduction assures that precision balls can achieve high precision and batch consistency
stably and effectively under the three-body coupling grinding mode.

2. Comprehensive Performance Analysis of Precision Ball Grinding Modes in China
and Foreign Countries

To reduce the processing cost and improve the processing precision, efficiency, and
consistency of balls, many scholars have proposed several new processing methods in
accordance with the characteristics of ball processing, such as the magnetic fluid grinding
method, grinding mode with positive control over rotating angular velocity, three-body
coupling grinding mode, and so on [21–27].

To realize the high-efficiency grinding of precision balls, Tani and Kawata [28] pro-
posed the magnetic fluid processing (MFP) of precision balls. After improvement by many
scholars [29,30], the processing efficiency of precision balls has been improved remarkably.
The principle is shown in Figure 2. MFP uses magnetic fluid as the abraser. Given that a
high rotating speed (>10,000 rpm) of the main shaft was applied, it can realize the high-
efficiency processing of precision balls. However, its applications are restricted by the high
cost and short service life of the magnetic fluid.
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Figure 2. Structural schematic of magnetic fluid:1—grinding groove; 2—ceramic ball-billet;
3—driving axis; 4—mixture of magnetic fluid and abrasive materials; 5—floating plate; 6—magnet.

Childs et al. [31–33] developed the nonmagnetic fluid grinding mode of ceramic balls
(Figure 3). They replaced the magnetic fluid with amixture of cheap water and glycerin,
replaced the grinding discs with a resin binder diamond wheel, and produced adaptive
supporting forces with a spiral spring [21–27].
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In the traditional V-shaped groove grinding mode, the rotating angular velocity (θ) is
only determined by the diameters of the ball and the groove on the lower grinding disc, θ
is hardly changed during processing, and it is small [29,34–44]. The ball can only make the
grinding motion with “constant relative direction” (the included angle between the rotating
axis and the revolving axis of the ball does not change). The grinding tracks formed by the
contact points between the ball and the grinding disc on the spherical surface are groups
of rings around the rotating axis of the ball [21]. These rings are disadvantageous for the
spherical surface to achieve uniform grinding quickly and restrict the improvement of the
processing precision and efficiency of the ball.

RitjiKurobe et al. from Kanazawa University proposed a grinding mode with
positive control over rotating angular velocity (known as coaxial three-disc grinding
mode, Figure 4) [38–44]. The lower grinding disc in the V-shaped groove grinding
mode is cut at the V-shaped groove; thus, the whole system is composed of three pieces
of grinding discs that can rotate independently. The rotating angular velocity of the
ball–billet is adjusted by controlling the rotating speed changes of these three grinding
discs. Grinding tracks are spatial spherical curves around the rotating axis of the
ball–billet, and they can cover the whole ball–billet surface. Such grinding device has
complicated systems, thus restricting its use in practical production.
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To reduce the structural complexity and decrease the power source of the grinding
equipment, the rotating angular velocity can change continuously within [−90◦, 90◦]. Grind-
ing tracks can cover the whole spherical surface. Lv Binghai and Yuan Julong et al. [21,40]
analyzed the grinding mode with positive control over the rotating angular velocity and
found that the driving of the upper grinding disc in the grinding device was redundant
and it meets the increasing needs of precision balls better. As a result, it offsets the low
efficiency and high cost of traditional processing techniques [32].

The principle of the three-body coupling grinding mode is shown in Figure 1 [24]. The
three-body coupling grinding mode is appropriate for the small-lot production of high-
precision balls [32]; it can realize grinding movement with “variable relative directions” by
only controlling rotating speed changes of the inner and outer discs of the lower grinding
disc. It makes grinding tracks cover the spherical surface uniformly, thus achieving high-
efficiency and high-precision grinding of the ball–billet. Given that the driving and gearing
devices decrease from three to two, the equipment structure is simplified considerably. The
requirements for processing and assembly precision are decreased accordingly.

Through the above analysis, 3B-CGM has obvious comprehensive advantages in
machining accuracy, machining efficiency, and mechanical structure.

3. Balling Principle of the Three-Body Coupling Grinding Mode

On the basis of the motion equation of a ball–billet under the three-body coupling
grinding mode [21,22], the basic grinding principle of precision balls was analyzed in this
section. This was used as the theoretical basis to analyze the influencing factors of the
three-body coupling grinding mode. Moreover, the motion parameters of a ball–billet
under grinding mode with positive control over the rotating angular velocity, traditional
V-shaped groove grinding mode, and dual-disc grinding mode were compared.

Geometric Motions of a Ball–Billet under the Three-Body Coupling Grinding Mode

Wang and Lv analyzed the geometric motion of a ball–billet under the grinding mode
with positive control over the rotating angular velocity [21,22].

As shown in Figure 5, under the grinding mode with positive control over the
rotating angular velocity, the processed ball–billet contacts with the grinding disc at
points A, B, and C in the V-shaped groove. Specifically, Discs A, B, and C rotate inde-
pendently, and their rotating speeds are ΩA, ΩB, and ΩC, respectively. The ball–billet
makes revolution and rotation under the effects of three points. Relevant parameters
are shown in Table 1.
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Figure 5. Geometric motion under the grinding mode with positive control over the rotating
angular velocity.

Table 1. Parameter signs of the grinding mode with positive control over the rotating angular velocity.

Name Signs

Contact points between upper and lower grinding discs and the
precision ball

Distance from three contact points to the rotating axis of the lower
grinding disc

Rotating speeds of grinding disc

A, B, C

RA, RB, RC

ΩA, ΩB, ΩC

Ball–billet radius
Revolutionary angular velocity of the ball

Rotating angular velocity of the ball
V-shaped groove angles

rb
Ωb
ωb

a and β

We suppose that the ball in this movement is a “real ball”. In other words, it is a
perfect circle at any cross-section and rolls simply. In accordance with this hypothesis, the
equilibrium equation set of speed at Points A, B, and C was obtained:

RAΩA = RAΩb −ωbrb cos θ
RBΩB = RAΩb + ωbrb sin(α + θ)
RCΩC = RAΩb + ωbrb sin(β− θ)

(1)

In practical grinding discs, α = β; therefore,
tan θ = 1+sin α

cos α ·
RBΩB−RCΩC

RBΩB+RCΩC−2RAΩA

Ωb = RBΩB+RCΩC−2RAΩA sin α
2RA(1+sin α)

ωb = RBΩB+RCΩC−2RAΩA
2rb(1+sin α) cos θ

(2)

When ΩA = 0 and ΩB = ΩC = Ω in Equation (1), it is transformed into the velocity equi-
librium equation, i.e., Equation (3), under the V-shaped groove grinding mode. Similarly, θ,
Ωb, andωb can be calculated, as shown in Equation (4).

0 = RAΩb −ωbrb cos θ
RBΩ = RAΩb + ωbrb sin(α + θ)
RCΩ = RAΩb + ωbrb sin(α− θ)

(3)


θ = tan−1( rb

RA
sin α)

Ωb = RAΩ
rb cos(1+sin a)

ωb = Ω
1+sin α

(4)
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As shown in Equation (4), θ under the V-shaped groove grinding mode is determined
by rb and RA, but it is unrelated to the rotating speed of the grinding disc (Ω) [22]. Given
that the geometric parameters of the grinding discs are fixed, the rotating angular velocity
of the ball under the V-shaped groove grinding mode is constant. Given rb << RA, θ ≈ 0◦.
Therefore, a ball–billet can only make a grinding motion with “constant relative direction”.
The contact points between a ball–billet and the grinding disc form a group of concentric
grinding tracks around the rotating axis of the ball–billet on the ball–billet. Hence, the
workpiece cannot be ground uniformly, and the spherical surface cannot achieve uniform
grinding quickly.

Similarly, when ΩA = 0 and ΩB 6= ΩC in Equation (1), it is transformed into the velocity
equilibrium equation under the three-body coupling grinding mode. In the same way, θ,
Ωb, andωb can be calculated (Equation (5)):

tan θ = 1+sin α
cos α ·

RBΩB−RCΩC
RBΩB+RCΩC

Ωb = RBΩB+RCΩC
2RA(1+sin α)

ωb = RBΩB+RCΩC
2rb(1+sin α) cos θ

(5)

where 1+sin α
cos α in tan θ is constant, and it is determined by the geometric angle of the grinding

disc. Given RB ≈ RC, tan θ is determined by the rotating speed of the grinding disc: ΩB−ΩC
ΩB+ΩC

.
Theoretically, tan θ ranges within (−∞, +∞). In other words, θ values within [−90◦, 90◦].
Thus, grinding tracks can cover the whole spherical surface under dual-disc grinding mode
by adjusting ΩB and ΩC of the lower grinding disc. The ball–billet is ground uniformly. The
distribution of grinding tracks on the spherical surface is mainly determined by rotating
angular velocity and rotating angular velocity, but it is unrelated to the revolving speed of
the ball–billet [25,26].

4. Effects of Ball–Billet and Grinding Disc Slip on Rotating Angular Velocity

For the convenience of analysis in the above section, itis hypothesized that no relative
motion occurs between the ball–billet and grinding discs (slip-free). However, slip occurs
between the ball and grinding discs in practical processing [21–23] due to uneven pressures,
friction coefficients, and abrasive materials at different contact points between the ball and
the grinding discs. The ball–billet may not roll simply as assumed in the ideal conditions.
The movement observation of the ball–billet during processing also proves that slip exists
at any time. The existence of slip surely influences the motion state of the ball–billet and
brings deviations in the angle of rotation, rotating angular velocity, and revolving speed of
the ball from the ideal theoretical analysis. Finally, it influences the analysis of grinding
uniformity. In this section, key attention is paid to analyzing the relative slip of the ball–
billet with the inner and outer discs, as well as the influences of such slip on the grinding
uniformity of the spherical surface.

4.1. Relative Slip of the Ball–Billet with Inner and Outer Discs

For the convenience of analysis, the ball–billet is hypothesized to make only relative
slippage with the inner disc but has no slip with other grinding discs. In other words,
VA = VB = 0 and VC 6= 0, where VA, VB, and VC are there lative velocities of the grinding
discs to the ball.

Here, SC = VC
RCΩC

is the sliding–friction ratio between the ball–billet and the inner

disc. Nt = ΩB
ΩC

is the rotating speed ratio between inner and outer discs. As shown in
Equation (2) [21,45],

Ωb =
RBΩB + RCΩC(1− SC)

2RA(1 + sin α)
⇒ Ωb

ΩC
=

RBNt + RC(1− SC)

2RA(1 + sin α)
(6)

tan θ =
1

RBNt + RC(1− SC)

(
1 + sin α

cos α

)
× 2RBNt −

1 + sin α

cos α
(7)
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The grinding structural parameters in Table 2 were brought into Equations (6) and (7)
for calculation. To disclose the influences of slip on the revolving speed of the ball–billet,
a rotating speed relation map was plotted on the basis of the above calculation results by
using Ωb/ΩC and the rotating angular velocity as the y-axis and the rotating speed ratio of
inner and outer discs (Nt) as the x-axis. Calculation results are shown in Figures 6 and 7.
On this basis, the relations between Ωb/ΩC and Nt, as well as that between θ and Nt under
different sliding-friction ratios (Sc) between the ball–billet and inner disc, could be concluded.
In Figure 6, Nt ranges within [−10, 10]. When Sc = 0, it is the calculation result under no slip
between the ball–billet and the grinding disc.

Table 2. Parameters of the grinding structure.

Structural
Parameters

Ball Diameter
db (mm)

Rollaway Radius RA
(mm)

V-Shaped Groove
Angle α = β

10 130 45◦

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 25 
 

4.1. Relative Slip of the Ball–Billet with Inner and Outer Discs 
For the convenience of analysis, the ball–billet is hypothesized to make only relative 

slippage with the inner disc but has no slip with other grinding discs. In other words, VA 

= VB = 0 and VC ≠ 0 , where VA, VB, and VC are there lative velocities of the grinding discs to 
the ball. 

Here, 
C

C
C C

VS
R

=
Ω   is the sliding–friction ratio between the ball–billet and the inner 

disc. 
B

t
C

N Ω=
Ω   is the rotating speed ratio between inner and outer discs. As shown in 

Equation (2) [21,45], 
( )

( )
( )

( )
1 1

2 1 sin 2 1 sin
B B C C C B t C Cb

b
A C A

R R S R N R S
R Rα α

Ω + Ω − + −ΩΩ =  =
+ Ω +  

(6)

( )
1 1 sin 1 sintan 2

1 cos cosB t
B t C C

R N
R N R S

α αθ
α α

+ + = × − + −    
(7)
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As shown in Figure 7, the influencing degrees of Sc on the motion state of the ball
were different when a slip occurred between the ball–billet and the inner disc. With the
increase in Sc, the influencing degrees of the rotating speed of the inner disc on the rotating
angular velocity and the revolving speed of the ball–billet are decreased. When Sc = 1,
the relative movement velocity between the ball–billet and the inner disc was equal to the
linear velocity on the grinding disc. In other words, the rotation of the inner disc may
not cause ball movement. The ball–billet and the grinding discs are considered in the
state of complete slip. The relation curve in Figure 6 passes through the origin (0, 0), and
Ωb/ΩC= 0. At this moment, the rotation of the outer disc directly determines the motion
state of the ball–billet. In Figure 7, the rotating angular velocity may not change with Nt
but is a constant. With the increase in Sc, Nt can decrease relatively when θ can change
comprehensively within [−90◦, 90◦]. However, the variation degree of θ is intensified.
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As shown in Figure 7, when Sc = 0, it means that the ball blank and the grinding disc do
not slide; when Sc = 1, it means that the ball blank and the grinding disc are in a state of
complete skid, and the curve in the middle represents the intermediate transition state.

4.2. Relative Sliding between theBall–Billet and the Outer Disc

This study sets the sliding between the ball–billet and the outer disc only. In other
words, VA = VC = 0 and VB 6= 0. Similarly, the relation between Ωb/ΩC = 0 and
Nt, as well as that between θ and Nt, can be deduced from Equation (2), as shown in
Equations (8) and (9).

Ωb
ΩC

=
RBNt(1− SB) + RC

2RA(1 + sin α)
(8)

tan θ =
1− SB

RC
RB Nt

+ (1− SB)

(
1 + sin α

cos α

)
× 2− 1 + sin α

cos α
(9)

where SB = VB
RBΩB

is the sliding–friction ratio between the ball–billet and the outer disc.
The structural parameters in Table 2 were brought into Equations (8) and (9). Based on
calculation results, Figure 8 can be plotted.
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Similar to the analys is in the above section, the following conclusions are drawn:

(1) With the increase in the sliding–friction ratio between the ball–billet and the outer
disc (SB), the slope of the relation curve between Ωb/ΩC and Nt decreases gradually.
However, the intersection point between the relation curve and the y-axis is kept
constant under different SB. When SB = 0, Ωb/ΩC is a constant value. When SB 6= 0,
Ωb/ΩC increases with the increase in Nt. This result demonstrates that when the
rotating speed of the inner disc is constant, the revolving angular speed (Ωb) of the
ball–billet may also increase with the increase in Nt. The variation of the revolving
speed of the ball–billet is intensified with the decrease in SB;

(2) With the reduction in SB, the ball–billet can realize the variation of rotating angular
velocity within [−90◦, 90◦] in the relatively small variation range of Nt. When com-
plete slippage occurs between the ball and the outer disc (SB = 1), the motion state of
the ball–billet is completely determined by the inner disc, and θ is a constant value.

Based on the above analysis, the relative sliding behavior of the ball–billet with
inner and outer discs have similar influences on the motion state of the ball–billet.
Given that the slippage between the ball–billet and grinding discs has direct influences
on the variations of the rotating angular velocity, revolving speed, and other kinetic
parameters, it influences the distribution of the grinding tracks on the spherical surface
directly. Such influencing degree can be analyzed by the sliding-friction ratio between
the ball–billet and the grinding discs.
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4.3. Critical Conditions of Relative Slippage Betweenthe Ball–Billet and the Grinding Discs

The only effects of relative slippage between the ball–billet and grinding discs on the
motion of the ball–billet have been discussed in the above section. In practical processing,
complicated factors, including the friction coefficient between ball–billet and grinding discs,
loads of ball–billet, processing precision of rollaway of the grinding disc, distribution of
grinding liquid, viscosity of grinding liquid, and so on, may cause such relative motion. In
this study, stress relation during the motion of ball–billet was analyzed to investigate the
causes and critical conditions for relative motion between the ball–billet and grinding discs.

The frictional forces between the ball–billet and three contact positions of the grinding
discs were FA, FB, and FC: 

FA = WA · µA
FB = WB · µB
FC = WC · µC

(10)

To analyze the critical conditions for the sliding of the ball–billet, it is hypothesized
that frictional force can ensure a slip-free motion of the ball–billet, and the frictional force
between the ball–billet and the grinding disc reaches the maximum. According to the
relation equation of gyroscopic moment during the motion of the ball–billet,

[M∗] = IΩbωbcos θ = (FA + FB + FC) rb = (WA µA + WB µB + WC µC) rb, (11)

Where [M*] is the critical gyroscopic moment when the frictional force can guarantee
the slip-free motion of the ball–billet. Given the fixed processing loads, the frictional
force produced by the grinding disc and ball–billet has some limits. This decides that
the gyroscopic moment on the ball–billet has some limit. In other words, the rotating
angular velocity and revolving speed of the ball–billet cannot be increased infinitely during
processing. However, the rotating speed (it is not increased infinitely, but it can achieve a
high rotating speed for the ball–billet) cannot be increased continuously during grinding
under the effect of an external driving device. In summary, some critical value of rotating
speed exists between the ball–billet and grinding discs under some processing conditions.
Under ideal conditions, no relative slippage occurs between the ball–billet and grinding
disc when the rotating speed of the grinding disc is lower than the critical value. Under
this circumstance, the rotating angular velocity and revolving speed of the ball–billet may
increase with the increase in the rotating speed of the grinding disc. When the rotating
speed of the grinding disc exceeds such a critical value, the rotating angular velocity and
revolving speed of the ball–billet may not increase with the increase in rotating speed,
thus having relative slippage. This critical speed is related to the frictional coefficient and
processing loads. The higher frictional coefficient and processing loads lead to higher
critical speed.

For the convenience of analysis, the processing structure is hypothesized to be an ideal
mechanism without errors. Hence,

IΩbwb cos θ = (WAµA + WBµB + WCµC)rb

⇒
mb(RCΩC)

2
(

RB
RC

Nt+1
)2

10RA(1+sin α)2 = (WAµA + WBµB + WCµC)rb
(12)

Here, the Ø10 mm ball was chosen as the analysis object (mb = 10 g). Parameters in
Table 2 were brought in to analyze under loading conditions of 1 N/ball and 2 N/ball. In
this section, the frictional coefficients between the ball and three grinding discs are the same
on the three contacting points. With references to the frictional coefficient among various
materials [45] and previous research results [46], the frictional coefficient between the
ball–billet and the grinding disc was set to 0.1. The above parameter settings were applied,
and the critical rotating speed of the grinding disc under different loading conditions could
be calculated. The relation curve between the critical rotating speeds of the inner and outer
discs and Nt (ΩB/ΩC) is shown in Figure 9.
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Figure 9. Critical speeds of the inner and outer discs under different Nt.

The rotating speed of the outer disc in correspondence to the inner disc is positively
related to Nt. Therefore, the critical rotating speed of the ball–billet and the inner disc is
lower. Given a higher processing load, the produced frictional force is higher, and it can
provide a greater gyrostatic moment; thus, the ball–billet and revolving speed that the
ball–billet can undertake are greater. As a result, the corresponding critical rotating speed
is higher.

4.4. Motion Characteristics of Balls under the Sliding State

According to Johansson et al. [35], the frictional force between the ball–billet and the
grinding disc could be calculated in accordance with a relative sliding speed. Based on the
above analysis, the relative sliding velocities at three contact points between the ball–billet
and grinding disc are VA, VB, and VC.

VA = RAΩb −ωbrrb
VB = RBΩB − RAΩb − rb[ωbr sin α + ωbz cos α]
VC = RCΩC − RAΩb − rb[ωbr sin β−ωbz cos β]

(13)

Based on previous studies [21,22], the components of rotating speeds (perpendicular
to the grinding disc surface) and rolling speeds (parallel to the grinding disc surface) at
three contact points between the ball–billet and grinding disc are

ωs,A = ωb sin θ
ωs,B = ωb cos(α + θ) + ΩB sin α
ωs,C = ωb cos(α− θ) + ΩC sin α
ωr,A = ωb cos θ
ωr,B = ωb sin(α + θ) + ΩB cos α
ωr,C = ωb sin(α− θ) + ΩC cos α

(14)

The calculation formulas of frictional force (Fi) and torque (Mi) under sliding condi-
tions are deduced in Reference [46]: Fi/(µiWi) = tanh[1.275(ei/ai)(tanh(0.47χi)

n)1/n]

[Fi/(µiWi)]
2 +

{
Mi/[0.56(tanh(0.3χi)

n)1/n]µiaiWi

}1.5
= 1.0

(15)

where Wi denotes the processing loads, Fi is the frictional force, Mi is the friction torque,
and n refers to a correction index. According to references [46,47], n = 2. Then,

Fi = µiWitanh[1.275(ei/ai)(tanh(0.47χi)
2)1/2]

Mi = 0.56µiaiWi

1−

Fi

/
µiWi

2


2/3[
tanh(0.3χi)

2
]1/2 (16)
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where a refers to the Hertz contact radius on contact points between the ball–billet and

grinding discs, and ai =

0.75WirB

/
E′i

1/3

. e refers to the eccentric moment of the spin

axis and the contact point centers of the ball–billet in its contact regions with the grinding
disc. Moreover, ei = Vi/ωs,i.

Equation (14) was brought in, and Equation (16) could calculate the mechanical
equilibrium equation when some relative slippage occurs between the ball–billet and the
grinding disc. 

WB sin α + WC sin α− G−WA − FB cos α + FC cos a = 0
R∗ − FA + FC sin α + FB sin α + WB cos α−WC cos α = 0
(FA + FB + Fc) · rb −M∗ = 0

(17)

In the above text, the frictional force and frictional torque on the contact points between
the ball–billet and grinding disc were brought into Equation (17) to calculate the rotating
angular velocity and revolving angular velocity of the ball–billet under this circumstance.
The variation of the revolving speed of the ball–billet with the rotating speed of the outer
disc under different loading conditions when the rotating speed of the inner disc is fixed at
10 rpm is shown in Figure 10. The ideal variations of the revolving speed with loads are
the same curve, and the revolving speed increases with the increase in the rotating speed
of the outer disc. Given frictional force, the critical rotating speeds of the grinding disc
under different loads vary. The critical rotating speed is positively related to processing
loads. When the rotating speed of the grinding discs is lower than the critical rotating
speed, the rotating speed and revolving speed of the ball–billet increase quickly. When the
rotating speed of the grinding disc exceeds the critical value, the growth amplitude of the
revolving speed of the ball–billet decreases sharply due to the slow increase in frictional
force between the ball–billet and the grinding disc with the relative sliding speed.
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5. Effects of Mechanism Error on the Rotating Angular Velocity of the Ball

The above analyses hypothesize that the processing structure is in the ideal state, and
no structural errors are found. Given manufacturing and assembly errors, having some
errors in practical processing mechanisms, such as run-out and tilt of grinding discs, is
inevitable. Therefore, the manufacturing and assembly accuracy of the processing structure
influence the motion of the ball–billet, thus influencing the machining effect of the ball–
billet. In this section, the effects of geometric errors (e.g., face run-out, tilt, and groove of
the grinding surface) on the grinding process are discussed. To analyze the influencing
degrees of various mechanism errors on grinding uniformity, a numerical model simulation
was applied.
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5.1. Establishing the ADAMS Numerical Simulation Model

In this study, a numerical model of a three-body coupling grinding mode was con-
structed on the basis of the Automatic Dynamic Analysis of Mechanical System (ADAMS)
developed by MSC. This software can easily conduct nonlinear kinetic analysis, and it has
an advanced numerical analytical technology. It is convenient for the parameter analysis of
mechanical system performance, and it meets the requirements of the simulation analysis of
the three-body coupling grinding process [30,48]. Hence, the optimal mixing ratio between
the mechanical parameters of grinding discs and the diameter of the processing ball was
determined on the basis of this numerical model. Moreover, the relationship between
various motion states and the grinding uniformity of the ball during the grinding process
was analyzed.

The 3B-CGM numerical model is established, and the ADAMS numerical simulation
model is shown in Figure 11. The variables of parameterized points are shown in Table 3.
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Table 3. Meaning and values of design variables.

Name of Design Variables Meanings

TC Period of rotating speed

DV_QIU Radius of the ball

DV_RA Distance from the ball center to the spin axis of the grinding disc

DV_H Height position of the upper grinding disc

DV_A Lateral angle of the V-shaped groove

DV_B Inner angle of the V-shaped groove

DV_WAIPAN1
DV_WAIPAN2 Design variables of the outer disc shape

DV_NEIPAN1
DV_NEIPAN2 Design variables of the inner disc shape

To make the simulation analysis results of the ADAMS numerical model of the three-
body coupling grinding agree with practical processing results as much as possible, the
balling geometry and motion states under the three-body coupling grinding mode were
analyzed. Moreover, the grinding was in the finish machining stage, when the material
removal and geometric shape of the ball changed slightly. Hence, the following simulation
conditions were made to model the three-body coupling grinding mode [30,48,49]:
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• Ignore the corrosion of the grinding fluid or chemical reactions caused by friction
during grinding;

• Ignore the material removal effect;
• A single ideal real ball is used as the analysis object;
• Rigid contact occurs between the ball and grinding discs without relative slippage.

Additionally, the revolving and rotating states of the ball center in the ground coor-
dinate system were calculated by using the system measuring function in the ADAMS
software. Meanwhile, the revolute pairs and driving were added to the reference ball in
the model to solve the problem in the motion state measurement at contact points. Data
of the revolving angular speed of the ball center was input into the driving. Finally, the
coordinates of the reference points were transformed into the coordinate system of the ball
center from the ground coordinate system, thus enabling the plotting of the grinding tracks
of the ball [30,48,49].

To study whether grinding tracks cover the spherical surface uniformly, a triangular
meshing technique was applied (Figure 12) to divide the spherical surface into several
triangular zones with the same shape and area. In accordance with the simulation results
of grinding tracks, the grinding track points were sampled regularly. Then, a statistical
analysis of the quantity of grinding track points in each triangular zone was conducted.
The standard deviation (S) of the quantity of grinding track points in each region was
calculated to characterize grinding uniformity. The higher S value indicates the poorer
distribution uniformity of the grinding track points.
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In this model, the single-factor analysis method was applied. The inner disc diameter
and ball diameter were changed successively during simulation grinding to obtain distri-
bution maps of grinding track points under several groups of different ratios between ball
diameters and disc diameter. Moreover, the S of the quantity of grinding track points was
calculated. The distribution map of grinding track points under different groove angles
and the corresponding S was acquired.

5.2. Effects of Run-Out of Lower Grinding Disc

The face run-out of the lower grinding disc is mainly caused by the manufacturing and
assembly errors of parts. The face run-out of the lower grinding disc influences loads on the
ball–billet and its motion state directly. The impacts of loads cause adverse influences on
the processing accuracy of the ball–billet and the quality of the spherical surface. Under the
three-body coupling grinding mode, the lower grinding disc is divided into two discs, with
inconsistent run-out directions, thus easily causing load changes and, thereby, influencing
sphericity.

The face run-out of the lower grinding disc can be attributed to axial and radial run-
outs. The influences of the axial run-out and radial run-out of the inner disc on the contact
state of the ball–billet are shown in Figure 13.
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Figure 13. Influences of face run-out on the contact state of the ball–billet: (a) ideal conditions;
(b) axial run-out of the inner disc; (c) radial run-out of the inner disc.

Similar results are observed in the run-out of the outer disc [26]. Therefore, only the
situation when the inner disc faced run-out was examined here. Moreover, the upper grinding
disc of the processing equipment was in the elastic pressure state and could move vertically.
Given the existence of mechanism error, the contact points between the ball–billet and grinding
disc were inconsistent with the ideal contact positions. The practical contact points were A′,
B′, and C′, respectively. Accordingly, the distances from the three contact points to the rotating
axis of the grinding disc were RA

′, RB
′, and RC

′, respectively. Hence, the axial run-out distance
of the inner disc was ∆hz, and α = β, RA

′ = RA + sin α
2 cos α ∆hz. Moreover,{

RB
′ = RA

′ + rb cos α = RA + sin α
2 cos α ∆hz + rb cos α

RC
′ = RA

′ − rb cos α = RA + sin α
2 cos α ∆hz − rb cos α

(18)

Equation (18) was brought into Equation (2), and
tan θ = 1+sin α

cos α ·
(RA+

sin α
2 cos α ∆hz+rb cos α)ωB−(RA+

sin α
2 cos α ∆hz−rb cos α)ωC

(RA+
sin α

2 cos α ∆hz+rb cos α)ωB+(RA+
sin α

2 cos α ∆hz−rb cos α)ωC

ω =
(RA+

sin α
2 cos α ∆hz+rb cos α)ωB+(RA+

sin α
2 cos α ∆hz−rb cos α)ωC

2(RA+
sin α

2 cos α ∆hz)(1+sin α)

ωb =
(RA+

sin α
2 cos α ∆hz+rb cos α)ωB+(RA+

sin α
2 cos α ∆hz−rb cos α)ωC

2rb(1+sin α) cos θ

(19)

Similarly, given a radial run-out value of ∆hj, RA
′ = RA + 1

2 ∆hj. Therefore,{
RB
′ = RA

′ + rb cos α = RA + 1
2 ∆hj + rb cos α

RC
′ = RA

′ − rb cos α = RA + 1
2 ∆hj − rb cos α

(20)

Equation (20) was brought into Equation (2). Therefore, Equation (21) can be deduced
as follows: 

tan θ = 1+sin α
cos α ·

(RA+
1
2 ∆hj+rb cos α)ωB−(RA+

1
2 ∆hj−rb cos α)ωC

(RA+
1
2 ∆hj+rb cos α)ωB+(RA+

1
2 ∆hj−rb cos α)ωC

ω =
(RA+

1
2 ∆hj+rb cos α)ωB+(RA+

1
2 ∆hj−rb cos α)ωC

2(RA+
1
2 ∆hj)(1+sin α)

ωb =
(RA+

1
2 ∆hj+rb cos α)ωB+(RA+

1
2 ∆hj−rb cos α)ωC

2rb(1+sin α) cos θ

(21)

As shown in Equation (21), when the lower grinding disc has face run-out, the geomet-
ric kinematic equation of the ball is the same as the original one. To study the influences of
run-out on the grinding of the ball, MATLAB was applied for simulation.
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Table 4 shows the setting conditions of simulation, ∆hz and ∆hj are distributions of
grinding tracks on the spherical surface at ±2, ±1, and ±0.1 mm. Specifically, the radial
unidirection was removed because the disc was symmetric. Figure 14 shows the distribution
of spherical grinding trajectory under different end-hop conditions. The distribution of
grinding tracks on the spherical surface when ∆hz = 0 and ∆hj = 0 is the distribution of
grinding tracks under ideal conditions (no face run-out in the grinding disc).

Table 4. Settings of the run-out of the inner disc.

Simulation Parameters

Ball diameter rb (mm) 15

Radius of grinding disc RA (mm) 300

V-shaped groove angles α, β (rad) π/4

Rotating speeds of Grinding disc
ΩC (rpm) 20

ΩB (rpm) Variation (Reference to Figures 2–4)

Axial run-out distance ∆hz ±0.1 mm, ±1 mm, ±2 mm

Radial run-out distance ∆hj 0.1 mm, 1 mm, 2 mm

Simulation time (s) 600

Time interval ∆t (s) 0.06
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Figure 14. Distribution of tracks on the spherical surface under different face run-out situations of the
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Effects of face run-out of inner disc. Table 5 shows that when the lower grinding
disc has axial and radial run-outs, STD changed slightly compared with that under ideal
conditions. The spherical surface is covered by grinding the tracks uniformly.

Table 5. Standard deviation (STD) of spherical grinding uniformity under different face run-out of
the inner disc.

Degree of Run-Out STD

∆hz = 0 mm (or ∆hj = 0 mm) 1.44
∆hz = 0.1 mm (or ∆hj = 0.1 mm) 1.5601

∆hz = 1 mm (or ∆hj = 1 mm) 1.6883
∆hz = 2 mm (or ∆hj = 2 mm) 1.8311

∆hz = −0.1 mm (or ∆hj = 0 mm) 1.7023
∆hz = −1 mm (or ∆hj = 0 mm) 1.9768
∆hz = −2 mm (or ∆hj = 0 mm) 1.9864

5.3. Effects of the Tilt of the Lower Grinding Disc

Given that manufacturing and assembly errors and uneven stress during processing
may cause some tilt of the grinding disc (nonperpendicularity to the axial direction of the
principal axis), this may also change the motion state of the ball–billet and change the
distribution of the grinding tracks on the spherical surface. In this section, the tilt of the
inner disc was investigated, as shown in Figure 15. The situation of the outer disc tilt is
similar to the situation of the inner disc tilt, and it is not discussed in this section.
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The geometric relation of the influences of the inner disc tilt (γ) on the contact points
of the ball–billet is shown in Figure 16. In Figure 16, R is a point on the rotating axis of
the grinding disc. D-E-R refers to the position of the inner disc under ideal conditions,
and B-D-E refers to the V-shaped rollaway under ideal conditions. D’-H-R refers to the
position of the inclined inner disc, and B’-D’-H is the tracks after the inclination of the
inner disc. The ball center points before and after the inclination of the inner disc are O
and O’, respectively. When the inner disc has no tilt, the groove angles are α = β = 45◦. EM

is parallel to NH. Here, if
−

AE= a and
−

ER= b, then a + b = RA, and
−

ED=
√

2a. According to
Figure 16, it can obtain
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It can deduce geometric parameters when the inner disc inclines:
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By bringing it into Equation (2), it can obtain
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The STD of the spherical grinding tracks under different γ is conducted in accordance
with simulation data.
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Figure 16. Effects of inner disc tile on the contact points of the ball–billet.

Table 6 shows the simulation analysis conditions when the inner disc of the lower
grinding disc is tilted. Effects of inner disc tilt. Table 7 shows that STD increases with
the increase in tilt degree, and the growth amplitude increases. In particular, when γ is
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higher than 1◦, the worsening trend of sphericity is intensified, thus demonstrating that the
grinding disc tilt may cause adverse effects on the grinding uniformity of the ball–billet. In
practical processing, the tilt of the grinding disc shall be eliminated as much as possible.
The distribution of grinding tracks on the spherical surface under different γ is shown
in Figure 17.

Table 6. Analysis conditions of inner disc tilt.

Simulation Parameters

Radius of the grinding disc RA (mm) 300 (a = 15
√

2 mm)

Ball diameter rb (mm) 15

V-shaped groove angles α, β (rad) π/4

Rotating speeds of the grinding disc
ΩC (rpm) 20

ΩB (rpm) Variations

γ 0.5◦, 1◦, 2◦, 5◦, 10◦

Simulation time (s) 600

Time interval ∆t (s) 0.06

Table 7. STD of spherical grinding uniformity under different γ.

Tilt Degree STD

γ = 0◦ 1.44
γ = 0.5◦ 1.5601
γ = 1◦ 1.6883
γ = 2◦ 1.8811
γ = 5◦ 2.1768

γ = 10◦ 2.6765
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5.4. Effects of Orbital Geometric Accuracy

During processing, given that the ball–billet is put in the orbit of the lower grinding
disc, the geometric accuracy of the orbit directly influences the processing of the ball–billet.
Given the existence of processing errors, the practical orbit is not an ideal circular ring. For
the convenience of analysis, itis hypothesized that several uplifts are found on the grinding
disc, which influences the geometric accuracy of the grinding orbit. The orbits with two
and three uplifts are shown in Figure 18.
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(b) three uplifts on the outer disc.

Given that the orbit has uplifts, the ball–billet is lifted up by these uplifts when it
arrives at the positions; thus, ball–billets at these positions are higher than the others.
Hence, ball–billets at these positions undertake more loads than the balls in other parts.

To comprehend the effects of the out-of-roundness of the grinding disc on grinding
track points, MATLAB simulation was conducted in accordance with the simulation condi-
tions (Table 8). Simulation results are shown in Figure 19. The STD of spherical grinding
uniformity is shown in Table 9.

Table 8. Simulation conditions of influences of out-of-roundness of the outer disc on spherical
grinding tracks.

Simulation Parameters

Radius of grinding disc RA (mm) 300

Radius of outer disc under the ideal state Router (mm) 303

Ball diameter rb (mm) 15

V-shaped groove angles α, β (rad) π/4

Rotating speeds of grinding disc
ΩC (rpm) 20

ΩB (rpm) Variations (Refer to Figures 2–4)

Difference between the long and short axes of the ellipse
outer disc d (mm) 0.1, 0.2, 0.3, 0.4, 0.5, 1

Simulation time (s) 600

Time interval ∆t (s) 0.06

Table 9. STD of spherical grinding uniformity under different geometric precisions of orbits.

Error Parameters d = 0 mm d = 0.1 mm d = 0.2 mm d = 0.3 mm d = 0.4 mm

STD 1.44 2.4742 1.6863 3.5959 1.9236
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Table 9 shows that the effects of the geometric precision of orbits on the STD of
spherical grinding uniformity show no laws. However, the worsening degree of sphericity
influences spherical grinding uniformity more than disc tilt and face run-out, and it has
adverse effects on grinding uniformity. In practical processing, the orbital preloading of the
ball–billet was applied to improve the geometric precision of orbits and eliminatetheadverse
effects of roundness errors as much as possible. The orbit distribution of spherical surfaces
when the outer disc is not round is shown in Figure 19.

In the above-investigated mechanism error of dual-revolving grinding equipment, grind-
ing uniformity was influenced greatly when the outer disc was not round, and it failed to
grind into balls when the error parameter d was higher than 0.3 mm. The rest of the errors
might also influence spherical grinding uniformity to some extent, and such influences were
relatively small. When some mechanism errors occurred, the grinding uniformity of the
ball–billet was even slightly better than that under the ideal three-body coupling grinding
mode (e.g., when ∆hz = 0.1 mm or ∆hj = 0.1 mm; or when γ = 0.5◦ and γ = 1◦). This result
might be because, given a small mechanism error and no adverse effects on the ball–billet
processing, the rotating sliding of the ball–billet in relation to the rolling of the grinding disc
was intensified, which accelerated the variation of θ. As a result, grinding track lines could
cover the ball–billet surface more uniformly.

5.5. Effects of Inner Disc Diameter

The processing ranges of the dual-rotation grinding device were set as RA (25, 50, 100,
200, 300, 400, 500 mm) and rb (5, 10, 15, 20, 25 mm). On this basis, the corresponding S of
the spherical grinding uniformity was obtained. The simulation time was set to t = 20 s and
step = 200. The rotating speed of the inner disc used the relatively mature triangular wave
rotating speed curves in early studies (Figure 20).
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The S values of spherical grinding uniformity under different rb and RA are shown
in Figure 21 (RA ranges from 25 mm to 500 mm). As can be seen from the figure, the
simulation curve of each ball diameter corresponds to a disk diameter with the minimum
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standard deviation S of uniformity (as shown in Table 10), so the selection of disk diameter
should be one-to-one corresponding to the ball diameter.
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Table 10. Disk diameter RA of ball diameter rb (Minimum STD).

rb (mm) RA (mm)—Min (STD)

5 50
10 100
15 300
20 400
25 500

5.6. Effects of Groove Angle

During the balling process under the three-body coupling grinding mode, the V-
shaped groove angles also had great influences on the grinding uniformity of the processing
ball. To determine the optimal angle, a simulation study under different groove angles was
conducted. The simulation conditions are shown in Table 11.

Table 11. Simulation of groove angle changes.

Simulation Conditions

Radius of bearing ball rb (mm) 20
Radius of lower grinding disc RA (mm) 400

Eccentric distance e (mm) 0
Rotating speed of inner disc ΩC (rpm) 40 × sin2πt + 20
Rotating speed of outer disc ΩB (rpm) 20

Groove angle α 15◦–75◦

Under the three-body coupling grinding mode, the groove angle in the lower grinding
disc was changed successively to 15◦, 30◦, 45◦, 60◦, and 75◦ to simulate the numerical
values of sphericity variations. The standard deviation was relatively small when the
groove angle was between 45◦ and 60◦. In practical processing, the groove angle was
generally 45◦ (Figure 22).
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6. Conclusions

In this paper, the factors influencing the grinding uniformity of a precision ball under
the three-body coupling grinding method (3B-CGM) were analyzed step by step. Firstly,
the reason for the sliding state was analyzed, and the mathematical model of the critical
condition of the sliding state was analyzed so that the sliding state could be controlled.
Furthermore, the causes and degree of mechanical errors, such as disc run out, disc tilt,
and track error of the grinding uniformity, are analyzed, and the numerical reference of
the degree of influence of these errors is given. Finally, the reasons for the influence of
disk diameter and groove angle on the grinding uniformity are analyzed, and the analysis
method of selecting the best matching parameters and the reference value of the optimal
parameters are given. In the process of analysis, the standard deviation STD of trajectory
point uniformity of spherical grinding was introduced to provide feedback on the accuracy
of the mathematical model. In this paper, the accurate motion control model and the
optimal parameter analysis method are established, which improves the fine control ability
of the 3B-CGM motion state, and lays a theoretical foundation for the grinding effect
approaching to the ideal condition in actual mass production.
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