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Abstract: The inverse kinematics problem (IKP) is fundamental in robotics, but it gets harder to
solve as the complexity of the mechanisms increases. For that reason, several approaches have been
applied to solve it, including metaheuristic algorithms. This work presents a proposal for solving
the IKP of a doubly articulated kinematic chain by means of a modified differential evolution (DE)
algorithm. The novelty of the proposal is both in the modeling of the problem and the modification to
the DE for solving it. The modeling is inspired by a technique used in animation software to recreate
movements by dividing the complete trajectory in a number of segments. Each segment represents a
single optimization problem linked to the IKP as a sequence that is solved by the modified DE where
the initial population for each single problem is biased by using the solution of the previous one. The
approach produces solutions for positioning the end effector in a specific point within the work space
while minimizing the angular displacement between the initial and final poses. The proposal was
able to obtain solutions requiring a fewer total execution cycles compared to the usual approach of
solving only one optimization problem related to the inverse kinematics. Different trajectories were
used to test the solutions generated by the proposed approach, and the set of conditions that must be
covered to apply it to solve the IKP of a particular mechanism are presented.

Keywords: inverse kinematics problem; optimization; metaheuristic algorithm; articulated kinematic chain

1. Introduction

The specific positioning of a kinematic chain is a recurrent problem in different areas
of engineering such as robotics, animation, or in articulated reference models for graphic
illustrators. In many cases, it is possible to achieve the desired position by moving each
link through angular movements until the proper posture is achieved. However, in other
occasions, a method is desirable or even necessary that can position the rest of the links
to meet a specific condition, such as positioning the end effector of the last link, which is
known as inverse kinematics (IK).

The process of finding the IK is complex [1–3], and for this reason, diverse ways to deal
with this task have been explored: analytic methods, neural networks, and metaheuristic
algorithms. Traditional approximations, as is the case of obtaining the analytical equations
via geometric analysis, are limited to working with kinematic chains of 2-, 3-, or, in some
cases, 4-DOF at maximum, and their solution requires the use of constraints. This is because
one of the aspects that increases the complexity of finding the IK is the number of degrees
of freedom, since there are multiple solutions that satisfy the desired conditions.
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When it is required to solve hard optimization problems, especially on real-world
engineering cases, metaheuristic algorithms are a good option when traditional methods
present deficient performance. Metaheuristic algorithms showed good performance when
solving the IKP without being affected by the number of degrees of freedom, as shown
in [4]. In general, metaheuristic algorithms are iterated approximate numerical techniques
that involve different processes with stochastic variables. In these methods, it is necessary
to adequately model the problem with a fitness function to quantify the quality of the
candidate solutions. Since they are approximate techniques, the optimal solution is not
necessarily found, understanding this as the minimal or maximal value of the function
depending on the context, but good-enough solutions can be obtained. For example, in [4],
in addition to proposing a hybrid method between two algorithms, namely, DE [5] and
particle swarm optimization (PSO) [6]), the authors presented a series of proposals to
achieve the desired position and additional objectives: minimal displacement between
solutions, collision avoidance, and functional joint relations.

As in [4,7], most of the works based in metaheuristic algorithms use the obtained
equations from homogeneous transformations following the Denavit–Hartenberg conven-
tion [8] as a means to formulate the performance function in order to minimize the error
between the desired and real positions mapped by the forward kinematics (FK) model.
In [2], a modified genetic algorithm was proposed to obtain the IK of a 6-DOF robot, high-
lighting the modification performed to balance exploration and exploitation, which refers
to the behavior of the algorithm to explore solutions throughout the search space, and to
improve the candidate solutions. With this same idea of improving the performance of
search algorithms, so-called hybrid algorithms were produced that take steps or operators
from other algorithms and adapt them to modify their own behavior. In [9], the authors
presented the hybrid mutation fruit fly optimization algorithm in which they implemented
an olfactory search on the basis of different mutation strategies from different DE versions.
The performance of the proposed algorithm was evaluated using a problem to obtain the
IK of a manipulator with 7-DOF and 8 benchmark functions.

In [10], the IKP was solved with a modified PSO to increase the speed of convergence
through a bidirectional search and the decoupling of the kinematic chain while considering
the characteristics of the robot, a 4-DOF manipulator with a mobile base. In other cases,
in addition to obtaining a solution close to the optimum, it is necessary to generate it in a
given time, which, in turn, implies the fast convergence of the algorithm. For this reason,
the authors in [11] proposed a modification to DE in order to reduce the required time for
finding the IK of a robot with 3-DOF, introducing a local search mechanism that they called
discarding. Memetic algorithms [12–14], are hybrid methods that take advantage of the
synergy from the combination of the global search capacity of some technique and the
power of the local search of another mechanism. This paradigm was used in [4] for solving
the IKP of different robots with 6- and 7-DOF as a means of accelerating the convergence.

In the aforementioned works, emphasis was placed on modifying the metaheuristic
algorithms to solve the IKP, obtaining good results while increasing the convergence speed.
In this proposal, the modifications to increase the calculation speed are applied to modeling
the optimization problem and the generation of the sets of proposed solutions. For the first
point, the total trajectory to be tracked by the robot is divided into a series of points, with
each pair of consecutive points representing a small trajectory by itself. The IKP solution
for each point is solved as an individual optimization problem, reducing the complexity
of the problem and accelerating the solution. For the second point, the last generated
solution is good enough to be taken as the base to generate the new population for the
next optimization problem, also accelerating the solution. So, the initial population for
each problem is biased by using the solution of the previous one, thus modifying DE and
its behavior.

In order to evaluate the performance of the IKP solution method presented in this
development, we compared well-known approach presented in the related literature that
consisted of directly finding the IK from a given performance function, and the proposed
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approach in which the original problem is divided into a set of simpler problems, in
addition to manipulating the initial population in each of them. As an additional feature,
every solution has a minimal displacement compared to its original pose. Achieving
this characteristic is especially useful in animation or simulation fields where there is a
special interest in visualizing how a particular movement would be regardless of its causes,
since each solution represents an instant of the possible movement to be carried out to
produce the desired positioning. In the field of animation, the cyclic coordinate descent
algorithm (CCD) [15] is used in different dedicated software and in video game engines
such as Unity because it can find good solutions in a short time. Despite this, the authors
in [16] reported that it also presents problems such as generating inadequate rotations
under certain circumstances, a problem that is avoided in this proposal because of the
aforementioned generation of the new populations.

This work is organized as follows: Section 2 presents the proposed solution for the
IKP and the corresponding case study. Section 3 describes the conducted experiments and
their results. Lastly, Section 4 consists of the obtained conclusions from the experimental
data and possible future works.

2. Materials and Methods

This development is aimed at solving the IKP of kinematic chains with five or more
DOF, since analytical methods present complications as the degrees of freedom increase. In
the case of the cited works that use metaheuristics, the kinematic chains of 5-, 6-, and 7-DOF
refer to industrial robots that can be found in the real world. In this work, the requirements
of other areas such as animation are considered, but the proposal can also be applied to
solve the IKP of industrial robots.

In areas related to computer graphics, kinematic chains do not refer to models that
deal with physical constraints. For this reason, they can be more complex in the sense of
the number of DOF. Solving their IKP is still a necessity, ideally in a short time and, in most
of the cases, with the additional characteristic of minimizing the angular displacement of
the effectors between the original and last positions. For this reason, the case study for this
proposal is an open kinematic chain with five links that were linked with joints that could
rotate with respect to two axes, each joint with 2-DOF. This implies that, for a position on
the XYZ coordinate system, it is required to find 10 angular values.

The FK of the case study was modeled taking into account the Denavit–Hartenberg
convention [8], such that the desired coordinates were the first three elements of the last
column in the matrix in (1) (~P), resulting from the multiplication of the homogeneous
transformations shown in (2) and considering the parameters of Table 1.

H =

(
R ~P
0 1

)
= H1H2H3 . . . H10, (1)

Hi =


cos θi − sin θi cos αi sin θi sin αi li cos θi
sin θi cos θi cos αi − cos θi sin αi li sin θi

0 sin θi cos αi di
0 0 0 1

, (2)

Table 1. Parameters for homogeneous transformations.

Links li αi di θi

1, 3, 5, 7, 9 0 π
2 0 q1, q3, q5, q7, q9

2, 4, 6, 8, 10 10 −π
2 0 q2, q4, q6, q8, q10

2.1. Optimization Approach

Using as a base the description of the FK and the space of configurations of the
kinematic chains (the range of values that the intermediate effectors can take), it was
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possible to implement an optimization function that quantified as an error the Euclidean
distance between a mapped solution corresponding to the obtained FK model and the
desired position.

The general description of a numerical optimization problem is expressed in (3), where
f (~q) is the function to minimize that depends on the vector of design variables ~q. This
function can be subject to inequality and equality constraints gi(~q) and hj(~q), respectively.

min f (~q) (3)

gi(~q) ≤ 0

hj(~q) = 0

For this case study, the objective function is described in (4), where xd, yd, zd are
the desired coordinates, and x(~θ), y(~θ), z(~θ) are the mapped coordinates from the FK
corresponding to the ~P column of the resulting matrix in (1). The function was calculated
using the design vector ~θ that contained the 10 joint angular values. The value of the
objective function is expressed in length units that depend on the particular case study.

min f (~θ) =
√
(x(~θ)− xd)2 + (y(~θ)− yd)2 + (z(~θ)− zd)2 (4)

This optimization problem does not consider any constraint because the development
was focused on the solution of the IKP problem for a kinematic chain without taking into
account the usual physical events that are modeled as constraints such as collisions, and
the search space is infinite in the sense that the joints have free rotation. In addition to
positioning the end effector, it is desirable that the final posture adopted by the robot when
reaching the desire position has minimal displacement with respect to the original pose.
This is quantified by the Euclidean norm of the difference between the vector of angular
values at the initial position (~θi) and the vector ~θ∗ obtained by the proposed solution
algorithm. In other works like [4], this norm appears explicitly in the optimization problem,
but with the modification proposed in this work, it is not necessary to achieve solutions
with a similar initial posture.

2.2. Selection of the Metaheuristic Technique

Diverse proposals have been developed, applying metaheuristic algorithms to solve
the IKP. The proposal in this work is not to improve those algorithms, but to rethink the
modeling of the problem and take advantage of its special characteristics to simplify the
search work carried out by the metaheuristic algorithm. However, it is still necessary
to select a metaheuristic as a starting point for the solution. In this sense, three widely
cited algorithms in the related literature were considered that obtained good solutions
in real-world engineering problems. These algorithms are DE, PSO, and artificial bee
colony (ABC).

In this development, the tuning parameters, involved operators, and general perfor-
mance were considered to select the algorithm to be used. With respect to the first criterion,
only three parameters need to be tuned in DE, with well-defined intervals, and there is
also available information on the impact of different values in the search. The number of
individuals in the population is a parameter that shares with the rest of the algorithms.
PSO has five parameters: only two are bounded in a well-established interval, and another
is associated with the inertia of the particle, which can be interpreted as a particle resistance
(candidate solution) to change its search direction, but an inappropriate selection can cause
the population to diverge. In addition to this, unlike the rest of the algorithms that only
require initializing the individuals, it is also necessary to initialize a set of process speeds
that is still discussed as carry out to achieve good results. ABC has only two parameters for
determining when a solution is randomly reset, which is an implemented mechanism due
to the designer being inspired by the behavior of the bees when a food source (solution)
runs out.
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In the case of ABC, the random restarting of a solution after its limit of improvement
trials has been reached is a mechanism that improves the global search capacity, increasing
the probability to escape from local optima. Although it is an advantage in most problems,
it is an obstacle to one of the main adaptations proposed in this paper. It consists of using
the information from previous solutions to guide the next population by transforming the
optimization problem into a sequence of simpler problems whose consecutive solutions
are expected to be similar. So, it is desirable to bound the set of solutions. The opposite is
the case of DE, which converges quickly and does not adequately explore the entire search
space, but as mentioned, this has little impact because it is assumed that the solution to a
problem of the sequence of optimization problems is already a good solution for the next
one, and it requires a smaller space to explore. In the PSO algorithm, there is no particular
behavior because it can be manipulated with tuning, but the base algorithm is usually
modified to achieve good results.

Lastly, in [17] DE, PSO and ABC solving 24 benchmark problems [18] were compared,
and one engineering design problem was presented, with DE occupying the first place in
performance. Due to the compatibility of the proposal of using biased populations, having
few tuning parameters and its performance in general, it was decided to use DE for the
optimization stage.

2.3. Differential Evolution Algorithm

The DE algorithm is an optimization technique within the classification of evolutionary
algorithms. It is a stochastic search method developed in 1995 by Kenneth V. Price and
Rainer M. Storn [5], and several versions of DE have been developed. In this proposal, the
variant rand/1/bin was used to obtain the solution of the optimization problem associated
to the IKP. DE requires a population of individuals, each representing a proposed solution,
and it includes process of mutation, crossing, and selection to evolve and improve it.

In evolutionary algorithms, mutation is a change in a pseudorandom element in order
to maintain the diversity in the population. For the implemented DE version, a mutant
vector (V j) is created for each individual in the population following (5), using a target
individual (xr1), two additional individuals (xr2, xr3), and a mutation factor F.

MutantV j = xr1 + F(xr2 − xr3); (5)

The recombination is an operation in which test vectors are generated from the pseu-
dorandom copy of the genetic material of the parent or mutant vector. The binomial cross
process consists of selecting a random number between 1 and the dimension of the solution
vectors; in this index, the child vector inherits the characteristics of the mutant vector. For
the rest of the indices, the selection of the value to inherit is random and conditioned to (6),
where CR is the crossover.

NewVi =

{
MutantVi, rand(0, 1) ≤ CR
FatherVi, rand(0, 1) > CR

(6)

Lastly, a selection to update the population is performed following (7), where f is the
optimization function (4):

Vg+1 =

{
NewVi, f (NewVi) ≤ f (Vg)
Vg, other

(7)

2.4. Modeling Considerations

As mentioned before, the traditional approach of solving the IKP by finding a solution
that minimizes the proposed error function (4) with an optimization algorithm was modi-
fied in this work, taking some ideas from the function of illustration software such as CLIP
STUDIO PAINT (CSP) [19], where it is possible to manipulate articulated reference models,
and there is the need to have different instances of the movement to reach the final posture.
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The first modification consists of transforming the optimization problem into a se-
quence of problems, such that the solution of each of them represents an instant of the
possible trajectory to reach the desired position. The trajectory can be proposed by the user
or determined by an algorithm. This modification is an approximation to the way that
CSP functions. When this software positions the end of a kinematic chain, the program
iterates along with the user’s displacement, such that it does not find a trajectory to the
final destination, but solves according to the points where the mouse is moved, eventually
reaching the desired position.

The second change was performed considering the implications of the first, the specific
problem, and the way the differential evolution algorithm works. This modification consists
in biasing the initialization of individuals: instead of initializing them randomly in the
entire search space, they are initialized around a candidate individual (pbest) that is the
solution of the previous problem, as described in (8), where M is a user-defined factor that
represents a search distance.

popk = pbestk−1 + M(rand− 0.5) (8)

This can be achieved because it is assumed that the obtained solution for the previous
problem after discretizing the trajectory would have an error that is at most equal to the
resolution of the discretization. In addition, the solutions generated around that particular
individual are similar to that. That is, the Euclidean norm of their difference is small, this
being an additional desired aspect to the solution of the optimization problem.

2.5. Methodology Description

Figure 1 shows the proposed methodology. The first step is the formulation of the IKP
as an optimization problem. Then, a trajectory is established between the first configuration
(origin) and the final position. The trajectory is discretized with a sequence of points, and
the segment between two consecutive points corresponds to a single optimization problem.

The third step consists in initializing the parameters for each problem, desire position,
and candidate solutions. The population is biased around the solution obtained for the
previous problem, with the exception of the first problem, where it is biased considering
the origin.

The next steps are related to the optimization technique—in this case, DE. The fourth
step consists in evaluating the current population (set of solutions) in each cycle. If the end
criteria are met, the process for this segment finishes, and the algorithm continues with the
next optimization problem. In the case of the end criteria not being met, in the fifth step, a
new solution is generated for each solution in the population, applying (5) and (6). Lastly,
at the sixth step, the individuals are compared using (4), and the best is kept for the next
cycle, while the other one is discarded.
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Figure 1. Flowchart for solving the IKP as a sequence of optimization problems.

3. Experiments and Results

In this section, the performed experiments are described, and their results are analyzed.
All of them had in common a general case study that consisted in the solution of the IKP
for a kinematic chain of five links, each of them 10 cm long and with double articular joints.
This implies that the full kinematic chain had 10 DOF, and each joint is represented in
Figure 2, considering that the distance between the X0, Y0 plane and q1 was zero, so the
kinematic chain was equivalent to coupling five of those robots sequentially.

The proposed method to solve the IKP is flexible and has the potential to be applied to
different types of kinematic chains, and not only the general case proposed, as long as the
conditions expressed in (9)–(14) are fulfilled. However, the method may not be applicable
in the case of parallel robots, since in some of their configurations, there is no function to
obtain the position and orientation coordinates of the end effector from the values angles
of the actuators (FK), so the set of equations is not fulfilled.

S = {(θ1, θ2, . . . , θn)||θi| ≤ θ}; (9)

∀s ∈ S∃ f (s)| f (s) ∈ R3; (10)

C = {c = (c1, c2, . . . , cn)|ci ∈ {−e, 0, e}|e > 0∧ ||c|| = e} (11)

∀s ∈ S∃c ∈ C|s + c ∈ S; (12)

PS = ((x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)), (13)

∀(xi, yi, zi) ∈ PS∃s ∈ S ∧ | f (s1)− psk| ≤ δ; (14)
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Figure 2. Robotic link with 2 DOF.

As can be seen, the configuration space S must be described using a function that
maps to R3, where θi refers to the value that the effector i of the kinematic chain can adopt.
The possibility of an increment or decrement of that value also needs to exist in a way that
the new posture is part of the same space. In other words, there exist a set of changes (C)
allowed for each DOF that must lead to a configuration in the same space, so for a path
defined by a series of points (xi, yi, zi), there exists a configuration that maps to a value
in R3 with a boundary error (zero in the case that the point is in the work space and the
effector adopts continuous values).

The FK models that were obtained by following the Denavit–Hartenberg algorithm
fulfilled the (9)–(14). This is an advantage, but it also implies the limitations of the proposal,
because it is applicable to the characteristics of IKP for robots or animation applications
where an initial posture and the final value (not the solution) of the optimization function
are met, and the final and initial postures are similar. These characteristics contrast with
the benchmark problems shown in [18,20,21], where the optimal value was assumed to be
unknown; in some cases, the best value was not necessarily the optimal, and it was not
required that the final solution has similarity with a specific initial design vector.

Four experiments were carried out using this general case as a starting point. The first
two are referred to as the common problem of finding the IK for a random point within
the work space, and the difference between these experiments is the applied approach to
find the solution. In the first experiment, the IKP was solved using DE as a mechanism to
find the solution of a single optimization problem associated with the IK. In the second
experiment, DE used biased populations to find the solution of a series of optimization
problems, with each corresponding to an instant of the trajectory that the kinematic chain
would follow to reach the desired final position.

After the comparison between these approaches and considering the results, the third
and fourth experiments were carried out. They consisted of trajectory tracking applying
the second proposal to determine its potential as a mechanism to obtain the configurations
to be followed on a path that reproduces a consistent animation. This implies that the
difference between two postures in a row must be minimal following the principles of
the stop-motion animation [22]. In addition, the results of this experiment show that the
second approximation presents robustness since it is not affected by the type of trajectory,
maintaining a similarity between the initial and the final postures.

All experiments were performed using MATLAB R2020a software on a computer with
the following specifications: Intel i7 processor @3.70 GHz, 16 GB RAM, and Windows 10
operating system. In addition, the tuning parameters for DE were: mutation factor F = 0.6,
crossover probability CR = 0.5, and pop = 10 individuals throughout the generations.
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3.1. Obtaining the IK for a Point in the Space

For the first two experiments, the objective point to position the final effector in the
kinematic chain was selected as (20, −20, −10), in XYZ coordinates.

3.1.1. First Experiment

As previously explained, the first experiment consisted in solving the IKP as a single
optimization problem. Ten executions of the algorithm were carried out taking as a stop
criterion a limit of 100,000 generations or to obtain a solution whose error function is lower
than 0.001 = 10× 10−3 cm. The obtained results are shown in Table 2, including the mean
and the standard deviation of the results, where the best results are in bold type. In addition
to the objective function, the similarity between the final and the initial configurations was
calculated by using the norm of the difference of the initial solution and the final posture,
where the similarity is inversely proportional to the distance. Since there was no an explicit
mechanism that minimized the difference, the general similarity was low.

Table 2. Results of the first experiment.

Run Objective Function (cm) Distance to the Original
Pose (rad)

1 0.0741 5.8277
2 0.0915 5.6552
3 0.1670 9.5290
4 0.0997 4.5117
5 0.0626 10.0037
6 0.0480 4.8227
7 0.0948 23.2495
8 0.1025 3.1664
9 0.1248 9.1732
10 0.0232 3.4065

Mean 0.0888 7.9345

Standard deviation 0.0403 5.6318

For this experiment, no solution was obtained in any of the 10 executions that met
the error criterion before reaching the stop criteria. The result with the smallest distance
from the initial pose was generated in the 8th run, whose angular values of the kinematic
chain were 1.2055, −1.8763, −0.3180, 0.1339, −1.3818, 0.1600, −0.8093, −0.4621, 0.7072,
−0.7136, while the run that best positioned the end effector was the 10th, whose values
were 2.2508, −1.5886, −1.3051, −0.4985, −0.1481, −2.0907, 0.0696, 0.7274, 0.0150, 0.8789.
The kinematic chain adopting the angular values of the solutions and the initial pose is
shown in Figure 3. All the figures showing the results of the different experiments were
generated using MATLAB R2020a.
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Figure 3. Kinematic chain when the solutions obtained in the first experiment were adopted. Original
pose is shown in black, the pose with the greatest similarity in red, and the pose with the lowest error
in magenta.

3.1.2. Second Experiment

In this experiment, the trajectory connecting the initial and the desired positions was
discretized. So, the final solution was obtained on the basis of a series of k optimization
problems, with each associated with the IK of a small segment of the complete trajectory.
The solution for each of these segments was used to generate a biased population that
would serve as the initial population to solve the next problem, corresponding to the next
segment. For this experiment, it is proposed to establish a linear trajectory that is a common
approximation in different fields, which is denoted by (15):

Pi =

xd,i
yd,i
zd,i

 = P0 + i
Pk − P0

k
(15)

In this particular case, the task was divided into k = 10 optimization problems, that is,
the same number of the runs of the first experiment to verify if it was possible to achieve
a better solution with a lower total number of generations in one run with 10 simpler
problems. The k optimization problems are described with (16), where x, y, z are calculated
by the model generated from the homogeneous transformations.

min fi(~θ) =
√
(x(~θ)− xd,i)2 + (y(~θ)− yd,i)2 + (z(~θ)− zd,i)2, i = 1, 2, . . . , k (16)
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The 10 individual results for the total solution in the test run are shown in Table 3,
including the number of generations required for the calculation, whereas the correspond-
ing graph is presented in Figure 4. Because of the size order of the values for the objective
function, its values are presented in scientific notation.

Table 3. Data of the test run by the second approximation.

Problem Generations Objective Function
(cm)

Distance to the
Previous Pose (rad)

1 7844 2.9576× 10−4 0.1809
2 14,804 8.7079× 10−4 0.2170
3 14,615 9.1547× 10−4 0.3579
4 12,387 8.4897× 10−4 0.1785
5 13,913 5.5925× 10−4 0.1815
6 25,682 6.9012× 10−4 0.2210
7 2800 6.2471× 10−4 0.1649
8 8277 6.2898× 10−4 0.2034
9 8223 8.9564× 10−4 0.1157

10 8449 6.7832× 10−4 0.1062

Figure 4. Kinematic chain when adopting the individual results obtained for the total solution in the
test run, for the second experiment.

The total solution from the test run met the error criterion, and its distance from the
original position was 1.0644, which was lower than any of the solutions obtained with the
approach in the first experiment. The approach used in the second experiment produced a
better result both in reducing the error when reaching the target point and in maintaining
a similarity with the initial pose. In addition, the sum of generations or cycles that takes
the algorithm to solve the IKP by this approach is lower than the total required in the first
experiment. Figure 5 shows the best solutions generated in both experiments.
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Figure 5. Kinematic chain when adopting the best values obtained in Experiment 1 is shown in blue,
in red the one obtained by the second approach, and in black the original pose.

Due to the stochastic nature of the heuristic techniques, there is a possibility that the
solution shown in the test run with the second experiment represents an extraordinary
or difficult case to replicate. Considering this, the experiment was replicated 10 times in
order to compare the solutions found in new executions with different random values. The
results are shown in Table 4 including the mean and the standard deviation. Again, because
of the size order of the values for the objective function, they are presented in scientific
notation. Figure 6 shows the total solutions found.

Table 4. Results of the second experiment.

Run Generations Objective Function
(cm)

Distance from the
Original Pose (rad)

1 85,743 9.3063× 10−4 1.1238
2 119,189 9.6545× 10−4 1.1018
3 72,895 9.9947× 10−4 1.1196
4 82,429 6.6060× 10−4 1.3207
5 69,345 7.6651× 10−4 1.1267
6 82,149 7.3738× 10−4 1.2138
7 79,054 6.6518× 10−4 1.1704
8 86,091 6.8845× 10−4 1.2011
9 89,843 8.8097× 10−4 1.2603

10 78,608 7.4327× 10−4 1.1898

Mean 84,535 8.0379× 10−4 1.1828

Standard deviation 13,640 1.2865× 10−4 0.0697
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Figure 6. Final postures of the kinematic chain in ten executions by the proposed approach; the pose
with the greatest similarity shown in red, and the pose with the lowest error in magenta.

Because of the aforementioned nature of the metaheuristic algorithms, there are
differences in the number of cycles that were required in each of the runs to solve the IKP.
This can be attributed to the random components of the algorithm, but it is clear that all
the solutions met the error condition and had higher similarity with the initial pose than
that of any of the obtained solutions in the first experiment. In addition, Figure 6 shows
that the solutions from the second experiment had a higher similarity among themselves,
contrasted with those obtained in the first experiment (Figure 3).

3.2. Obtaining the Sequence of Configurations along a Circular Trajectory

Considering the quality of the previous results, the proposed approach could be
applied to the solution of the IKP involving trajectories with higher complexity than the
one used in the second experiment (a straight line). For this reason, in the third experiment,
a circular trajectory with 50 points was proposed. The results are shown in Figure 7.

In this experiment, a solution that met the error criteria was found for each problem
associated the algorithm. A similar position was also maintained throughout the trajectory
due to the manipulation carried out on the initial population of each problem. These
results show that the methodology applied tries to maintain a similarity with the previous
problem, but given a succession of problems that lead to the initial point as a consequence
of traversing a trajectory, it does not imply that the position was maintained, only that it
preserved some degree of similarity.
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Figure 7. Solutions for the optimization problems of the circular trajectory. The thick lines correspond
to the initial and final postures.

As shown in Figure 7, the final and initial postures were not the same. This could
be an undesired condition for cyclic tasks, since for this experiment the start and end
of a sequence of configurations are required to have the same value, also for every pair
of subsequent configurations must be similar. Two approaches are proposed to achieve
this, modifying the strategy to bias the population. The first one consists in biasing the
population around the initial configuration (values corresponding to the initial pose) for
all the optimization problems, as it is shown in (17), where pbest0 corresponds to the the
initial pose. The results of this approximation are shown in Figure 8, where the initial and
final poses presented higher similarity in comparison with the results in Figure 7.

popk = pbest0 + M(rand− 0.5) (17)
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Figure 8. Solutions for the optimization problems of the circular trajectory biasing the population
around the values of the initial pose. The thick lines correspond to the initial and final posture.

The previous approach achieved the desired result, in the sense that the similarity
between the initial and final poses was increased, but this proposal lost the information
obtained from the solution of the previous problem, thus increasing the probability that
two successive configurations would present low similarity. It is proposed to average the
initial position with the best individual of the previous problem to balance this aspect, as it
is shown in (18).

popk = 0.5(pbest0 + bestk−1) + M(rand− 0.5) (18)

The results of this approximation are shown in Figure 9. In this case, not only did the
initial and final poses present a higher similarity compared to the result in Figure 7, but
also every pair in the set of solutions behaved in the same way.
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Figure 9. Solutions for the optimization problems of the circular trajectory biasing the population
around the mean of the values from previous best solution and the initial pose. The thick lines
correspond to the initial and final posture.

3.3. Obtaining the Sequence of Configurations along a Random Trajectory

Lastly, in the fourth experiment, a random trajectory with 50 points was generated
by performing random displacements from the initial position. As in the second and third
experiments, for each associated problem, the algorithm found a solution that met the error
criteria, and a similar position was maintained throughout the trajectory. The results are
shown in Figure 10.
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Figure 10. Solutions for the optimization problems of the random path. The thick lines correspond to
the initial and final posture.

4. Conclusions

In this work, a new approach to solve the IKP was proposed that consists in solving it
as a sequence of single optimization problems using a modified DE, with each problem
associated with a small segment of a discretized path that connects the initial position of
the kinematic chain with the desired position. As another contribution of this proposal, the
single problems were solved, biasing their initial populations to produce a specific behavior
where a single solution has a high similarity with the solution found in the previous
problem. Two additional modifications were included to increase the similarity when
solving the IKP for close trajectories. This implies that the poses adopted by the kinematic
chain along the trajectory (corresponding to the total solution) had a high similarity with
the initial pose. The proposed approach was tested by solving the IKP for a 5-link 10-
DOF kinematic chain applying the differential evolution algorithm, and the results were
compared with the solutions obtained by a traditional approximation without dividing the
trajectory in different experiments considering a standard error condition.

The results generated by the proposal when solving the IKP fulfilled the error condi-
tion. Particularly, the proposed approach required fewer execution cycles to obtain better
solutions compared to the traditional approach with an undivided trajectory also solved
with DE. In addition, it is useful as a method for trajectory tracking in which the succes-
sion of similar configurations can help in establishing a more complete trajectory without
abrupt changes in the angular values of the joints. One of the advantages of this approach
is that it does not have to deal with the issue of singularities that affect the behavior of
some analytic methods, such as division by zero or multiple solutions that produce an
undecidable problem, since each position explored by the algorithm is a mapping of the
angular values to a position in R3.
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The proposed approach was applied to solve the IKP for a pure serial kinematic chain,
that is, without considering physical aspects and their implications (e.g., singularities).
Therefore, as future work, it is proposed to take those aspects into account in the research,
for example, by incorporating them as constraints in the optimization problem and includ-
ing a constraint handler in DE, such as the feasibility rules [23]. However, the method may
not be applicable to cases such as certain types of parallel robots since, in some configu-
rations, there is no function to obtain the position and orientation coordinates of the end
effector from the angles of the actuator’s FK. For those cases, a different approach has been
developed, where the IKP is solved taking as a base the FK, which is, in turn, calculated
with diverse tools such as mathematical programming or metaheuristics. Other consider-
ations may fall into analyzing the problem as a multiobjective optimization case, where
other objective functions are sought to minimize the movement of the center of gravity or
the displacement of the effectors prioritizing rotations of the base with less movement to
consider energy costs. For example, two objectives can be considered: positioning the end
effector in a desired position (minimize the mapped value by the FK) and maximizing the
similarity with the start configuration. As part of the analysis, it is required to determine if
the objective functions are opposite to each other.

On the other hand, considering that an important part of the proposal presented in
this work consisted in biasing the initial population that DE used to solve the sequence of
optimization problems, other metaheuristics can be applied to evaluate its performance
with biased populations and other modifications to maintain and/or improve the results
obtained. Another metaheuristics can be applied if constraints are included in the modeling
of the optimization problems, since DE has difficulties in finding feasible solutions with
equality constraints.
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