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Abstract: Currently, ultra-wide band (UWB) is adopted as a useful high-accuracy positioning tech-
nique in satellite-blocked areas. However, UWB’s positioning performance would be limited sig-
nificantly because of non-line of sight (NLOS) errors. Additionally, the truncation errors in these
linearization-based adjustments such as least squares (LS) and extended Kalman filter (EKF) would
also visibly degrade UWB positioning accuracy. To overcome the impacts of NLOS errors and trunca-
tion errors, this paper introduced a robust-theory-based particle filter (RPF) into UWB positioning.
In such a method, the IGG-III model and PF were adopted to limit the impacts of NLOS errors
and truncation errors, respectively, by introducing a weight inflation factor and particle group. For
comparison, the Bancroft, LS, EKF, unscented Kalman filter (UKF), cubature Kalman filter (CKF), PF,
and RPF were also presented. Here, the influences of truncation errors were analyzed by comparing
the results based on LS and EKF with those calculated by UKF, CKF, and PF. The impacts of NLOS
errors were evaluated by making a comparison between the results of PF and RPF. Results based
on a set of simulated UWB data and a group of experiment UWB data demonstrated that the RPF
can significantly avoid the positioning errors caused by both truncation errors and NLOS errors. In
general, position improvements percentages of 57.2%, 52.7%, 39.6%, 38.2%, 26.6%, and 20.4% can be
obtained by RPF compared to those calculated by Bancroft, LS, EKF, UKF, CKF, and PF, respectively.
As a comparison, the truncation error would lead to about 8.1%, 10.1%, and 33.2% accuracy decrease
in the north, east, and vertical directions on average. Such accuracy-decrease rates caused by NLOS
were 6.1%, 5.2%, and 25%.

Keywords: ultra-wide band (UWB); non-line of sight (NLOS); truncation error; robust particle
filter (RPF)

1. Introduction

High accuracy requirement in indoor positioning applications is growing rapidly.
Although global navigation satellite systems (GNSS, i.e., BDS and GPS) satisfy users’
high-accuracy location service needs in open environments [1], it is difficult for GNSS
to provide location services [2] in satellite signals blocked areas, such as indoor environ-
ments [3]. To this end, researchers studied indoor positioning methods based on infrared [4],
ultrasonic [5], Bluetooth [6], Wi-Fi [7,8], and PDR [9,10]. These techniques have obvious
weaknesses of low accuracy and short distance. For example, infrared light is easily blocked
by walls during transmission, which leads to a short transmission distance [11]. Ultrasound
is measured by echo signal resulting high accuracy position solution, but multi-path and
non-line of sight (NLOS) will degrade the accuracy. Bluetooth technology is only available
in small areas. In large-range areas, the signal stability is poor, resulting in low positioning
accuracy [12]. Wi-Fi, with the advantages of low cost, wide signal source, and wide range,
is supported by the location information of network nodes. However, it provides a low
accuracy position and is easily affected by environments [13]. In addition, these indoor
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positioning techniques are mainly used in horizontal positioning, which cannot meet the
urgent demand for high-precision indoor three-dimensional positioning.

In order to overcome these shortcomings existing in conventional indoor position-
ing methods, an indoor positioning method based on ultra-wideband (UWB) was pro-
posed. Compared with the indoor positioning technologies mentioned above, UWB has
the advantages of high interference resistance, low power consumption, and high range
accuracy [14,15]. Additionally, UWB has a strong penetration ability under the situations
such as in woods and stones, and these penetration errors can be corrected by modeling.
However, UWB has a weak ability to penetrate water and metal [16]. Currently, UWB
modes include Time of Arrival (TOA), Time of Flight (TOF), Difference of Time-Of-Arrival
(TDOA), Angle of Arrival (AOA), Received Signal Strength Indication (RSSI) [17,18]. TOF
is widely used in indoor applications because the tag does not need to be synchronization
with the base station precisely [19,20].

However, while suffering complex indoor environments, indirect UWB signals will be
received because of reflection, refraction, diffraction, or passing through walls [1]. Such
indirect signals could increase transmission time and lead to NLOS ranging errors. NLOS
errors result in a major impact on the UWB positioning accuracy. Additionally, since the
relationship between the UWB range and the tag’s position is nonlinear, it is necessary to
linearize the observation function by Taylor expansion while using the traditional least
squares (LS) and extended Kalman filter (EKF). Here, only the first-order item in Taylor
expansion was adopted and the second-order and higher-order terms were abandoned.
However, for the UWB ranging system, its maximum ranging distance was no more than
hundreds of meters at present (https://www.nooploop.com/en/, accessed on 9 May
2023). Therefore, omitting higher-order terms in LS and EKF would introduce significant
linearization errors, which could result in an accuracy degradation and even lead to a
divergence in parameter estimation [21]. Therefore, reducing the impacts of NLOS errors
and linearization errors on UWB positioning accuracy is an important issue for UWB-based
indoor positioning technologies.

In recent years, many works were carried out on the effects of attenuated NLOS
errors and linearization errors on the positioning accuracy of UWB. For the NLOS error,
Guvenc et al. [22] introduced a novel weighted least squares (WLS) algorithm that used
the LOS likelihood values. The improvements compared to the conventional LS were
demonstrated firstly via Monte Carlo simulations. Then, it was verified by using TOA data,
and the results showed that WLS was superior to LS in NLOS conditions. Li et al. [23]
proposed a factor graph-based UWB positioning algorithm based on an improved Turkey
robust kernel, which was verified via a set of NLOS UWB-TOA data. The experimental
results proved that the UWB positioning algorithm based on the improved Turkey robust
kernel outperformed the LS algorithm in NLOS environments. The corresponding posi-
tioning accuracy improvements on average were 20–30%. Dong et al. [24] proposed an
improved robust adaptive cubature Kalman filter (IRACKF) algorithm. The autocorrelation
covariance matrix-based robust algorithm was used to alleviate the impact of these NLOS
errors polluted UWB data on the UWB positioning accuracy. The results based on both
simulation and field experiments showed that IARCKF can reduce positioning errors by
the percentages of 52.6%, 38.0%, 45.1%, and 25.3% compared with the solutions of CKF,
robust cubature Kalman filter (RCKF), adaptive cubature Kalman filter (ACKF), and robust
adaptive CKF (RACKF), respectively.

Fu et al. [25] adopted an adaptive unscented Kalman filter (UKF) filter in the UWB
system. The experiment test presented its adaptive ability, and the positioning accuracy
of UWB can be upgraded to 7 cm on average. Wu et al. [26] proposed the adaptive
square root cubature Kalman filtering (ASRCKF) algorithm to solve the problem that the
filtering accuracy decreases when the measurements are abnormal. It was verified by using
TDOA/AOA combined data. The results showed that the RMSE of ASRCKF was slightly
affected and the tag’s position can converge to the real value rapidly. Otim et al. [14]
developed a positioning system based on particle filter (PF). The results proved that about
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75% and 82% reduction in the median position error in simulation and experiment tests
with providing sub-meter level positioning accuracy.

Although the UWB positioning technique was studied, the influence of different pa-
rameter estimation methods on UWB positioning accuracy, and the impacts of linearization
error and NLOS error on UWB 3D positioning accuracy were not analyzed comprehen-
sively. Hence, we adopted a robust particle filter (RPF) to evaluate the effects of NLOS
errors and linearization errors on the UWB positioning accuracy in both horizontal and
vertical components based on the simulated and measured TOF UWB data. For comparison,
the conventional methods including the Bancroft algorithm, LS, EKF, UKF, CKF, and PF
were also analyzed. Compared to the existing works, the contributions of our work are
that (1) we considered both NLOS errors and linearization errors in UWB 3D positioning,
and provided the RPF to reduce their impacts on UWB positioning accuracy; and (2) we
analyzed linearization errors by comparing the results based on LS and EKF with those
based on UKF, CKF, and PF. The paper is arranged as: Section 2 introduces the relevant
mathematical principles and the details of the proposed positioning algorithm, Section 3
introduces the experiments and results, which is followed by conclusions in Section 4.

2. Methods

TOF-UWB tag communicates with the base stations for ranging and exchanging
timestamp information. The distance from the tag to each base station was di (i = 1, 2, . . . ,
N, N is the number of base stations), which can be expressed as [27]

d2
1 = (x− x1)

2 + (y− y1)
2 + (z− z1)

2

d2
2 = (x− x2)

2 + (y− y2)
2 + (z− z2)

2

...
d2

N = (x− xN)
2 + (y− yN)

2 + (z− zN)
2

(1)

where (x, y, z) and (xi, yi, zi) are the coordinates of the tag and base station.
As shown in Equation (1), the relationship between UWB ranging distances and the

tag’s coordinates is nuclearization. Meanwhile, such a strict relationship would be de-
stroyed while suffering NLOS errors or while using the linearized adjustment methods.
Therefore, the traditional linearized adjustment methods named as least square and ex-
tended Kalman filter were first provided. Then, the robust particle filter was introduced
in detail.

2.1. Least Square

While using LS, the tag coordinates X = (δx, δy, δz) can be computed as shown in
(2) [28]

X = (ATA)
−1

PATb (2)

where


x = x̂ + δx
y = ŷ + δy
z = ẑ + δz

, b =


d1 − d̂1
d2 − d̂2

...
dN − d̂N

, A =


x̂−x1

d̂1

ŷ−y1
d̂1

ẑ−z1
d̂1

x̂−x2
d̂2

ŷ−y2
d̂2

ẑ−z2
d̂2

...
...

...
x̂−xN

d̂N

ŷ−yN
d̂N

ẑ−zN
d̂N

, and P is the priori

weight matrix.

2.2. Extended Kalman Filter

The standard Kalman filter (KF) applies to linear systems [29]. When the state tran-
sition function and/or observation function are nonlinear transformations, the standard
KF cannot be used. The EKF linearizes the nonlinear system locally and can be applied
to the weak nonlinear system [30]. The core idea is to apply the Taylor expansion to the
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nonlinear function at the filtering value and ignore the quadratic and above terms [31]. A
typical nonlinear model can be expressed as [32]{

Xk = f(Xk−1) + wk
Zk = h(XK) + vk

(3)

where Xk is the state vector; f(Xk−1) is the system nonlinear function; Zk is the measured
value at time k; wk and vk represent process noise and measurement noise, respectively;
h(Xk) represents the nonlinear observation function [33].

The normal speed model is used as the equation of state. The state vector consists of
position (p) and velocity (

.
p)

Xk =

(
I I∆t
0 I

)
︸ ︷︷ ︸

F

(
p
.
p

)
︸︷︷︸
xk−1

+

(
0

w .
p

)
︸ ︷︷ ︸

wk

(4)

where F represents the state transfer matrix; I is the unit vector; w .
p is the velocity noise.

The EKF algorithm consists of two parts, with (1) Time-update [34]

X̂k+1|k = FX̂k + wk (5)

Pk+1|k = FPkFT + Q (6)

and (2) Measurement-update [35]

Kk+1 = Pk+1|kHT
k+1(Hk+1Pk+1|kHT

k+1 + R)
−1

(7)

X̂k+1 = X̂k+1|k + Kk+1(Zk+1 − h(X̂k+1|k)) (8)

Pk+1 = Pk+1|k −Kk+1Hk+1Pk+1|k (9)

where Q is the system noise covariance matrix; R is the measurement noise covariance
matrix; Hk+1 is the Jacobian matrix.

2.3. Robust Particle Filter

The core idea of the PF algorithm is to select a group of particles randomly to replace
the posterior probability distribution of the current system state. When the system is
nonlinear, this algorithm has better filtering performance and the ability to deal with the
influence of non-Gaussian noise compared with other algorithms. Therefore, it is widely
used in the positioning system [36].

The recursive formula of PF is as follows:

(1) Setting the initial value X0;
(2) Particle initialization: Sampling particle (xi,0, i = 1, 2, . . . , m) is generated from the

prior probability distribution p(X0);
(3) Predictive step

xi,1 = Fxi,0 + qi (10)

where qi is random vector obeying N (0, Q);
(4) Update step
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The observation noise is assumed to obey the Gaussian distribution with the variance
R, and then, the corresponding weight wi,1 of the particle xi,1 is calculated [37] by

wi,1 = fR
[
Z1 − h(xi,1)

]
wi,0λi =

1√
2πR

e−
[Z1−h(xi,1)]

2

2R wi,0 (11)

(5) Normalization of weights

wi,1 =
wi,1

∑ wi,1
(12)

(6) Particle resampling

There is a problem of particle degradation in the application of PF algorithm. That is
the weights of most particles change to very small, while only a few particles hold very
large weights after several iterations. These particles with very small weights will be
replaced by new particles.

The independent random samples
{

un,1

}m

n=1
selected from uniformly distributed are

compared with the cumulative sum of normalized weights to select particles [38]. From the
point of view of selecting particles, in the nth (n = 1, 2, . . . , m) selection, if there is a particle
xi,1 that satisfies the conditions of (13) in the cumulative sum of weight values, the selected
sample particles will be selected.

∑i−1
j=1 wj,1 < un,1 < ∑i

j=1 wj,1, j = 1, 2, . . . , i (13)

Finally, the new particle set {xi,1}m
i=1 after resampling can be obtained.

(7) Optimal state estimate

From steps (1)~(6), particle xi,1 at k = 1 and the corresponding weights wi,1 are obtained.
Then, the state estimate for k = 1 can be calculated by

X̂1 =
m

∑
i=1

wi,1xi,1 (14)

In the above steps, the optimal estimated value is obtained by PF, and it then progresses
to the next iteration. Particle is introduced into the state transition equation to obtain a
particle set. Then, weight and weight normalization are obtained by step (4) to obtain the
optimal system state estimators for epoch k (=1, 2, 3, . . . ).

When observations contain only accidental errors, the state can be approximated by
a large number of particles. However, the UWB positioning accuracy will be polluted
seriously while there are NLOS signals. In order to reduce the influence of abnormal
observation, the IGG-III model is introduced into PF. The weight of the particle is changed
when the observed value contains NLOS by

-
wi,1 = wi,1λi (15)

where λi is a weight inflation factor, which can be expressed as

λi =


1

∣∣∣Ṽi

∣∣∣ ≤ k0

k0
|Ṽi| (

k1−|Ṽi|
k1−k0

)
2

k0 <
∣∣∣Ṽi

∣∣∣ ≤ k1

0
∣∣∣Ṽi

∣∣∣ > k1

(16)

where Ṽi is the standardized residual; k0 and k1 are constants, with k0 = 1.0∼1.5,
k1 = 2.5∼8.0 [39].
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Table 1 summarizes the advantages and disadvantages of the existing adjustments
that can be used in UWB positioning.

Table 1. Advantages and disadvantages of algorithms.

Algorithm Advantages Disadvantages

Bancroft
This algorithm does not need to iterate the direct

solution method with algebraic analytic properties
and the solution speed is fast [40].

This algorithm cannot achieve the optimal solution in
terms of statistical characteristics.

LS The optimal matching method between data is found
by finding the sum of minimum error squares [41].

It does not have error resistance, a small amount of
gross error can cause unreliable parameter estimation,
and the number of iterations and position accuracy are

affected by the initial value.

EKF The EKF linearizes the nonlinear system locally and
can be applied to the weak nonlinear system.

When linearizing the nonlinear equation, EKF retains
only one term coefficient, and the truncation error

caused by discarding the higher-order term will have a
significant impact on positioning accuracy [21].

UKF

The UKF approximates the posterior probability
density function of the nonlinear system through UT
transformation, and computes the mean value and

covariance of the state vector, avoiding the linearized
truncation error [42].

UKF has poor robustness in the case of system state
mutation, and its accuracy is easily affected.

CKF

CKF algorithm uses spherical radial volume criterion
to approximate the state posterior distribution of

optimal estimation. CKF can not only overcome the
shortcomings of UKF in high and strong nonlinear

state estimation. However, it also has higher filtering
accuracy [25].

The standard CKF requires Cholesky decomposition of
the covariance of the posterior state when constructing
volume points. This requires that the covariance of the

transfer is a non-negative definite matrix, and the
decomposition operation not only consumes time, but

also reduces the stability of the increment algorithm [43].

PF

The core idea of the PF algorithm is to randomly select
a group of particles to replace the posterior probability
distribution of the current system state [44]. When the
system is in a nonlinear environment, compared with

other algorithms, this algorithm has better filtering
performance and the ability to deal with the influence
of non-Gaussian noise, so it is more and more widely

used in the positioning system.

When the target state changes or bad measurement
occurs, the tracking performance of the PF algorithm

will decrease. The calculation is large and the calculation
time is long.

RPF
The influence of anomaly observation is weakened
and the accuracy of parameter estimation and the

reliability of filtering are improved [45].
The calculation is large and the calculation time is long.

Based on the above models, the proposed UWB algorithm can be simply presented in
Figure 1. Firstly, use eight LinkTrack P base stations (https://www.nooploop.com/en/.
accessed on 9 May 2023) to collect the distance between each base station and the tag. Then,
seven algorithms, namely Bancroft, LS, EKF, UKF, CKF, PF, and RPF, were used to calculate
the positions of the tag. Finally, the impacts of NLOS errors and linearization errors on the
UWB positioning accuracy were analyzed using indicators such as RMSE, CDF curve, and
running time of different algorithms.

https://www.nooploop.com/en/
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Figure 1. Algorithm structure of UWB positioning.

3. Tests and Evaluation

In order to investigate the impacts of NLOS and truncation errors on UWB positioning,
the practical UWB data collected by LinkTrack P (Table 2) and the corresponding simulated
UWB data were analyzed. These UWB data, ranging the distance between the tag and
different base stations, were synchronized by using the NAssistant software (https://www.
nooploop.com/en/download/, accessed on 9 May 2023) provided by Nooploop Company.
Since the Nooploop Company increases UWB’s transmission power, it makes the maximum
UWB ranging distances up to 500 m. Meanwhile, a GNSS/INS-integrated navigation
system and a Leica electronic total station were also adopted to provide the reference
position solutions and the coordinates of UWB base stations. Here, the reference positions
were calculated by the tightly coupled integration of real-time kinematic (RTK) and INS.
Then, the position differences between the reference positions and these positions calculated
by Bancroft, LS, EKF, UKF, CKF, PF, and RPF will be projected into the local leveling frame
(North-East-Down), and the corresponding statics in terms of maximum values, averages,
and standard deviation will be used to present the positioning accuracy of UWB. Here, the
position errors in the north and east directions were to present the horizontal positioning
accuracy, and the position errors in the down component were to illustrate the vertical
positioning accuracy. Figure 2a,b show, respectively, the experimental environment and the
detailed trajectory of the experiments. Figure 2c shows the distribution of eight UWB base
stations. During the practical data collection, NLOS errors were generated by arranging
people passing different base stations at different times. In the simulation experiment, the
desired tag’s position was set as the center of these eight base stations. Then, the UWB
distances between the tag and eight base stations simulated by only adding the Gaussian
distribution white noises with a mean value of 0.0 m and standard deviation of 0.3 m, and
no NLOS errors were added.

https://www.nooploop.com/en/download/
https://www.nooploop.com/en/download/
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Table 2. Specification parameters of devices (https://www.nooploop.com/en/, accessed on 9 May
2023).

Parameters LinkTrack P

Size 60.3 × 29 × 9 mm
Weight 33.3 g

Maximum Communication Distance 500 m
Recommended Distance 300 m

Maximum Sampling Rate 200 Hz
Recommended Sampling Rate 20 Hz

One, two-dimensional Accuracy 10 cm
Three-dimensional Accuracy 30 cm

Frequencies 4/4.5 GHz
Band-wide 499.2 MHz

3.1. Data Quality Analysis

The residuals of UWB data calculated by different algorithms based on both simulation
experiments and measured experiments were presented in Figure 3. It can be seen that the
residual distributions for the simulation data basically obeyed the normal distribution. For
the measured data, they were significantly nonnormal distributions. This appearance was
mainly caused by the NLOS error. However, the residual distributions of PF and RPF were
closer to normal distribution. According to the statistics in Tables 3 and 4, the residuals
indexes for LS, EKF, UKF, CKF, PF, and RPF were close to each other and a little better
than Bancroft in simulation test in terms of average, STD, and Maximum. Such appearance
can also be found in the field test. The difference in visible was that these three indexes in
the field test were much bigger than those in the simulation test. It can be concluded that
the conventional adjustment methods and the presented method had similar distribution
characters, while the UWB data only contained Gauss noise. However, these adjustments
will result in residual with obvious differences while suffering NLOS noise.
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Figure 3. Residual histogram of UWB data in the simulation experiment (a) and these in the field
experiment (b).
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Table 3. Average, STD, and maximum values of residuals in the simulation experiment.

Bancroft LS EKF UKF CKF PF RPF

Average (m) −0.03 −0.02 −0.0008 0.0005 0.002 0.001 0.002
STD (m) 0.09 0.07 0.08 0.08 0.08 0.08 0.08
Max (m) 0.56 0.33 0.34 0.30 0.32 0.30 0.30

Table 4. Average, STD, and maximum values of residuals in the field experiment.

Bancroft LS EKF UKF CKF PF RPF

Average (m) 0.25 −0.05 0.007 0.004 0.15 0.07 0.10
STD (m) 1.33 0.76 0.66 0.66 0.87 0.68 0.67
Max (m) 19.25 14.56 12.77 12.73 15.23 13.28 12.96

3.2. Evaluations Based on the Simulation Test

Figures 4 and 5 show the position error in horizontal and vertical in terms of scatter
diagrams and time series, which were calculated by the seven adjustment algorithms
(Bancroft, LS, EKF, UKC, CKF, PF, and RPF) based on the simulated UWB data. It can be
seen that the position errors of the seven algorithms in horizontal (centimeter level) were
much lower than those in vertical direction (meter level). This was majorly caused by
the geometry distribution between eight base stations and tag. As shown in Figure 6, the
HDOP values (0.73 on average) were much smaller than the corresponding VDOP (184.05
on average). Additionally, since only Gaussian noises and no NLOS errors were added in
these simulated data, the position differences presented in the results can reflect the real
performance of different adjustment methods directly. Accordingly, the Bancroft algorithm
had the worst solutions because it solved the results of nonlinear system in non-optimal
in the statistical properties. The results from the other algorithms were higher accuracy.
Because the criteria of minimizing the squared observation-residuals and minimizing the
squared parameter-residuals [46] were used to find the optimal solutions. Meanwhile, the
position errors caused by linearization errors in both LS and EKF can be eliminated while
using the UKF, CKF, and PF. Additionally, since only Gaussian noises and no NLOS errors
were added in these simulated data, the robust algorithm in Equation (16) could not be
activated. Therefore, it can be seen that no more position improvements can be obtained
while using the RPF compared to that of PF.
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Figure 6. HDOP (a) and VDOP (b) of the simulation experiment.

Figure 7 shows the cumulative distribution function (CDF) of position errors of the
seven positioning algorithms. It can be seen that the CDF of RPF, PF, and CKF have the
highest probability in three-dimensional positioning error under the same threshold value.
According to the CDF values of the localization error in Figure 7, at the percentage of
50%, 3D position errors for the Bancroft, LS, EKF, UKF, CKF, PF, and RPF were less than
0.43 m, 0.85 m, 0.42 m, 0.42 m, 0.37 m, 0.36 m, and 0.35 m, respectively. These values on the
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percentage of 68% for the Bancroft, LS, EKF, UKF, CKF, PF, and RPF were 2.07 m, 1.32 m,
0.65 m, 0.62 m, 0.45 m, 0.44 m, and 0.43 m, respectively. While setting the percentage to
95%, the 3D position errors for the seven algorithms were 3.77 m, 2.43 m, 1.32 m, 1.25 m,
0.69 m, 0.71 m, and 0.67 m. Since only Gaussian noises were added in these simulated UWB
distances, it indicates that the truncation errors would degrade UWB position accuracy
significantly, with a percentage of 13.6%, 16.3%, and 40.3% in the north, east, and vertical
directions on average.
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Figure 8 shows the statistical results of position errors in terms of RMSE and average
error. Comparing the horizontal positioning error in Figure 8b with the three-dimensional
positioning error in Figure 8a, it can be seen that the RMSE of UWB positioning accuracy
in horizontal was about 0.03 m~0.08 m, which was much higher than that in the vertical
direction (0.36 m~1.91 m). Here, the 3D positioning RMSE of Bancroft, LS, EKF, UKF, CKF,
PF, and RPF were 1.91 m, 1.28 m, 0.68 m, 0.64 m, 0.42 m, 0.41 m, and 0.40 m, respectively.
Statistically, the RPF produced position accuracy improvements with percentages of 79.1%,
68.8%, 41.2%, 37.5%, 4.7%, and 2.4% to the solutions of Bancroft, LS, EKF, UKF, CKF, and
PF, respectively. Additionally, the nonlinearization filters including UKF, CKF, PF, and RPF
performed much higher accuracy than EKF and LS. It was because the nonlinear UWB
positioning system needs to be linearized by using Taylor expansion which lead to the
second-order and higher-order items being ignored. Such truncation errors could reduce
positioning accuracy.

Table 5 lists the running time of the seven algorithms to complete the data processing.
In general, the running time for the linearization estimation methods such as LS and EKF
was much shorter than these of the nonlinearization filters (i.e., UKF, CKF, PF, and RPF).
Even for the same type of estimation methods, the running times were also different. For
example, the running times of LS and EKF were different. This was because a time-update
phase was needed in EKF. Meanwhile, the CKF algorithm presented higher execution
efficiency and less running time than the other nonlinearization filters, which was due to
the fewer iterations. In general, RPF costs more running time, with about 16.4 times, 20.5
times, 6.5 times, 2.3 times, 3.6 times, and 1.3 times than that of Bancroft, LS, EKF, UKF, CKF,
and PF, respectively.

Table 5. Algorithm running times in static simulation experiment.

Bancroft LS EKF UKF CKF PF RPF

Time (s) 1.5 1.2 3.8 10.7 6.8 19.3 24.6
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3.3. Evaluations Based on the Field Test

Shown in Figure 9 are the positioning errors based on the practical UWB data. Com-
pared with the simulation results, the positioning accuracies of all these positioning meth-
ods in practice were significantly degraded in both horizontal and vertical components.
Such accuracy degradations were due to the coupled errors of NLOS, nonlinear error, and
random noise. However, it can be seen that RPF can hold on the positioning accuracy
compared to the other algorithms, while UWB distance suffered NLOS errors (i.e., around
epochs 200–300, 3800–4000, and 6400–6600). In general, it benefitted from the resistance
mechanism of RPF in Equation (16). In the vertical direction, the positioning errors of the
LS algorithm were large. This was mainly because the differences in vertical of all the
eight base stations were small, which lead to the inverse of ATA being large and unstable.
Additionally, the position errors in the vertical direction were much larger than those in
the north and east directions. The main reason was that the geometry structure in the
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horizontal was much more reasonable than that in the vertical direction, which can be
found in Figure 10. As is shown, the HDOP and VDOP were 0.79 and 77.35 on average. All
of these reasons resulted in lower positioning accuracies in practical UWB tests. According
to the CDF of the localization error in Figure 11, 95% of 3D position errors of the Bancroft,
LS, EKF, UKF, CKF, PF, and RPF were less than 8.90 m, 4.95 m, 4.15 m, 4.05 m, 3.31 m,
3.89 m, and 2.91 m, respectively.
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Figure 12 shows the statistical results of UWB position errors in horizontal and vertical
components of the seven algorithms in terms of RMSE and average errors, respectively.
Similar to the simulation results, the horizontal positioning accuracy was much higher
than the vertical positioning accuracy. Meanwhile, solutions from UKF and CKF were
more accurate than that of EKF. This was because UKF and CKF acted as definite sampling
filtering algorithms. While dealing with nonlinear system, sigma point sets were generated
according to the sampling strategy based on the mean and covariance of the system state
prior probability density. Therefore, it did not need to linearize UWB observation equations
leading to no linearization errors. Meanwhile, the Jacobi matrices will not be needed during
filtering algorithm iteration. However, the principle of avoiding linearization for UKF
and CKF is different. For UKF, it is realized by computing the approximation term of
the probability statistical eigenvalues of the nonlinear equation instead of ignoring the
higher order term of the nonlinear equation after Taylor expansion [47]. The CKF is based
on the theory of numerical integration and approximates the Gaussian integral by using
the third-order spherical radial volume criterion [48]. Therefore, CKF is more rigorous
and stable than UKF in theory. The statistical results in Figure 12 prove it visibly. For
the least square method, it avoids the explicit inversion of the matrix, and guarantees the
symmetry and positivity of the covariance matrix. It can be seen from Figure 12a that the 3D
positioning RMSE values of Bancroft, LS, EKF, UKF, CKF, PF, and RPF were 2.86 m, 3.38 m,
2.51 m, 2.45 m, 1.89 m, 1.85 m, and 1.41 m, respectively. Compared with the solutions of
Bancroft, LS, EKF, UKF, CKF, and PF, RPF upgraded the position accuracy by 50.7%, 58.3%,
43.8%, 42.4%, 25.4%, and 23.8%, respectively. This indicates that the truncation errors
would degrade UWB position accuracy significantly, with the percentages of 2.5%, 3.9%,
and 26.1% in the north, east, and vertical components on average. Such accuracy-decrease
rates caused by NLOS error were 6.1%, 5.2%, and 25.1% in the three directions. Therefore,
when UWB ranging distance contained NLOS errors, the robust algorithm in RPF can
remove the impact of NLOS on UWB position accuracy. Table 6 lists the running times
required for the seven algorithms. It can be seen that the RPF algorithm took the most time,
which was about 18.4 times, 8.9 times, 8.2 times, 2.3 times, 3.8 times, and 1.1 times more
than that of Bancroft, LS, EKF, UKF, CKF, and PF, respectively. This conclusion is consistent
with the results from the simulation experiment.
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Table 6. Algorithm running times in field experiment.

Bancroft LS EKF UKF CKF PF RPF

Time (s) 2.8 5.8 6.3 21.9 13.6 45.4 51.6

4. Conclusions

Aiming at evaluating the impacts of linearization errors and NLOS errors on UWB
positioning accuracy, a robust particle filter UWB positioning algorithm based on IGGIII
was presented in this paper. Meanwhile, traditional UWB positioning methods such as
Bancroft, LS, EKF, UKF, CKF, and PF were used to aid separating the independent influences
of such two kinds of errors on the UWB positioning performance. The results based on TOF-
UWB data in the simulation test and field test demonstrated that (1) the linearization errors
exist in UWB positioning significantly while using linearization adjustments (i.e., LS and
EKF). However, it can be eliminated by using the nonlinearized filter (i.e., UKF, CKF, and
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PF). Such elimination would be weakened by the coupled errors in UWB measurements.
When there was only white noise (as shown in the simulation test), the nonlinearized filters
provided visible accuracy improvements. Otherwise, the improvements will be invisible
while coupling with a strong NLOS signal. (2) The IGGIII robust algorithm can constrain
the impact of NLOS errors on UWB positioning accuracy obviously. In general, compared
to the solutions from the Bancroft, LS, EKF, UKF, CKF, and PF, the RPF produced 64.9%,
63.5%, 42.5%, 39.9%, 15.1%, and 13.1% 3D position improvements on average, respectively.
The truncation errors and NLOS errors can, respectively, lead to 36.6% and 23.7% accuracy
degradations in UWB 3D positioning. However, the presented method cost more running
time than the other methods, with about 17.4 times, 14.7 times, 7.3 times, 2.3 times, 3.7 times,
and 1.2 times compared to the times needed in Bancroft, LS, EKF, UKF, CKF, and PF. In
addition, the horizontal accuracy of UWB (centimeter level) was much higher than those in
the vertical direction (meter level) own to the geometry structure between the tag and base
stations. Based on the conclusions in this paper, the goal in our future work is to upgrade
the UWB positioning accuracy in the vertical component.
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